author | boehmes |
Wed, 25 Nov 2009 12:31:43 +0100 | |
changeset 33896 | 4782d74e67ab |
parent 32960 | 69916a850301 |
child 35416 | d8d7d1b785af |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/sum.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
0 | 3 |
Copyright 1993 University of Cambridge |
4 |
*) |
|
5 |
||
13356 | 6 |
header{*Disjoint Sums*} |
7 |
||
16417 | 8 |
theory Sum imports Bool equalities begin |
3923 | 9 |
|
13356 | 10 |
text{*And the "Part" primitive for simultaneous recursive type definitions*} |
11 |
||
3923 | 12 |
global |
13 |
||
13240 | 14 |
constdefs |
15 |
sum :: "[i,i]=>i" (infixr "+" 65) |
|
16 |
"A+B == {0}*A Un {1}*B" |
|
17 |
||
18 |
Inl :: "i=>i" |
|
19 |
"Inl(a) == <0,a>" |
|
20 |
||
21 |
Inr :: "i=>i" |
|
22 |
"Inr(b) == <1,b>" |
|
23 |
||
24 |
"case" :: "[i=>i, i=>i, i]=>i" |
|
25 |
"case(c,d) == (%<y,z>. cond(y, d(z), c(z)))" |
|
26 |
||
27 |
(*operator for selecting out the various summands*) |
|
28 |
Part :: "[i,i=>i] => i" |
|
29 |
"Part(A,h) == {x: A. EX z. x = h(z)}" |
|
0 | 30 |
|
3940 | 31 |
local |
3923 | 32 |
|
13356 | 33 |
subsection{*Rules for the @{term Part} Primitive*} |
13240 | 34 |
|
35 |
lemma Part_iff: |
|
36 |
"a : Part(A,h) <-> a:A & (EX y. a=h(y))" |
|
37 |
apply (unfold Part_def) |
|
38 |
apply (rule separation) |
|
39 |
done |
|
40 |
||
41 |
lemma Part_eqI [intro]: |
|
42 |
"[| a : A; a=h(b) |] ==> a : Part(A,h)" |
|
13255 | 43 |
by (unfold Part_def, blast) |
13240 | 44 |
|
45 |
lemmas PartI = refl [THEN [2] Part_eqI] |
|
46 |
||
47 |
lemma PartE [elim!]: |
|
48 |
"[| a : Part(A,h); !!z. [| a : A; a=h(z) |] ==> P |
|
49 |
|] ==> P" |
|
13255 | 50 |
apply (unfold Part_def, blast) |
13240 | 51 |
done |
52 |
||
53 |
lemma Part_subset: "Part(A,h) <= A" |
|
54 |
apply (unfold Part_def) |
|
55 |
apply (rule Collect_subset) |
|
56 |
done |
|
57 |
||
58 |
||
13356 | 59 |
subsection{*Rules for Disjoint Sums*} |
13240 | 60 |
|
61 |
lemmas sum_defs = sum_def Inl_def Inr_def case_def |
|
62 |
||
63 |
lemma Sigma_bool: "Sigma(bool,C) = C(0) + C(1)" |
|
13255 | 64 |
by (unfold bool_def sum_def, blast) |
13240 | 65 |
|
66 |
(** Introduction rules for the injections **) |
|
67 |
||
68 |
lemma InlI [intro!,simp,TC]: "a : A ==> Inl(a) : A+B" |
|
13255 | 69 |
by (unfold sum_defs, blast) |
13240 | 70 |
|
71 |
lemma InrI [intro!,simp,TC]: "b : B ==> Inr(b) : A+B" |
|
13255 | 72 |
by (unfold sum_defs, blast) |
13240 | 73 |
|
74 |
(** Elimination rules **) |
|
75 |
||
76 |
lemma sumE [elim!]: |
|
77 |
"[| u: A+B; |
|
78 |
!!x. [| x:A; u=Inl(x) |] ==> P; |
|
79 |
!!y. [| y:B; u=Inr(y) |] ==> P |
|
80 |
|] ==> P" |
|
13255 | 81 |
by (unfold sum_defs, blast) |
13240 | 82 |
|
83 |
(** Injection and freeness equivalences, for rewriting **) |
|
84 |
||
85 |
lemma Inl_iff [iff]: "Inl(a)=Inl(b) <-> a=b" |
|
13255 | 86 |
by (simp add: sum_defs) |
13240 | 87 |
|
88 |
lemma Inr_iff [iff]: "Inr(a)=Inr(b) <-> a=b" |
|
13255 | 89 |
by (simp add: sum_defs) |
13240 | 90 |
|
13823 | 91 |
lemma Inl_Inr_iff [simp]: "Inl(a)=Inr(b) <-> False" |
13255 | 92 |
by (simp add: sum_defs) |
13240 | 93 |
|
13823 | 94 |
lemma Inr_Inl_iff [simp]: "Inr(b)=Inl(a) <-> False" |
13255 | 95 |
by (simp add: sum_defs) |
13240 | 96 |
|
97 |
lemma sum_empty [simp]: "0+0 = 0" |
|
13255 | 98 |
by (simp add: sum_defs) |
13240 | 99 |
|
100 |
(*Injection and freeness rules*) |
|
101 |
||
102 |
lemmas Inl_inject = Inl_iff [THEN iffD1, standard] |
|
103 |
lemmas Inr_inject = Inr_iff [THEN iffD1, standard] |
|
13823 | 104 |
lemmas Inl_neq_Inr = Inl_Inr_iff [THEN iffD1, THEN FalseE, elim!] |
105 |
lemmas Inr_neq_Inl = Inr_Inl_iff [THEN iffD1, THEN FalseE, elim!] |
|
13240 | 106 |
|
107 |
||
108 |
lemma InlD: "Inl(a): A+B ==> a: A" |
|
13255 | 109 |
by blast |
13240 | 110 |
|
111 |
lemma InrD: "Inr(b): A+B ==> b: B" |
|
13255 | 112 |
by blast |
13240 | 113 |
|
114 |
lemma sum_iff: "u: A+B <-> (EX x. x:A & u=Inl(x)) | (EX y. y:B & u=Inr(y))" |
|
13255 | 115 |
by blast |
116 |
||
117 |
lemma Inl_in_sum_iff [simp]: "(Inl(x) \<in> A+B) <-> (x \<in> A)"; |
|
118 |
by auto |
|
119 |
||
120 |
lemma Inr_in_sum_iff [simp]: "(Inr(y) \<in> A+B) <-> (y \<in> B)"; |
|
121 |
by auto |
|
13240 | 122 |
|
123 |
lemma sum_subset_iff: "A+B <= C+D <-> A<=C & B<=D" |
|
13255 | 124 |
by blast |
13240 | 125 |
|
126 |
lemma sum_equal_iff: "A+B = C+D <-> A=C & B=D" |
|
13255 | 127 |
by (simp add: extension sum_subset_iff, blast) |
13240 | 128 |
|
129 |
lemma sum_eq_2_times: "A+A = 2*A" |
|
13255 | 130 |
by (simp add: sum_def, blast) |
13240 | 131 |
|
132 |
||
13356 | 133 |
subsection{*The Eliminator: @{term case}*} |
0 | 134 |
|
13240 | 135 |
lemma case_Inl [simp]: "case(c, d, Inl(a)) = c(a)" |
13255 | 136 |
by (simp add: sum_defs) |
13240 | 137 |
|
138 |
lemma case_Inr [simp]: "case(c, d, Inr(b)) = d(b)" |
|
13255 | 139 |
by (simp add: sum_defs) |
13240 | 140 |
|
141 |
lemma case_type [TC]: |
|
142 |
"[| u: A+B; |
|
143 |
!!x. x: A ==> c(x): C(Inl(x)); |
|
144 |
!!y. y: B ==> d(y): C(Inr(y)) |
|
145 |
|] ==> case(c,d,u) : C(u)" |
|
13255 | 146 |
by auto |
13240 | 147 |
|
148 |
lemma expand_case: "u: A+B ==> |
|
149 |
R(case(c,d,u)) <-> |
|
150 |
((ALL x:A. u = Inl(x) --> R(c(x))) & |
|
151 |
(ALL y:B. u = Inr(y) --> R(d(y))))" |
|
152 |
by auto |
|
153 |
||
154 |
lemma case_cong: |
|
155 |
"[| z: A+B; |
|
156 |
!!x. x:A ==> c(x)=c'(x); |
|
157 |
!!y. y:B ==> d(y)=d'(y) |
|
158 |
|] ==> case(c,d,z) = case(c',d',z)" |
|
13255 | 159 |
by auto |
13240 | 160 |
|
161 |
lemma case_case: "z: A+B ==> |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
24893
diff
changeset
|
162 |
case(c, d, case(%x. Inl(c'(x)), %y. Inr(d'(y)), z)) = |
13240 | 163 |
case(%x. c(c'(x)), %y. d(d'(y)), z)" |
164 |
by auto |
|
165 |
||
166 |
||
13356 | 167 |
subsection{*More Rules for @{term "Part(A,h)"}*} |
13240 | 168 |
|
169 |
lemma Part_mono: "A<=B ==> Part(A,h)<=Part(B,h)" |
|
13255 | 170 |
by blast |
13240 | 171 |
|
172 |
lemma Part_Collect: "Part(Collect(A,P), h) = Collect(Part(A,h), P)" |
|
13255 | 173 |
by blast |
13240 | 174 |
|
175 |
lemmas Part_CollectE = |
|
176 |
Part_Collect [THEN equalityD1, THEN subsetD, THEN CollectE, standard] |
|
177 |
||
178 |
lemma Part_Inl: "Part(A+B,Inl) = {Inl(x). x: A}" |
|
13255 | 179 |
by blast |
13240 | 180 |
|
181 |
lemma Part_Inr: "Part(A+B,Inr) = {Inr(y). y: B}" |
|
13255 | 182 |
by blast |
13240 | 183 |
|
184 |
lemma PartD1: "a : Part(A,h) ==> a : A" |
|
13255 | 185 |
by (simp add: Part_def) |
13240 | 186 |
|
187 |
lemma Part_id: "Part(A,%x. x) = A" |
|
13255 | 188 |
by blast |
13240 | 189 |
|
190 |
lemma Part_Inr2: "Part(A+B, %x. Inr(h(x))) = {Inr(y). y: Part(B,h)}" |
|
13255 | 191 |
by blast |
13240 | 192 |
|
193 |
lemma Part_sum_equality: "C <= A+B ==> Part(C,Inl) Un Part(C,Inr) = C" |
|
13255 | 194 |
by blast |
13240 | 195 |
|
0 | 196 |
end |