10751
|
1 |
(* Title : NSA.thy
|
|
2 |
Author : Jacques D. Fleuriot
|
|
3 |
Copyright : 1998 University of Cambridge
|
|
4 |
Description : Infinite numbers, Infinitesimals,
|
|
5 |
infinitely close relation etc.
|
|
6 |
*)
|
|
7 |
|
|
8 |
NSA = HRealAbs + RComplete +
|
|
9 |
|
|
10 |
constdefs
|
|
11 |
|
|
12 |
Infinitesimal :: "hypreal set"
|
|
13 |
"Infinitesimal == {x. ALL r: SReal. 0 < r --> abs x < r}"
|
|
14 |
|
|
15 |
HFinite :: "hypreal set"
|
|
16 |
"HFinite == {x. EX r: SReal. abs x < r}"
|
|
17 |
|
|
18 |
HInfinite :: "hypreal set"
|
|
19 |
"HInfinite == {x. ALL r: SReal. r < abs x}"
|
|
20 |
|
|
21 |
(* standard part map *)
|
|
22 |
st :: hypreal => hypreal
|
|
23 |
"st == (%x. @r. x : HFinite & r:SReal & r @= x)"
|
|
24 |
|
|
25 |
monad :: hypreal => hypreal set
|
|
26 |
"monad x == {y. x @= y}"
|
|
27 |
|
|
28 |
galaxy :: hypreal => hypreal set
|
|
29 |
"galaxy x == {y. (x + -y) : HFinite}"
|
|
30 |
|
|
31 |
(* infinitely close *)
|
|
32 |
inf_close :: "[hypreal, hypreal] => bool" (infixl "@=" 50)
|
|
33 |
"x @= y == (x + -y) : Infinitesimal"
|
|
34 |
|
|
35 |
|
|
36 |
defs
|
|
37 |
|
|
38 |
(*standard real numbers as a subset of the hyperreals*)
|
|
39 |
SReal_def "SReal == {x. EX r. x = hypreal_of_real r}"
|
|
40 |
|
|
41 |
syntax (symbols)
|
|
42 |
inf_close :: "[hypreal, hypreal] => bool" (infixl "\\<approx>" 50)
|
|
43 |
|
|
44 |
end
|
|
45 |
|
|
46 |
|
|
47 |
|
|
48 |
|