| author | huffman | 
| Fri, 13 Sep 2013 14:57:20 -0700 | |
| changeset 53676 | 476ef9b468d2 | 
| parent 53015 | a1119cf551e8 | 
| child 54483 | 9f24325c2550 | 
| permissions | -rw-r--r-- | 
| 49087 | 1 | (* Title: HOL/Library/Sublist.thy | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 2 | Author: Tobias Nipkow and Markus Wenzel, TU Muenchen | 
| 49087 | 3 | Author: Christian Sternagel, JAIST | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 4 | *) | 
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 5 | |
| 50516 | 6 | header {* List prefixes, suffixes, and homeomorphic embedding *}
 | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 7 | |
| 49087 | 8 | theory Sublist | 
| 9 | imports Main | |
| 15131 | 10 | begin | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 11 | |
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 12 | subsection {* Prefix order on lists *}
 | 
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 13 | |
| 50516 | 14 | definition prefixeq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 49107 | 15 | where "prefixeq xs ys \<longleftrightarrow> (\<exists>zs. ys = xs @ zs)" | 
| 49087 | 16 | |
| 50516 | 17 | definition prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 49107 | 18 | where "prefix xs ys \<longleftrightarrow> prefixeq xs ys \<and> xs \<noteq> ys" | 
| 25764 | 19 | |
| 49087 | 20 | interpretation prefix_order: order prefixeq prefix | 
| 21 | by default (auto simp: prefixeq_def prefix_def) | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 22 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
50516diff
changeset | 23 | interpretation prefix_bot: order_bot Nil prefixeq prefix | 
| 49087 | 24 | by default (simp add: prefixeq_def) | 
| 25 | ||
| 50516 | 26 | lemma prefixeqI [intro?]: "ys = xs @ zs \<Longrightarrow> prefixeq xs ys" | 
| 49087 | 27 | unfolding prefixeq_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 28 | |
| 49087 | 29 | lemma prefixeqE [elim?]: | 
| 30 | assumes "prefixeq xs ys" | |
| 31 | obtains zs where "ys = xs @ zs" | |
| 32 | using assms unfolding prefixeq_def by blast | |
| 33 | ||
| 50516 | 34 | lemma prefixI' [intro?]: "ys = xs @ z # zs \<Longrightarrow> prefix xs ys" | 
| 49087 | 35 | unfolding prefix_def prefixeq_def by blast | 
| 37474 | 36 | |
| 49087 | 37 | lemma prefixE' [elim?]: | 
| 38 | assumes "prefix xs ys" | |
| 39 | obtains z zs where "ys = xs @ z # zs" | |
| 40 | proof - | |
| 41 | from `prefix xs ys` obtain us where "ys = xs @ us" and "xs \<noteq> ys" | |
| 42 | unfolding prefix_def prefixeq_def by blast | |
| 43 | with that show ?thesis by (auto simp add: neq_Nil_conv) | |
| 44 | qed | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 45 | |
| 50516 | 46 | lemma prefixI [intro?]: "prefixeq xs ys \<Longrightarrow> xs \<noteq> ys \<Longrightarrow> prefix xs ys" | 
| 18730 | 47 | unfolding prefix_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 48 | |
| 21305 | 49 | lemma prefixE [elim?]: | 
| 49087 | 50 | fixes xs ys :: "'a list" | 
| 51 | assumes "prefix xs ys" | |
| 52 | obtains "prefixeq xs ys" and "xs \<noteq> ys" | |
| 23394 | 53 | using assms unfolding prefix_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 54 | |
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 55 | |
| 10389 | 56 | subsection {* Basic properties of prefixes *}
 | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 57 | |
| 49087 | 58 | theorem Nil_prefixeq [iff]: "prefixeq [] xs" | 
| 59 | by (simp add: prefixeq_def) | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 60 | |
| 49087 | 61 | theorem prefixeq_Nil [simp]: "(prefixeq xs []) = (xs = [])" | 
| 62 | by (induct xs) (simp_all add: prefixeq_def) | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 63 | |
| 49087 | 64 | lemma prefixeq_snoc [simp]: "prefixeq xs (ys @ [y]) \<longleftrightarrow> xs = ys @ [y] \<or> prefixeq xs ys" | 
| 10389 | 65 | proof | 
| 49087 | 66 | assume "prefixeq xs (ys @ [y])" | 
| 10389 | 67 | then obtain zs where zs: "ys @ [y] = xs @ zs" .. | 
| 49087 | 68 | show "xs = ys @ [y] \<or> prefixeq xs ys" | 
| 69 | by (metis append_Nil2 butlast_append butlast_snoc prefixeqI zs) | |
| 10389 | 70 | next | 
| 49087 | 71 | assume "xs = ys @ [y] \<or> prefixeq xs ys" | 
| 72 | then show "prefixeq xs (ys @ [y])" | |
| 73 | by (metis prefix_order.eq_iff prefix_order.order_trans prefixeqI) | |
| 10389 | 74 | qed | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 75 | |
| 49087 | 76 | lemma Cons_prefixeq_Cons [simp]: "prefixeq (x # xs) (y # ys) = (x = y \<and> prefixeq xs ys)" | 
| 77 | by (auto simp add: prefixeq_def) | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 78 | |
| 49087 | 79 | lemma prefixeq_code [code]: | 
| 80 | "prefixeq [] xs \<longleftrightarrow> True" | |
| 81 | "prefixeq (x # xs) [] \<longleftrightarrow> False" | |
| 82 | "prefixeq (x # xs) (y # ys) \<longleftrightarrow> x = y \<and> prefixeq xs ys" | |
| 37474 | 83 | by simp_all | 
| 84 | ||
| 49087 | 85 | lemma same_prefixeq_prefixeq [simp]: "prefixeq (xs @ ys) (xs @ zs) = prefixeq ys zs" | 
| 10389 | 86 | by (induct xs) simp_all | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 87 | |
| 49087 | 88 | lemma same_prefixeq_nil [iff]: "prefixeq (xs @ ys) xs = (ys = [])" | 
| 89 | by (metis append_Nil2 append_self_conv prefix_order.eq_iff prefixeqI) | |
| 25665 | 90 | |
| 50516 | 91 | lemma prefixeq_prefixeq [simp]: "prefixeq xs ys \<Longrightarrow> prefixeq xs (ys @ zs)" | 
| 49087 | 92 | by (metis prefix_order.le_less_trans prefixeqI prefixE prefixI) | 
| 25665 | 93 | |
| 49087 | 94 | lemma append_prefixeqD: "prefixeq (xs @ ys) zs \<Longrightarrow> prefixeq xs zs" | 
| 95 | by (auto simp add: prefixeq_def) | |
| 14300 | 96 | |
| 49087 | 97 | theorem prefixeq_Cons: "prefixeq xs (y # ys) = (xs = [] \<or> (\<exists>zs. xs = y # zs \<and> prefixeq zs ys))" | 
| 98 | by (cases xs) (auto simp add: prefixeq_def) | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 99 | |
| 49087 | 100 | theorem prefixeq_append: | 
| 101 | "prefixeq xs (ys @ zs) = (prefixeq xs ys \<or> (\<exists>us. xs = ys @ us \<and> prefixeq us zs))" | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 102 | apply (induct zs rule: rev_induct) | 
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 103 | apply force | 
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 104 | apply (simp del: append_assoc add: append_assoc [symmetric]) | 
| 25564 | 105 | apply (metis append_eq_appendI) | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 106 | done | 
| 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 107 | |
| 49087 | 108 | lemma append_one_prefixeq: | 
| 50516 | 109 | "prefixeq xs ys \<Longrightarrow> length xs < length ys \<Longrightarrow> prefixeq (xs @ [ys ! length xs]) ys" | 
| 49087 | 110 | unfolding prefixeq_def | 
| 25692 | 111 | by (metis Cons_eq_appendI append_eq_appendI append_eq_conv_conj | 
| 112 | eq_Nil_appendI nth_drop') | |
| 25665 | 113 | |
| 50516 | 114 | theorem prefixeq_length_le: "prefixeq xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 49087 | 115 | by (auto simp add: prefixeq_def) | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 116 | |
| 49087 | 117 | lemma prefixeq_same_cases: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
52729diff
changeset | 118 | "prefixeq (xs\<^sub>1::'a list) ys \<Longrightarrow> prefixeq xs\<^sub>2 ys \<Longrightarrow> prefixeq xs\<^sub>1 xs\<^sub>2 \<or> prefixeq xs\<^sub>2 xs\<^sub>1" | 
| 49087 | 119 | unfolding prefixeq_def by (metis append_eq_append_conv2) | 
| 25665 | 120 | |
| 49087 | 121 | lemma set_mono_prefixeq: "prefixeq xs ys \<Longrightarrow> set xs \<subseteq> set ys" | 
| 122 | by (auto simp add: prefixeq_def) | |
| 14300 | 123 | |
| 49087 | 124 | lemma take_is_prefixeq: "prefixeq (take n xs) xs" | 
| 125 | unfolding prefixeq_def by (metis append_take_drop_id) | |
| 25665 | 126 | |
| 49087 | 127 | lemma map_prefixeqI: "prefixeq xs ys \<Longrightarrow> prefixeq (map f xs) (map f ys)" | 
| 128 | by (auto simp: prefixeq_def) | |
| 25322 | 129 | |
| 49087 | 130 | lemma prefixeq_length_less: "prefix xs ys \<Longrightarrow> length xs < length ys" | 
| 131 | by (auto simp: prefix_def prefixeq_def) | |
| 25665 | 132 | |
| 49087 | 133 | lemma prefix_simps [simp, code]: | 
| 134 | "prefix xs [] \<longleftrightarrow> False" | |
| 135 | "prefix [] (x # xs) \<longleftrightarrow> True" | |
| 136 | "prefix (x # xs) (y # ys) \<longleftrightarrow> x = y \<and> prefix xs ys" | |
| 137 | by (simp_all add: prefix_def cong: conj_cong) | |
| 25299 | 138 | |
| 49087 | 139 | lemma take_prefix: "prefix xs ys \<Longrightarrow> prefix (take n xs) ys" | 
| 25692 | 140 | apply (induct n arbitrary: xs ys) | 
| 141 | apply (case_tac ys, simp_all)[1] | |
| 49087 | 142 | apply (metis prefix_order.less_trans prefixI take_is_prefixeq) | 
| 25692 | 143 | done | 
| 25299 | 144 | |
| 49087 | 145 | lemma not_prefixeq_cases: | 
| 146 | assumes pfx: "\<not> prefixeq ps ls" | |
| 25356 | 147 | obtains | 
| 148 | (c1) "ps \<noteq> []" and "ls = []" | |
| 49087 | 149 | | (c2) a as x xs where "ps = a#as" and "ls = x#xs" and "x = a" and "\<not> prefixeq as xs" | 
| 25356 | 150 | | (c3) a as x xs where "ps = a#as" and "ls = x#xs" and "x \<noteq> a" | 
| 25299 | 151 | proof (cases ps) | 
| 49107 | 152 | case Nil | 
| 153 | then show ?thesis using pfx by simp | |
| 25299 | 154 | next | 
| 155 | case (Cons a as) | |
| 25692 | 156 | note c = `ps = a#as` | 
| 25299 | 157 | show ?thesis | 
| 158 | proof (cases ls) | |
| 49087 | 159 | case Nil then show ?thesis by (metis append_Nil2 pfx c1 same_prefixeq_nil) | 
| 25299 | 160 | next | 
| 161 | case (Cons x xs) | |
| 162 | show ?thesis | |
| 163 | proof (cases "x = a") | |
| 25355 | 164 | case True | 
| 49087 | 165 | have "\<not> prefixeq as xs" using pfx c Cons True by simp | 
| 25355 | 166 | with c Cons True show ?thesis by (rule c2) | 
| 167 | next | |
| 168 | case False | |
| 169 | with c Cons show ?thesis by (rule c3) | |
| 25299 | 170 | qed | 
| 171 | qed | |
| 172 | qed | |
| 173 | ||
| 49087 | 174 | lemma not_prefixeq_induct [consumes 1, case_names Nil Neq Eq]: | 
| 175 | assumes np: "\<not> prefixeq ps ls" | |
| 25356 | 176 | and base: "\<And>x xs. P (x#xs) []" | 
| 177 | and r1: "\<And>x xs y ys. x \<noteq> y \<Longrightarrow> P (x#xs) (y#ys)" | |
| 49087 | 178 | and r2: "\<And>x xs y ys. \<lbrakk> x = y; \<not> prefixeq xs ys; P xs ys \<rbrakk> \<Longrightarrow> P (x#xs) (y#ys)" | 
| 25356 | 179 | shows "P ps ls" using np | 
| 25299 | 180 | proof (induct ls arbitrary: ps) | 
| 25355 | 181 | case Nil then show ?case | 
| 49087 | 182 | by (auto simp: neq_Nil_conv elim!: not_prefixeq_cases intro!: base) | 
| 25299 | 183 | next | 
| 25355 | 184 | case (Cons y ys) | 
| 49087 | 185 | then have npfx: "\<not> prefixeq ps (y # ys)" by simp | 
| 25355 | 186 | then obtain x xs where pv: "ps = x # xs" | 
| 49087 | 187 | by (rule not_prefixeq_cases) auto | 
| 188 | show ?case by (metis Cons.hyps Cons_prefixeq_Cons npfx pv r1 r2) | |
| 25299 | 189 | qed | 
| 14300 | 190 | |
| 25356 | 191 | |
| 10389 | 192 | subsection {* Parallel lists *}
 | 
| 193 | ||
| 50516 | 194 | definition parallel :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "\<parallel>" 50) | 
| 49107 | 195 | where "(xs \<parallel> ys) = (\<not> prefixeq xs ys \<and> \<not> prefixeq ys xs)" | 
| 10389 | 196 | |
| 50516 | 197 | lemma parallelI [intro]: "\<not> prefixeq xs ys \<Longrightarrow> \<not> prefixeq ys xs \<Longrightarrow> xs \<parallel> ys" | 
| 25692 | 198 | unfolding parallel_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 199 | |
| 10389 | 200 | lemma parallelE [elim]: | 
| 25692 | 201 | assumes "xs \<parallel> ys" | 
| 49087 | 202 | obtains "\<not> prefixeq xs ys \<and> \<not> prefixeq ys xs" | 
| 25692 | 203 | using assms unfolding parallel_def by blast | 
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 204 | |
| 49087 | 205 | theorem prefixeq_cases: | 
| 206 | obtains "prefixeq xs ys" | "prefix ys xs" | "xs \<parallel> ys" | |
| 207 | unfolding parallel_def prefix_def by blast | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 208 | |
| 10389 | 209 | theorem parallel_decomp: | 
| 50516 | 210 | "xs \<parallel> ys \<Longrightarrow> \<exists>as b bs c cs. b \<noteq> c \<and> xs = as @ b # bs \<and> ys = as @ c # cs" | 
| 10408 | 211 | proof (induct xs rule: rev_induct) | 
| 11987 | 212 | case Nil | 
| 23254 | 213 | then have False by auto | 
| 214 | then show ?case .. | |
| 10408 | 215 | next | 
| 11987 | 216 | case (snoc x xs) | 
| 217 | show ?case | |
| 49087 | 218 | proof (rule prefixeq_cases) | 
| 219 | assume le: "prefixeq xs ys" | |
| 10408 | 220 | then obtain ys' where ys: "ys = xs @ ys'" .. | 
| 221 | show ?thesis | |
| 222 | proof (cases ys') | |
| 25564 | 223 | assume "ys' = []" | 
| 49087 | 224 | then show ?thesis by (metis append_Nil2 parallelE prefixeqI snoc.prems ys) | 
| 10389 | 225 | next | 
| 10408 | 226 | fix c cs assume ys': "ys' = c # cs" | 
| 25692 | 227 | then show ?thesis | 
| 49087 | 228 | by (metis Cons_eq_appendI eq_Nil_appendI parallelE prefixeqI | 
| 229 | same_prefixeq_prefixeq snoc.prems ys) | |
| 10389 | 230 | qed | 
| 10408 | 231 | next | 
| 49107 | 232 | assume "prefix ys xs" | 
| 233 | then have "prefixeq ys (xs @ [x])" by (simp add: prefix_def) | |
| 11987 | 234 | with snoc have False by blast | 
| 23254 | 235 | then show ?thesis .. | 
| 10408 | 236 | next | 
| 237 | assume "xs \<parallel> ys" | |
| 11987 | 238 | with snoc obtain as b bs c cs where neq: "(b::'a) \<noteq> c" | 
| 10408 | 239 | and xs: "xs = as @ b # bs" and ys: "ys = as @ c # cs" | 
| 240 | by blast | |
| 241 | from xs have "xs @ [x] = as @ b # (bs @ [x])" by simp | |
| 242 | with neq ys show ?thesis by blast | |
| 10389 | 243 | qed | 
| 244 | qed | |
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 245 | |
| 25564 | 246 | lemma parallel_append: "a \<parallel> b \<Longrightarrow> a @ c \<parallel> b @ d" | 
| 25692 | 247 | apply (rule parallelI) | 
| 248 | apply (erule parallelE, erule conjE, | |
| 49087 | 249 | induct rule: not_prefixeq_induct, simp+)+ | 
| 25692 | 250 | done | 
| 25299 | 251 | |
| 25692 | 252 | lemma parallel_appendI: "xs \<parallel> ys \<Longrightarrow> x = xs @ xs' \<Longrightarrow> y = ys @ ys' \<Longrightarrow> x \<parallel> y" | 
| 253 | by (simp add: parallel_append) | |
| 25299 | 254 | |
| 25692 | 255 | lemma parallel_commute: "a \<parallel> b \<longleftrightarrow> b \<parallel> a" | 
| 256 | unfolding parallel_def by auto | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 257 | |
| 25356 | 258 | |
| 49087 | 259 | subsection {* Suffix order on lists *}
 | 
| 17201 | 260 | |
| 49107 | 261 | definition suffixeq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 262 | where "suffixeq xs ys = (\<exists>zs. ys = zs @ xs)" | |
| 49087 | 263 | |
| 49107 | 264 | definition suffix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 265 | where "suffix xs ys \<longleftrightarrow> (\<exists>us. ys = us @ xs \<and> us \<noteq> [])" | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 266 | |
| 49087 | 267 | lemma suffix_imp_suffixeq: | 
| 268 | "suffix xs ys \<Longrightarrow> suffixeq xs ys" | |
| 269 | by (auto simp: suffixeq_def suffix_def) | |
| 270 | ||
| 50516 | 271 | lemma suffixeqI [intro?]: "ys = zs @ xs \<Longrightarrow> suffixeq xs ys" | 
| 49087 | 272 | unfolding suffixeq_def by blast | 
| 21305 | 273 | |
| 49087 | 274 | lemma suffixeqE [elim?]: | 
| 275 | assumes "suffixeq xs ys" | |
| 276 | obtains zs where "ys = zs @ xs" | |
| 277 | using assms unfolding suffixeq_def by blast | |
| 21305 | 278 | |
| 49087 | 279 | lemma suffixeq_refl [iff]: "suffixeq xs xs" | 
| 280 | by (auto simp add: suffixeq_def) | |
| 281 | lemma suffix_trans: | |
| 282 | "suffix xs ys \<Longrightarrow> suffix ys zs \<Longrightarrow> suffix xs zs" | |
| 283 | by (auto simp: suffix_def) | |
| 284 | lemma suffixeq_trans: "\<lbrakk>suffixeq xs ys; suffixeq ys zs\<rbrakk> \<Longrightarrow> suffixeq xs zs" | |
| 285 | by (auto simp add: suffixeq_def) | |
| 286 | lemma suffixeq_antisym: "\<lbrakk>suffixeq xs ys; suffixeq ys xs\<rbrakk> \<Longrightarrow> xs = ys" | |
| 287 | by (auto simp add: suffixeq_def) | |
| 288 | ||
| 289 | lemma suffixeq_tl [simp]: "suffixeq (tl xs) xs" | |
| 290 | by (induct xs) (auto simp: suffixeq_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 291 | |
| 49087 | 292 | lemma suffix_tl [simp]: "xs \<noteq> [] \<Longrightarrow> suffix (tl xs) xs" | 
| 293 | by (induct xs) (auto simp: suffix_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 294 | |
| 49087 | 295 | lemma Nil_suffixeq [iff]: "suffixeq [] xs" | 
| 296 | by (simp add: suffixeq_def) | |
| 297 | lemma suffixeq_Nil [simp]: "(suffixeq xs []) = (xs = [])" | |
| 298 | by (auto simp add: suffixeq_def) | |
| 299 | ||
| 49107 | 300 | lemma suffixeq_ConsI: "suffixeq xs ys \<Longrightarrow> suffixeq xs (y # ys)" | 
| 49087 | 301 | by (auto simp add: suffixeq_def) | 
| 49107 | 302 | lemma suffixeq_ConsD: "suffixeq (x # xs) ys \<Longrightarrow> suffixeq xs ys" | 
| 49087 | 303 | by (auto simp add: suffixeq_def) | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 304 | |
| 49087 | 305 | lemma suffixeq_appendI: "suffixeq xs ys \<Longrightarrow> suffixeq xs (zs @ ys)" | 
| 306 | by (auto simp add: suffixeq_def) | |
| 307 | lemma suffixeq_appendD: "suffixeq (zs @ xs) ys \<Longrightarrow> suffixeq xs ys" | |
| 308 | by (auto simp add: suffixeq_def) | |
| 309 | ||
| 310 | lemma suffix_set_subset: | |
| 311 | "suffix xs ys \<Longrightarrow> set xs \<subseteq> set ys" by (auto simp: suffix_def) | |
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 312 | |
| 49087 | 313 | lemma suffixeq_set_subset: | 
| 314 | "suffixeq xs ys \<Longrightarrow> set xs \<subseteq> set ys" by (auto simp: suffixeq_def) | |
| 315 | ||
| 49107 | 316 | lemma suffixeq_ConsD2: "suffixeq (x # xs) (y # ys) \<Longrightarrow> suffixeq xs ys" | 
| 21305 | 317 | proof - | 
| 49107 | 318 | assume "suffixeq (x # xs) (y # ys)" | 
| 319 | then obtain zs where "y # ys = zs @ x # xs" .. | |
| 49087 | 320 | then show ?thesis | 
| 321 | by (induct zs) (auto intro!: suffixeq_appendI suffixeq_ConsI) | |
| 21305 | 322 | qed | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 323 | |
| 49087 | 324 | lemma suffixeq_to_prefixeq [code]: "suffixeq xs ys \<longleftrightarrow> prefixeq (rev xs) (rev ys)" | 
| 325 | proof | |
| 326 | assume "suffixeq xs ys" | |
| 327 | then obtain zs where "ys = zs @ xs" .. | |
| 328 | then have "rev ys = rev xs @ rev zs" by simp | |
| 329 | then show "prefixeq (rev xs) (rev ys)" .. | |
| 330 | next | |
| 331 | assume "prefixeq (rev xs) (rev ys)" | |
| 332 | then obtain zs where "rev ys = rev xs @ zs" .. | |
| 333 | then have "rev (rev ys) = rev zs @ rev (rev xs)" by simp | |
| 334 | then have "ys = rev zs @ xs" by simp | |
| 335 | then show "suffixeq xs ys" .. | |
| 21305 | 336 | qed | 
| 14538 
1d9d75a8efae
removed o2l and fold_rel; moved postfix to Library/List_Prefix.thy
 oheimb parents: 
14300diff
changeset | 337 | |
| 49087 | 338 | lemma distinct_suffixeq: "distinct ys \<Longrightarrow> suffixeq xs ys \<Longrightarrow> distinct xs" | 
| 339 | by (clarsimp elim!: suffixeqE) | |
| 17201 | 340 | |
| 49087 | 341 | lemma suffixeq_map: "suffixeq xs ys \<Longrightarrow> suffixeq (map f xs) (map f ys)" | 
| 342 | by (auto elim!: suffixeqE intro: suffixeqI) | |
| 25299 | 343 | |
| 49087 | 344 | lemma suffixeq_drop: "suffixeq (drop n as) as" | 
| 345 | unfolding suffixeq_def | |
| 25692 | 346 | apply (rule exI [where x = "take n as"]) | 
| 347 | apply simp | |
| 348 | done | |
| 25299 | 349 | |
| 49087 | 350 | lemma suffixeq_take: "suffixeq xs ys \<Longrightarrow> ys = take (length ys - length xs) ys @ xs" | 
| 49107 | 351 | by (auto elim!: suffixeqE) | 
| 25299 | 352 | |
| 49107 | 353 | lemma suffixeq_suffix_reflclp_conv: "suffixeq = suffix\<^sup>=\<^sup>=" | 
| 49087 | 354 | proof (intro ext iffI) | 
| 355 | fix xs ys :: "'a list" | |
| 356 | assume "suffixeq xs ys" | |
| 357 | show "suffix\<^sup>=\<^sup>= xs ys" | |
| 358 | proof | |
| 359 | assume "xs \<noteq> ys" | |
| 49107 | 360 | with `suffixeq xs ys` show "suffix xs ys" | 
| 361 | by (auto simp: suffixeq_def suffix_def) | |
| 49087 | 362 | qed | 
| 363 | next | |
| 364 | fix xs ys :: "'a list" | |
| 365 | assume "suffix\<^sup>=\<^sup>= xs ys" | |
| 49107 | 366 | then show "suffixeq xs ys" | 
| 49087 | 367 | proof | 
| 49107 | 368 | assume "suffix xs ys" then show "suffixeq xs ys" | 
| 369 | by (rule suffix_imp_suffixeq) | |
| 49087 | 370 | next | 
| 49107 | 371 | assume "xs = ys" then show "suffixeq xs ys" | 
| 372 | by (auto simp: suffixeq_def) | |
| 49087 | 373 | qed | 
| 374 | qed | |
| 375 | ||
| 376 | lemma parallelD1: "x \<parallel> y \<Longrightarrow> \<not> prefixeq x y" | |
| 25692 | 377 | by blast | 
| 25299 | 378 | |
| 49087 | 379 | lemma parallelD2: "x \<parallel> y \<Longrightarrow> \<not> prefixeq y x" | 
| 25692 | 380 | by blast | 
| 25355 | 381 | |
| 382 | lemma parallel_Nil1 [simp]: "\<not> x \<parallel> []" | |
| 25692 | 383 | unfolding parallel_def by simp | 
| 25355 | 384 | |
| 25299 | 385 | lemma parallel_Nil2 [simp]: "\<not> [] \<parallel> x" | 
| 25692 | 386 | unfolding parallel_def by simp | 
| 25299 | 387 | |
| 25564 | 388 | lemma Cons_parallelI1: "a \<noteq> b \<Longrightarrow> a # as \<parallel> b # bs" | 
| 25692 | 389 | by auto | 
| 25299 | 390 | |
| 25564 | 391 | lemma Cons_parallelI2: "\<lbrakk> a = b; as \<parallel> bs \<rbrakk> \<Longrightarrow> a # as \<parallel> b # bs" | 
| 49087 | 392 | by (metis Cons_prefixeq_Cons parallelE parallelI) | 
| 25665 | 393 | |
| 25299 | 394 | lemma not_equal_is_parallel: | 
| 395 | assumes neq: "xs \<noteq> ys" | |
| 25356 | 396 | and len: "length xs = length ys" | 
| 397 | shows "xs \<parallel> ys" | |
| 25299 | 398 | using len neq | 
| 25355 | 399 | proof (induct rule: list_induct2) | 
| 26445 | 400 | case Nil | 
| 25356 | 401 | then show ?case by simp | 
| 25299 | 402 | next | 
| 26445 | 403 | case (Cons a as b bs) | 
| 25355 | 404 | have ih: "as \<noteq> bs \<Longrightarrow> as \<parallel> bs" by fact | 
| 25299 | 405 | show ?case | 
| 406 | proof (cases "a = b") | |
| 25355 | 407 | case True | 
| 26445 | 408 | then have "as \<noteq> bs" using Cons by simp | 
| 25355 | 409 | then show ?thesis by (rule Cons_parallelI2 [OF True ih]) | 
| 25299 | 410 | next | 
| 411 | case False | |
| 25355 | 412 | then show ?thesis by (rule Cons_parallelI1) | 
| 25299 | 413 | qed | 
| 414 | qed | |
| 22178 | 415 | |
| 49107 | 416 | lemma suffix_reflclp_conv: "suffix\<^sup>=\<^sup>= = suffixeq" | 
| 49087 | 417 | by (intro ext) (auto simp: suffixeq_def suffix_def) | 
| 418 | ||
| 49107 | 419 | lemma suffix_lists: "suffix xs ys \<Longrightarrow> ys \<in> lists A \<Longrightarrow> xs \<in> lists A" | 
| 49087 | 420 | unfolding suffix_def by auto | 
| 421 | ||
| 422 | ||
| 50516 | 423 | subsection {* Homeomorphic embedding on lists *}
 | 
| 49087 | 424 | |
| 50516 | 425 | inductive list_hembeq :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> bool"
 | 
| 49087 | 426 |   for P :: "('a \<Rightarrow> 'a \<Rightarrow> bool)"
 | 
| 427 | where | |
| 50516 | 428 | list_hembeq_Nil [intro, simp]: "list_hembeq P [] ys" | 
| 429 | | list_hembeq_Cons [intro] : "list_hembeq P xs ys \<Longrightarrow> list_hembeq P xs (y#ys)" | |
| 430 | | list_hembeq_Cons2 [intro]: "P\<^sup>=\<^sup>= x y \<Longrightarrow> list_hembeq P xs ys \<Longrightarrow> list_hembeq P (x#xs) (y#ys)" | |
| 431 | ||
| 432 | lemma list_hembeq_Nil2 [simp]: | |
| 433 | assumes "list_hembeq P xs []" shows "xs = []" | |
| 434 | using assms by (cases rule: list_hembeq.cases) auto | |
| 49087 | 435 | |
| 50516 | 436 | lemma list_hembeq_refl [simp, intro!]: | 
| 437 | "list_hembeq P xs xs" | |
| 438 | by (induct xs) auto | |
| 49087 | 439 | |
| 50516 | 440 | lemma list_hembeq_Cons_Nil [simp]: "list_hembeq P (x#xs) [] = False" | 
| 49087 | 441 | proof - | 
| 50516 | 442 |   { assume "list_hembeq P (x#xs) []"
 | 
| 443 | from list_hembeq_Nil2 [OF this] have False by simp | |
| 49087 | 444 |   } moreover {
 | 
| 445 | assume False | |
| 50516 | 446 | then have "list_hembeq P (x#xs) []" by simp | 
| 49087 | 447 | } ultimately show ?thesis by blast | 
| 448 | qed | |
| 449 | ||
| 50516 | 450 | lemma list_hembeq_append2 [intro]: "list_hembeq P xs ys \<Longrightarrow> list_hembeq P xs (zs @ ys)" | 
| 49087 | 451 | by (induct zs) auto | 
| 452 | ||
| 50516 | 453 | lemma list_hembeq_prefix [intro]: | 
| 454 | assumes "list_hembeq P xs ys" shows "list_hembeq P xs (ys @ zs)" | |
| 49087 | 455 | using assms | 
| 456 | by (induct arbitrary: zs) auto | |
| 457 | ||
| 50516 | 458 | lemma list_hembeq_ConsD: | 
| 459 | assumes "list_hembeq P (x#xs) ys" | |
| 460 | shows "\<exists>us v vs. ys = us @ v # vs \<and> P\<^sup>=\<^sup>= x v \<and> list_hembeq P xs vs" | |
| 49087 | 461 | using assms | 
| 49107 | 462 | proof (induct x \<equiv> "x # xs" ys arbitrary: x xs) | 
| 50516 | 463 | case list_hembeq_Cons | 
| 49107 | 464 | then show ?case by (metis append_Cons) | 
| 49087 | 465 | next | 
| 50516 | 466 | case (list_hembeq_Cons2 x y xs ys) | 
| 49107 | 467 | then show ?case by (cases xs) (auto, blast+) | 
| 49087 | 468 | qed | 
| 469 | ||
| 50516 | 470 | lemma list_hembeq_appendD: | 
| 471 | assumes "list_hembeq P (xs @ ys) zs" | |
| 472 | shows "\<exists>us vs. zs = us @ vs \<and> list_hembeq P xs us \<and> list_hembeq P ys vs" | |
| 49087 | 473 | using assms | 
| 474 | proof (induction xs arbitrary: ys zs) | |
| 49107 | 475 | case Nil then show ?case by auto | 
| 49087 | 476 | next | 
| 477 | case (Cons x xs) | |
| 478 | then obtain us v vs where "zs = us @ v # vs" | |
| 50516 | 479 | and "P\<^sup>=\<^sup>= x v" and "list_hembeq P (xs @ ys) vs" by (auto dest: list_hembeq_ConsD) | 
| 480 | with Cons show ?case by (metis append_Cons append_assoc list_hembeq_Cons2 list_hembeq_append2) | |
| 49087 | 481 | qed | 
| 482 | ||
| 50516 | 483 | lemma list_hembeq_suffix: | 
| 484 | assumes "list_hembeq P xs ys" and "suffix ys zs" | |
| 485 | shows "list_hembeq P xs zs" | |
| 486 | using assms(2) and list_hembeq_append2 [OF assms(1)] by (auto simp: suffix_def) | |
| 49087 | 487 | |
| 50516 | 488 | lemma list_hembeq_suffixeq: | 
| 489 | assumes "list_hembeq P xs ys" and "suffixeq ys zs" | |
| 490 | shows "list_hembeq P xs zs" | |
| 491 | using assms and list_hembeq_suffix unfolding suffixeq_suffix_reflclp_conv by auto | |
| 49087 | 492 | |
| 50516 | 493 | lemma list_hembeq_length: "list_hembeq P xs ys \<Longrightarrow> length xs \<le> length ys" | 
| 494 | by (induct rule: list_hembeq.induct) auto | |
| 49087 | 495 | |
| 50516 | 496 | lemma list_hembeq_trans: | 
| 497 | assumes "\<And>x y z. \<lbrakk>x \<in> A; y \<in> A; z \<in> A; P x y; P y z\<rbrakk> \<Longrightarrow> P x z" | |
| 498 | shows "\<And>xs ys zs. \<lbrakk>xs \<in> lists A; ys \<in> lists A; zs \<in> lists A; | |
| 499 | list_hembeq P xs ys; list_hembeq P ys zs\<rbrakk> \<Longrightarrow> list_hembeq P xs zs" | |
| 500 | proof - | |
| 49087 | 501 | fix xs ys zs | 
| 50516 | 502 | assume "list_hembeq P xs ys" and "list_hembeq P ys zs" | 
| 49087 | 503 | and "xs \<in> lists A" and "ys \<in> lists A" and "zs \<in> lists A" | 
| 50516 | 504 | then show "list_hembeq P xs zs" | 
| 49087 | 505 | proof (induction arbitrary: zs) | 
| 50516 | 506 | case list_hembeq_Nil show ?case by blast | 
| 49087 | 507 | next | 
| 50516 | 508 | case (list_hembeq_Cons xs ys y) | 
| 509 | from list_hembeq_ConsD [OF `list_hembeq P (y#ys) zs`] obtain us v vs | |
| 510 | where zs: "zs = us @ v # vs" and "P\<^sup>=\<^sup>= y v" and "list_hembeq P ys vs" by blast | |
| 511 | then have "list_hembeq P ys (v#vs)" by blast | |
| 512 | then have "list_hembeq P ys zs" unfolding zs by (rule list_hembeq_append2) | |
| 513 | from list_hembeq_Cons.IH [OF this] and list_hembeq_Cons.prems show ?case by simp | |
| 49087 | 514 | next | 
| 50516 | 515 | case (list_hembeq_Cons2 x y xs ys) | 
| 516 | from list_hembeq_ConsD [OF `list_hembeq P (y#ys) zs`] obtain us v vs | |
| 517 | where zs: "zs = us @ v # vs" and "P\<^sup>=\<^sup>= y v" and "list_hembeq P ys vs" by blast | |
| 518 | with list_hembeq_Cons2 have "list_hembeq P xs vs" by simp | |
| 519 | moreover have "P\<^sup>=\<^sup>= x v" | |
| 49087 | 520 | proof - | 
| 521 | from zs and `zs \<in> lists A` have "v \<in> A" by auto | |
| 50516 | 522 | moreover have "x \<in> A" and "y \<in> A" using list_hembeq_Cons2 by simp_all | 
| 523 | ultimately show ?thesis | |
| 524 | using `P\<^sup>=\<^sup>= x y` and `P\<^sup>=\<^sup>= y v` and assms | |
| 525 | by blast | |
| 49087 | 526 | qed | 
| 50516 | 527 | ultimately have "list_hembeq P (x#xs) (v#vs)" by blast | 
| 528 | then show ?case unfolding zs by (rule list_hembeq_append2) | |
| 49087 | 529 | qed | 
| 530 | qed | |
| 531 | ||
| 532 | ||
| 50516 | 533 | subsection {* Sublists (special case of homeomorphic embedding) *}
 | 
| 49087 | 534 | |
| 50516 | 535 | abbreviation sublisteq :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 536 | where "sublisteq xs ys \<equiv> list_hembeq (op =) xs ys" | |
| 49087 | 537 | |
| 50516 | 538 | lemma sublisteq_Cons2: "sublisteq xs ys \<Longrightarrow> sublisteq (x#xs) (x#ys)" by auto | 
| 49087 | 539 | |
| 50516 | 540 | lemma sublisteq_same_length: | 
| 541 | assumes "sublisteq xs ys" and "length xs = length ys" shows "xs = ys" | |
| 542 | using assms by (induct) (auto dest: list_hembeq_length) | |
| 49087 | 543 | |
| 50516 | 544 | lemma not_sublisteq_length [simp]: "length ys < length xs \<Longrightarrow> \<not> sublisteq xs ys" | 
| 545 | by (metis list_hembeq_length linorder_not_less) | |
| 49087 | 546 | |
| 547 | lemma [code]: | |
| 50516 | 548 | "list_hembeq P [] ys \<longleftrightarrow> True" | 
| 549 | "list_hembeq P (x#xs) [] \<longleftrightarrow> False" | |
| 49087 | 550 | by (simp_all) | 
| 551 | ||
| 50516 | 552 | lemma sublisteq_Cons': "sublisteq (x#xs) ys \<Longrightarrow> sublisteq xs ys" | 
| 553 | by (induct xs) (auto dest: list_hembeq_ConsD) | |
| 49087 | 554 | |
| 50516 | 555 | lemma sublisteq_Cons2': | 
| 556 | assumes "sublisteq (x#xs) (x#ys)" shows "sublisteq xs ys" | |
| 557 | using assms by (cases) (rule sublisteq_Cons') | |
| 49087 | 558 | |
| 50516 | 559 | lemma sublisteq_Cons2_neq: | 
| 560 | assumes "sublisteq (x#xs) (y#ys)" | |
| 561 | shows "x \<noteq> y \<Longrightarrow> sublisteq (x#xs) ys" | |
| 49087 | 562 | using assms by (cases) auto | 
| 563 | ||
| 50516 | 564 | lemma sublisteq_Cons2_iff [simp, code]: | 
| 565 | "sublisteq (x#xs) (y#ys) = (if x = y then sublisteq xs ys else sublisteq (x#xs) ys)" | |
| 566 | by (metis list_hembeq_Cons sublisteq_Cons2 sublisteq_Cons2' sublisteq_Cons2_neq) | |
| 49087 | 567 | |
| 50516 | 568 | lemma sublisteq_append': "sublisteq (zs @ xs) (zs @ ys) \<longleftrightarrow> sublisteq xs ys" | 
| 49087 | 569 | by (induct zs) simp_all | 
| 570 | ||
| 50516 | 571 | lemma sublisteq_refl [simp, intro!]: "sublisteq xs xs" by (induct xs) simp_all | 
| 49087 | 572 | |
| 50516 | 573 | lemma sublisteq_antisym: | 
| 574 | assumes "sublisteq xs ys" and "sublisteq ys xs" | |
| 49087 | 575 | shows "xs = ys" | 
| 576 | using assms | |
| 577 | proof (induct) | |
| 50516 | 578 | case list_hembeq_Nil | 
| 579 | from list_hembeq_Nil2 [OF this] show ?case by simp | |
| 49087 | 580 | next | 
| 50516 | 581 | case list_hembeq_Cons2 | 
| 49107 | 582 | then show ?case by simp | 
| 49087 | 583 | next | 
| 50516 | 584 | case list_hembeq_Cons | 
| 49107 | 585 | then show ?case | 
| 50516 | 586 | by (metis sublisteq_Cons' list_hembeq_length Suc_length_conv Suc_n_not_le_n) | 
| 49087 | 587 | qed | 
| 588 | ||
| 50516 | 589 | lemma sublisteq_trans: "sublisteq xs ys \<Longrightarrow> sublisteq ys zs \<Longrightarrow> sublisteq xs zs" | 
| 590 | by (rule list_hembeq_trans [of UNIV "op ="]) auto | |
| 49087 | 591 | |
| 50516 | 592 | lemma sublisteq_append_le_same_iff: "sublisteq (xs @ ys) ys \<longleftrightarrow> xs = []" | 
| 593 | by (auto dest: list_hembeq_length) | |
| 49087 | 594 | |
| 50516 | 595 | lemma list_hembeq_append_mono: | 
| 596 | "\<lbrakk> list_hembeq P xs xs'; list_hembeq P ys ys' \<rbrakk> \<Longrightarrow> list_hembeq P (xs@ys) (xs'@ys')" | |
| 597 | apply (induct rule: list_hembeq.induct) | |
| 598 | apply (metis eq_Nil_appendI list_hembeq_append2) | |
| 599 | apply (metis append_Cons list_hembeq_Cons) | |
| 600 | apply (metis append_Cons list_hembeq_Cons2) | |
| 49107 | 601 | done | 
| 49087 | 602 | |
| 603 | ||
| 604 | subsection {* Appending elements *}
 | |
| 605 | ||
| 50516 | 606 | lemma sublisteq_append [simp]: | 
| 607 | "sublisteq (xs @ zs) (ys @ zs) \<longleftrightarrow> sublisteq xs ys" (is "?l = ?r") | |
| 49087 | 608 | proof | 
| 50516 | 609 |   { fix xs' ys' xs ys zs :: "'a list" assume "sublisteq xs' ys'"
 | 
| 610 | then have "xs' = xs @ zs & ys' = ys @ zs \<longrightarrow> sublisteq xs ys" | |
| 49087 | 611 | proof (induct arbitrary: xs ys zs) | 
| 50516 | 612 | case list_hembeq_Nil show ?case by simp | 
| 49087 | 613 | next | 
| 50516 | 614 | case (list_hembeq_Cons xs' ys' x) | 
| 615 |       { assume "ys=[]" then have ?case using list_hembeq_Cons(1) by auto }
 | |
| 49087 | 616 | moreover | 
| 617 |       { fix us assume "ys = x#us"
 | |
| 50516 | 618 | then have ?case using list_hembeq_Cons(2) by(simp add: list_hembeq.list_hembeq_Cons) } | 
| 49087 | 619 | ultimately show ?case by (auto simp:Cons_eq_append_conv) | 
| 620 | next | |
| 50516 | 621 | case (list_hembeq_Cons2 x y xs' ys') | 
| 622 |       { assume "xs=[]" then have ?case using list_hembeq_Cons2(1) by auto }
 | |
| 49087 | 623 | moreover | 
| 50516 | 624 |       { fix us vs assume "xs=x#us" "ys=x#vs" then have ?case using list_hembeq_Cons2 by auto}
 | 
| 49087 | 625 | moreover | 
| 50516 | 626 |       { fix us assume "xs=x#us" "ys=[]" then have ?case using list_hembeq_Cons2(2) by bestsimp }
 | 
| 627 | ultimately show ?case using `op =\<^sup>=\<^sup>= x y` by (auto simp: Cons_eq_append_conv) | |
| 49087 | 628 | qed } | 
| 629 | moreover assume ?l | |
| 630 | ultimately show ?r by blast | |
| 631 | next | |
| 50516 | 632 | assume ?r then show ?l by (metis list_hembeq_append_mono sublisteq_refl) | 
| 49087 | 633 | qed | 
| 634 | ||
| 50516 | 635 | lemma sublisteq_drop_many: "sublisteq xs ys \<Longrightarrow> sublisteq xs (zs @ ys)" | 
| 49087 | 636 | by (induct zs) auto | 
| 637 | ||
| 50516 | 638 | lemma sublisteq_rev_drop_many: "sublisteq xs ys \<Longrightarrow> sublisteq xs (ys @ zs)" | 
| 639 | by (metis append_Nil2 list_hembeq_Nil list_hembeq_append_mono) | |
| 49087 | 640 | |
| 641 | ||
| 642 | subsection {* Relation to standard list operations *}
 | |
| 643 | ||
| 50516 | 644 | lemma sublisteq_map: | 
| 645 | assumes "sublisteq xs ys" shows "sublisteq (map f xs) (map f ys)" | |
| 49087 | 646 | using assms by (induct) auto | 
| 647 | ||
| 50516 | 648 | lemma sublisteq_filter_left [simp]: "sublisteq (filter P xs) xs" | 
| 49087 | 649 | by (induct xs) auto | 
| 650 | ||
| 50516 | 651 | lemma sublisteq_filter [simp]: | 
| 652 | assumes "sublisteq xs ys" shows "sublisteq (filter P xs) (filter P ys)" | |
| 49087 | 653 | using assms by (induct) auto | 
| 654 | ||
| 50516 | 655 | lemma "sublisteq xs ys \<longleftrightarrow> (\<exists>N. xs = sublist ys N)" (is "?L = ?R") | 
| 49087 | 656 | proof | 
| 657 | assume ?L | |
| 49107 | 658 | then show ?R | 
| 49087 | 659 | proof (induct) | 
| 50516 | 660 | case list_hembeq_Nil show ?case by (metis sublist_empty) | 
| 49087 | 661 | next | 
| 50516 | 662 | case (list_hembeq_Cons xs ys x) | 
| 49087 | 663 | then obtain N where "xs = sublist ys N" by blast | 
| 49107 | 664 | then have "xs = sublist (x#ys) (Suc ` N)" | 
| 49087 | 665 | by (clarsimp simp add:sublist_Cons inj_image_mem_iff) | 
| 49107 | 666 | then show ?case by blast | 
| 49087 | 667 | next | 
| 50516 | 668 | case (list_hembeq_Cons2 x y xs ys) | 
| 49087 | 669 | then obtain N where "xs = sublist ys N" by blast | 
| 49107 | 670 | then have "x#xs = sublist (x#ys) (insert 0 (Suc ` N))" | 
| 49087 | 671 | by (clarsimp simp add:sublist_Cons inj_image_mem_iff) | 
| 50516 | 672 | moreover from list_hembeq_Cons2 have "x = y" by simp | 
| 673 | ultimately show ?case by blast | |
| 49087 | 674 | qed | 
| 675 | next | |
| 676 | assume ?R | |
| 677 | then obtain N where "xs = sublist ys N" .. | |
| 50516 | 678 | moreover have "sublisteq (sublist ys N) ys" | 
| 49107 | 679 | proof (induct ys arbitrary: N) | 
| 49087 | 680 | case Nil show ?case by simp | 
| 681 | next | |
| 49107 | 682 | case Cons then show ?case by (auto simp: sublist_Cons) | 
| 49087 | 683 | qed | 
| 684 | ultimately show ?L by simp | |
| 685 | qed | |
| 686 | ||
| 10330 
4362e906b745
"List prefixes" library theory (replaces old Lex/Prefix);
 wenzelm parents: diff
changeset | 687 | end |