| 
26123
 | 
     1  | 
(*  Title:       Fundamental_Theorem_Algebra.thy
  | 
| 
 | 
     2  | 
    ID:          $Id$
  | 
| 
 | 
     3  | 
    Author:      Amine Chaieb
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header{*Fundamental Theorem of Algebra*}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Fundamental_Theorem_Algebra
  | 
| 
27108
 | 
     9  | 
imports Univ_Poly Dense_Linear_Order Complex
  | 
| 
26123
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
27445
 | 
    12  | 
subsection {* Square root of complex numbers *}
 | 
| 
26123
 | 
    13  | 
definition csqrt :: "complex \<Rightarrow> complex" where
  | 
| 
 | 
    14  | 
"csqrt z = (if Im z = 0 then
  | 
| 
 | 
    15  | 
            if 0 \<le> Re z then Complex (sqrt(Re z)) 0
  | 
| 
 | 
    16  | 
            else Complex 0 (sqrt(- Re z))
  | 
| 
 | 
    17  | 
           else Complex (sqrt((cmod z + Re z) /2))
  | 
| 
 | 
    18  | 
                        ((Im z / abs(Im z)) * sqrt((cmod z - Re z) /2)))"
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
lemma csqrt: "csqrt z ^ 2 = z"
  | 
| 
 | 
    21  | 
proof-
  | 
| 
 | 
    22  | 
  obtain x y where xy: "z = Complex x y" by (cases z, simp_all)
  | 
| 
 | 
    23  | 
  {assume y0: "y = 0"
 | 
| 
 | 
    24  | 
    {assume x0: "x \<ge> 0" 
 | 
| 
 | 
    25  | 
      then have ?thesis using y0 xy real_sqrt_pow2[OF x0]
  | 
| 
 | 
    26  | 
	by (simp add: csqrt_def power2_eq_square)}
  | 
| 
 | 
    27  | 
    moreover
  | 
| 
 | 
    28  | 
    {assume "\<not> x \<ge> 0" hence x0: "- x \<ge> 0" by arith
 | 
| 
 | 
    29  | 
      then have ?thesis using y0 xy real_sqrt_pow2[OF x0] 
  | 
| 
 | 
    30  | 
	by (simp add: csqrt_def power2_eq_square) }
  | 
| 
 | 
    31  | 
    ultimately have ?thesis by blast}
  | 
| 
 | 
    32  | 
  moreover
  | 
| 
 | 
    33  | 
  {assume y0: "y\<noteq>0"
 | 
| 
 | 
    34  | 
    {fix x y
 | 
| 
 | 
    35  | 
      let ?z = "Complex x y"
  | 
| 
 | 
    36  | 
      from abs_Re_le_cmod[of ?z] have tha: "abs x \<le> cmod ?z" by auto
  | 
| 
 | 
    37  | 
      hence "cmod ?z - x \<ge> 0" "cmod ?z + x \<ge> 0" by (cases "x \<ge> 0", arith+)
  | 
| 
 | 
    38  | 
      hence "(sqrt (x * x + y * y) + x) / 2 \<ge> 0" "(sqrt (x * x + y * y) - x) / 2 \<ge> 0" by (simp_all add: power2_eq_square) }
  | 
| 
 | 
    39  | 
    note th = this
  | 
| 
 | 
    40  | 
    have sq4: "\<And>x::real. x^2 / 4 = (x / 2) ^ 2"
  | 
| 
 | 
    41  | 
      by (simp add: power2_eq_square) 
  | 
| 
 | 
    42  | 
    from th[of x y]
  | 
| 
 | 
    43  | 
    have sq4': "sqrt (((sqrt (x * x + y * y) + x)^2 / 4)) = (sqrt (x * x + y * y) + x) / 2" "sqrt (((sqrt (x * x + y * y) - x)^2 / 4)) = (sqrt (x * x + y * y) - x) / 2" unfolding sq4 by simp_all
  | 
| 
 | 
    44  | 
    then have th1: "sqrt ((sqrt (x * x + y * y) + x) * (sqrt (x * x + y * y) + x) / 4) - sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) - x) / 4) = x"
  | 
| 
 | 
    45  | 
      unfolding power2_eq_square by simp 
  | 
| 
 | 
    46  | 
    have "sqrt 4 = sqrt (2^2)" by simp 
  | 
| 
 | 
    47  | 
    hence sqrt4: "sqrt 4 = 2" by (simp only: real_sqrt_abs)
  | 
| 
 | 
    48  | 
    have th2: "2 *(y * sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) + x) / 4)) / \<bar>y\<bar> = y"
  | 
| 
 | 
    49  | 
      using iffD2[OF real_sqrt_pow2_iff sum_power2_ge_zero[of x y]] y0
  | 
| 
 | 
    50  | 
      unfolding power2_eq_square 
  | 
| 
 | 
    51  | 
      by (simp add: ring_simps real_sqrt_divide sqrt4)
  | 
| 
 | 
    52  | 
     from y0 xy have ?thesis  apply (simp add: csqrt_def power2_eq_square)
  | 
| 
 | 
    53  | 
       apply (simp add: real_sqrt_sum_squares_mult_ge_zero[of x y] real_sqrt_pow2[OF th(1)[of x y], unfolded power2_eq_square] real_sqrt_pow2[OF th(2)[of x y], unfolded power2_eq_square] real_sqrt_mult[symmetric])
  | 
| 
 | 
    54  | 
      using th1 th2  ..}
  | 
| 
 | 
    55  | 
  ultimately show ?thesis by blast
  | 
| 
 | 
    56  | 
qed
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
  | 
| 
27445
 | 
    59  | 
subsection{* More lemmas about module of complex numbers *}
 | 
| 
26123
 | 
    60  | 
  | 
| 
 | 
    61  | 
lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)"
  | 
| 
 | 
    62  | 
  by (induct n, auto)
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
lemma cmod_pos: "cmod z \<ge> 0" by simp
  | 
| 
 | 
    65  | 
lemma complex_mod_triangle_ineq: "cmod (z + w) \<le> cmod z + cmod w"
  | 
| 
 | 
    66  | 
  using complex_mod_triangle_ineq2[of z w] by (simp add: ring_simps)
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
lemma cmod_mult: "cmod (z*w) = cmod z * cmod w"
  | 
| 
 | 
    69  | 
proof-
  | 
| 
 | 
    70  | 
  from rcis_Ex[of z] rcis_Ex[of w]
  | 
| 
 | 
    71  | 
  obtain rz az rw aw where z: "z = rcis rz az" and w: "w = rcis rw aw"  by blast
  | 
| 
 | 
    72  | 
  thus ?thesis by (simp add: rcis_mult abs_mult)
  | 
| 
 | 
    73  | 
qed
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
lemma cmod_divide: "cmod (z/w) = cmod z / cmod w"
  | 
| 
 | 
    76  | 
proof-
  | 
| 
 | 
    77  | 
  from rcis_Ex[of z] rcis_Ex[of w]
  | 
| 
 | 
    78  | 
  obtain rz az rw aw where z: "z = rcis rz az" and w: "w = rcis rw aw"  by blast
  | 
| 
 | 
    79  | 
  thus ?thesis by (simp add: rcis_divide)
  | 
| 
 | 
    80  | 
qed
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
lemma cmod_inverse: "cmod (inverse z) = inverse (cmod z)"
  | 
| 
 | 
    83  | 
  using cmod_divide[of 1 z] by (simp add: inverse_eq_divide)
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
lemma cmod_uminus: "cmod (- z) = cmod z"
  | 
| 
 | 
    86  | 
  unfolding cmod_def by simp
  | 
| 
 | 
    87  | 
lemma cmod_abs_norm: "\<bar>cmod w - cmod z\<bar> \<le> cmod (w - z)"
  | 
| 
 | 
    88  | 
proof-
  | 
| 
 | 
    89  | 
  have ath: "\<And>(a::real) b x. a - b <= x \<Longrightarrow> b - a <= x ==> abs(a - b) <= x"
  | 
| 
 | 
    90  | 
    by arith
  | 
| 
 | 
    91  | 
  from complex_mod_triangle_ineq2[of "w - z" z]
  | 
| 
 | 
    92  | 
  have th1: "cmod w - cmod z \<le> cmod (w - z)" by simp
  | 
| 
 | 
    93  | 
  from complex_mod_triangle_ineq2[of "- (w - z)" "w"] 
  | 
| 
 | 
    94  | 
  have th2: "cmod z - cmod w \<le> cmod (w - z)" using cmod_uminus [of "w - z"]
  | 
| 
 | 
    95  | 
    by simp
  | 
| 
 | 
    96  | 
  from ath[OF th1 th2] show ?thesis .
  | 
| 
 | 
    97  | 
qed
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
lemma cmod_power: "cmod (z ^n) = cmod z ^ n" by (induct n, auto simp add: cmod_mult)
  | 
| 
 | 
   100  | 
lemma real_down2: "(0::real) < d1 \<Longrightarrow> 0 < d2 ==> EX e. 0 < e & e < d1 & e < d2"
  | 
| 
 | 
   101  | 
  apply ferrack apply arith done
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
lemma cmod_complex_of_real: "cmod (complex_of_real x) = \<bar>x\<bar>"
  | 
| 
 | 
   104  | 
  unfolding cmod_def by auto
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
text{* The triangle inequality for cmod *}
 | 
| 
 | 
   108  | 
lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"
  | 
| 
 | 
   109  | 
  using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto
  | 
| 
 | 
   110  | 
  | 
| 
27445
 | 
   111  | 
subsection{* Basic lemmas about complex polynomials *}
 | 
| 
26123
 | 
   112  | 
  | 
| 
 | 
   113  | 
lemma poly_bound_exists:
  | 
| 
 | 
   114  | 
  shows "\<exists>m. m > 0 \<and> (\<forall>z. cmod z <= r \<longrightarrow> cmod (poly p z) \<le> m)"
  | 
| 
 | 
   115  | 
proof(induct p)
  | 
| 
 | 
   116  | 
  case Nil thus ?case by (rule exI[where x=1], simp) 
  | 
| 
 | 
   117  | 
next
  | 
| 
 | 
   118  | 
  case (Cons c cs)
  | 
| 
 | 
   119  | 
  from Cons.hyps obtain m where m: "\<forall>z. cmod z \<le> r \<longrightarrow> cmod (poly cs z) \<le> m"
  | 
| 
 | 
   120  | 
    by blast
  | 
| 
 | 
   121  | 
  let ?k = " 1 + cmod c + \<bar>r * m\<bar>"
  | 
| 
 | 
   122  | 
  have kp: "?k > 0" using abs_ge_zero[of "r*m"] cmod_pos[of c] by arith
  | 
| 
 | 
   123  | 
  {fix z
 | 
| 
 | 
   124  | 
    assume H: "cmod z \<le> r"
  | 
| 
 | 
   125  | 
    from m H have th: "cmod (poly cs z) \<le> m" by blast
  | 
| 
 | 
   126  | 
    from H have rp: "r \<ge> 0" using cmod_pos[of z] by arith
  | 
| 
 | 
   127  | 
    have "cmod (poly (c # cs) z) \<le> cmod c + cmod (z* poly cs z)"
  | 
| 
 | 
   128  | 
      using complex_mod_triangle_ineq[of c "z* poly cs z"] by simp
  | 
| 
 | 
   129  | 
    also have "\<dots> \<le> cmod c + r*m" using mult_mono[OF H th rp cmod_pos[of "poly cs z"]] by (simp add: cmod_mult)
  | 
| 
 | 
   130  | 
    also have "\<dots> \<le> ?k" by simp
  | 
| 
 | 
   131  | 
    finally have "cmod (poly (c # cs) z) \<le> ?k" .}
  | 
| 
 | 
   132  | 
  with kp show ?case by blast
  | 
| 
 | 
   133  | 
qed
  | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
text{* Offsetting the variable in a polynomial gives another of same degree *}
 | 
| 
26135
 | 
   137  | 
  (* FIXME : Lemma holds also in locale --- fix it later *)
  | 
| 
26123
 | 
   138  | 
lemma  poly_offset_lemma:
  | 
| 
 | 
   139  | 
  shows "\<exists>b q. (length q = length p) \<and> (\<forall>x. poly (b#q) (x::complex) = (a + x) * poly p x)"
  | 
| 
 | 
   140  | 
proof(induct p)
  | 
| 
 | 
   141  | 
  case Nil thus ?case by simp
  | 
| 
 | 
   142  | 
next
  | 
| 
 | 
   143  | 
  case (Cons c cs)
  | 
| 
 | 
   144  | 
  from Cons.hyps obtain b q where 
  | 
| 
 | 
   145  | 
    bq: "length q = length cs" "\<forall>x. poly (b # q) x = (a + x) * poly cs x"
  | 
| 
 | 
   146  | 
    by blast
  | 
| 
 | 
   147  | 
  let ?b = "a*c"
  | 
| 
 | 
   148  | 
  let ?q = "(b+c)#q"
  | 
| 
 | 
   149  | 
  have lg: "length ?q = length (c#cs)" using bq(1) by simp
  | 
| 
 | 
   150  | 
  {fix x
 | 
| 
 | 
   151  | 
    from bq(2)[rule_format, of x]
  | 
| 
 | 
   152  | 
    have "x*poly (b # q) x = x*((a + x) * poly cs x)" by simp
  | 
| 
 | 
   153  | 
    hence "poly (?b# ?q) x = (a + x) * poly (c # cs) x"
  | 
| 
 | 
   154  | 
      by (simp add: ring_simps)}
  | 
| 
 | 
   155  | 
  with lg  show ?case by blast 
  | 
| 
 | 
   156  | 
qed
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
    (* FIXME : This one too*)
  | 
| 
 | 
   159  | 
lemma poly_offset: "\<exists> q. length q = length p \<and> (\<forall>x. poly q (x::complex) = poly p (a + x))"
  | 
| 
 | 
   160  | 
proof (induct p)
  | 
| 
 | 
   161  | 
  case Nil thus ?case by simp
  | 
| 
 | 
   162  | 
next
  | 
| 
 | 
   163  | 
  case (Cons c cs)
  | 
| 
 | 
   164  | 
  from Cons.hyps obtain q where q: "length q = length cs" "\<forall>x. poly q x = poly cs (a + x)" by blast
  | 
| 
 | 
   165  | 
  from poly_offset_lemma[of q a] obtain b p where 
  | 
| 
 | 
   166  | 
    bp: "length p = length q" "\<forall>x. poly (b # p) x = (a + x) * poly q x"
  | 
| 
 | 
   167  | 
    by blast
  | 
| 
 | 
   168  | 
  thus ?case using q bp by - (rule exI[where x="(c + b)#p"], simp)
  | 
| 
 | 
   169  | 
qed
  | 
| 
 | 
   170  | 
  | 
| 
 | 
   171  | 
text{* An alternative useful formulation of completeness of the reals *}
 | 
| 
 | 
   172  | 
lemma real_sup_exists: assumes ex: "\<exists>x. P x" and bz: "\<exists>z. \<forall>x. P x \<longrightarrow> x < z"
  | 
| 
 | 
   173  | 
  shows "\<exists>(s::real). \<forall>y. (\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < s"
  | 
| 
 | 
   174  | 
proof-
  | 
| 
 | 
   175  | 
  from ex bz obtain x Y where x: "P x" and Y: "\<And>x. P x \<Longrightarrow> x < Y"  by blast
  | 
| 
 | 
   176  | 
  from ex have thx:"\<exists>x. x \<in> Collect P" by blast
  | 
| 
 | 
   177  | 
  from bz have thY: "\<exists>Y. isUb UNIV (Collect P) Y" 
  | 
| 
 | 
   178  | 
    by(auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def order_le_less)
  | 
| 
 | 
   179  | 
  from reals_complete[OF thx thY] obtain L where L: "isLub UNIV (Collect P) L"
  | 
| 
 | 
   180  | 
    by blast
  | 
| 
 | 
   181  | 
  from Y[OF x] have xY: "x < Y" .
  | 
| 
 | 
   182  | 
  from L have L': "\<forall>x. P x \<longrightarrow> x \<le> L" by (auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def)  
  | 
| 
 | 
   183  | 
  from Y have Y': "\<forall>x. P x \<longrightarrow> x \<le> Y" 
  | 
| 
 | 
   184  | 
    apply (clarsimp, atomize (full)) by auto 
  | 
| 
 | 
   185  | 
  from L Y' have "L \<le> Y" by (auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def)
  | 
| 
 | 
   186  | 
  {fix y
 | 
| 
 | 
   187  | 
    {fix z assume z: "P z" "y < z"
 | 
| 
 | 
   188  | 
      from L' z have "y < L" by auto }
  | 
| 
 | 
   189  | 
    moreover
  | 
| 
 | 
   190  | 
    {assume yL: "y < L" "\<forall>z. P z \<longrightarrow> \<not> y < z"
 | 
| 
 | 
   191  | 
      hence nox: "\<forall>z. P z \<longrightarrow> y \<ge> z" by auto
  | 
| 
 | 
   192  | 
      from nox L have "y \<ge> L" by (auto simp add: isUb_def isLub_def setge_def setle_def leastP_def Ball_def) 
  | 
| 
 | 
   193  | 
      with yL(1) have False  by arith}
  | 
| 
 | 
   194  | 
    ultimately have "(\<exists>x. P x \<and> y < x) \<longleftrightarrow> y < L" by blast}
  | 
| 
 | 
   195  | 
  thus ?thesis by blast
  | 
| 
 | 
   196  | 
qed
  | 
| 
 | 
   197  | 
  | 
| 
 | 
   198  | 
  | 
| 
27445
 | 
   199  | 
subsection{* Some theorems about Sequences*}
 | 
| 
26123
 | 
   200  | 
text{* Given a binary function @{text "f:: nat \<Rightarrow> 'a \<Rightarrow> 'a"}, its values are uniquely determined by a function g *}
 | 
| 
 | 
   201  | 
  | 
| 
 | 
   202  | 
lemma num_Axiom: "EX! g. g 0 = e \<and> (\<forall>n. g (Suc n) = f n (g n))"
  | 
| 
 | 
   203  | 
  unfolding Ex1_def
  | 
| 
 | 
   204  | 
  apply (rule_tac x="nat_rec e f" in exI)
  | 
| 
 | 
   205  | 
  apply (rule conjI)+
  | 
| 
 | 
   206  | 
apply (rule def_nat_rec_0, simp)
  | 
| 
 | 
   207  | 
apply (rule allI, rule def_nat_rec_Suc, simp)
  | 
| 
 | 
   208  | 
apply (rule allI, rule impI, rule ext)
  | 
| 
 | 
   209  | 
apply (erule conjE)
  | 
| 
 | 
   210  | 
apply (induct_tac x)
  | 
| 
 | 
   211  | 
apply (simp add: nat_rec_0)
  | 
| 
 | 
   212  | 
apply (erule_tac x="n" in allE)
  | 
| 
 | 
   213  | 
apply (simp)
  | 
| 
 | 
   214  | 
done
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
 text{* An equivalent formulation of monotony -- Not used here, but might be useful *}
 | 
| 
 | 
   217  | 
lemma mono_Suc: "mono f = (\<forall>n. (f n :: 'a :: order) \<le> f (Suc n))"
  | 
| 
 | 
   218  | 
unfolding mono_def
  | 
| 
 | 
   219  | 
proof auto
  | 
| 
 | 
   220  | 
  fix A B :: nat
  | 
| 
 | 
   221  | 
  assume H: "\<forall>n. f n \<le> f (Suc n)" "A \<le> B"
  | 
| 
 | 
   222  | 
  hence "\<exists>k. B = A + k" apply -  apply (thin_tac "\<forall>n. f n \<le> f (Suc n)") 
  | 
| 
 | 
   223  | 
    by presburger
  | 
| 
 | 
   224  | 
  then obtain k where k: "B = A + k" by blast
  | 
| 
 | 
   225  | 
  {fix a k
 | 
| 
 | 
   226  | 
    have "f a \<le> f (a + k)"
  | 
| 
 | 
   227  | 
    proof (induct k)
  | 
| 
 | 
   228  | 
      case 0 thus ?case by simp
  | 
| 
 | 
   229  | 
    next
  | 
| 
 | 
   230  | 
      case (Suc k)
  | 
| 
 | 
   231  | 
      from Suc.hyps H(1)[rule_format, of "a + k"] show ?case by simp
  | 
| 
 | 
   232  | 
    qed}
  | 
| 
 | 
   233  | 
  with k show "f A \<le> f B" by blast
  | 
| 
 | 
   234  | 
qed
  | 
| 
 | 
   235  | 
  | 
| 
 | 
   236  | 
text{* for any sequence, there is a mootonic subsequence *}
 | 
| 
 | 
   237  | 
lemma seq_monosub: "\<exists>f. subseq f \<and> monoseq (\<lambda> n. (s (f n)))"
  | 
| 
 | 
   238  | 
proof-
  | 
| 
 | 
   239  | 
  {assume H: "\<forall>n. \<exists>p >n. \<forall> m\<ge>p. s m \<le> s p"
 | 
| 
 | 
   240  | 
    let ?P = "\<lambda> p n. p > n \<and> (\<forall>m \<ge> p. s m \<le> s p)"
  | 
| 
 | 
   241  | 
    from num_Axiom[of "SOME p. ?P p 0" "\<lambda>p n. SOME p. ?P p n"]
  | 
| 
 | 
   242  | 
    obtain f where f: "f 0 = (SOME p. ?P p 0)" "\<forall>n. f (Suc n) = (SOME p. ?P p (f n))" by blast
  | 
| 
 | 
   243  | 
    have "?P (f 0) 0"  unfolding f(1) some_eq_ex[of "\<lambda>p. ?P p 0"]
  | 
| 
 | 
   244  | 
      using H apply - 
  | 
| 
 | 
   245  | 
      apply (erule allE[where x=0], erule exE, rule_tac x="p" in exI) 
  | 
| 
 | 
   246  | 
      unfolding order_le_less by blast 
  | 
| 
 | 
   247  | 
    hence f0: "f 0 > 0" "\<forall>m \<ge> f 0. s m \<le> s (f 0)" by blast+
  | 
| 
 | 
   248  | 
    {fix n
 | 
| 
 | 
   249  | 
      have "?P (f (Suc n)) (f n)" 
  | 
| 
 | 
   250  | 
	unfolding f(2)[rule_format, of n] some_eq_ex[of "\<lambda>p. ?P p (f n)"]
  | 
| 
 | 
   251  | 
	using H apply - 
  | 
| 
 | 
   252  | 
      apply (erule allE[where x="f n"], erule exE, rule_tac x="p" in exI) 
  | 
| 
 | 
   253  | 
      unfolding order_le_less by blast 
  | 
| 
 | 
   254  | 
    hence "f (Suc n) > f n" "\<forall>m \<ge> f (Suc n). s m \<le> s (f (Suc n))" by blast+}
  | 
| 
 | 
   255  | 
  note fSuc = this
  | 
| 
 | 
   256  | 
    {fix p q assume pq: "p \<ge> f q"
 | 
| 
 | 
   257  | 
      have "s p \<le> s(f(q))"  using f0(2)[rule_format, of p] pq fSuc
  | 
| 
 | 
   258  | 
	by (cases q, simp_all) }
  | 
| 
 | 
   259  | 
    note pqth = this
  | 
| 
 | 
   260  | 
    {fix q
 | 
| 
 | 
   261  | 
      have "f (Suc q) > f q" apply (induct q) 
  | 
| 
 | 
   262  | 
	using f0(1) fSuc(1)[of 0] apply simp by (rule fSuc(1))}
  | 
| 
 | 
   263  | 
    note fss = this
  | 
| 
 | 
   264  | 
    from fss have th1: "subseq f" unfolding subseq_Suc_iff ..
  | 
| 
 | 
   265  | 
    {fix a b 
 | 
| 
 | 
   266  | 
      have "f a \<le> f (a + b)"
  | 
| 
 | 
   267  | 
      proof(induct b)
  | 
| 
 | 
   268  | 
	case 0 thus ?case by simp
  | 
| 
 | 
   269  | 
      next
  | 
| 
 | 
   270  | 
	case (Suc b)
  | 
| 
 | 
   271  | 
	from fSuc(1)[of "a + b"] Suc.hyps show ?case by simp
  | 
| 
 | 
   272  | 
      qed}
  | 
| 
 | 
   273  | 
    note fmon0 = this
  | 
| 
 | 
   274  | 
    have "monoseq (\<lambda>n. s (f n))" 
  | 
| 
 | 
   275  | 
    proof-
  | 
| 
 | 
   276  | 
      {fix n
 | 
| 
 | 
   277  | 
	have "s (f n) \<ge> s (f (Suc n))" 
  | 
| 
 | 
   278  | 
	proof(cases n)
  | 
| 
 | 
   279  | 
	  case 0
  | 
| 
 | 
   280  | 
	  assume n0: "n = 0"
  | 
| 
 | 
   281  | 
	  from fSuc(1)[of 0] have th0: "f 0 \<le> f (Suc 0)" by simp
  | 
| 
 | 
   282  | 
	  from f0(2)[rule_format, OF th0] show ?thesis  using n0 by simp
  | 
| 
 | 
   283  | 
	next
  | 
| 
 | 
   284  | 
	  case (Suc m)
  | 
| 
 | 
   285  | 
	  assume m: "n = Suc m"
  | 
| 
 | 
   286  | 
	  from fSuc(1)[of n] m have th0: "f (Suc m) \<le> f (Suc (Suc m))" by simp
  | 
| 
 | 
   287  | 
	  from m fSuc(2)[rule_format, OF th0] show ?thesis by simp 
  | 
| 
 | 
   288  | 
	qed}
  | 
| 
 | 
   289  | 
      thus "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc by blast 
  | 
| 
 | 
   290  | 
    qed
  | 
| 
 | 
   291  | 
    with th1 have ?thesis by blast}
  | 
| 
 | 
   292  | 
  moreover
  | 
| 
 | 
   293  | 
  {fix N assume N: "\<forall>p >N. \<exists> m\<ge>p. s m > s p"
 | 
| 
 | 
   294  | 
    {fix p assume p: "p \<ge> Suc N" 
 | 
| 
 | 
   295  | 
      hence pN: "p > N" by arith with N obtain m where m: "m \<ge> p" "s m > s p" by blast
  | 
| 
 | 
   296  | 
      have "m \<noteq> p" using m(2) by auto 
  | 
| 
 | 
   297  | 
      with m have "\<exists>m>p. s p < s m" by - (rule exI[where x=m], auto)}
  | 
| 
 | 
   298  | 
    note th0 = this
  | 
| 
 | 
   299  | 
    let ?P = "\<lambda>m x. m > x \<and> s x < s m"
  | 
| 
 | 
   300  | 
    from num_Axiom[of "SOME x. ?P x (Suc N)" "\<lambda>m x. SOME y. ?P y x"]
  | 
| 
 | 
   301  | 
    obtain f where f: "f 0 = (SOME x. ?P x (Suc N))" 
  | 
| 
 | 
   302  | 
      "\<forall>n. f (Suc n) = (SOME m. ?P m (f n))" by blast
  | 
| 
 | 
   303  | 
    have "?P (f 0) (Suc N)"  unfolding f(1) some_eq_ex[of "\<lambda>p. ?P p (Suc N)"]
  | 
| 
 | 
   304  | 
      using N apply - 
  | 
| 
 | 
   305  | 
      apply (erule allE[where x="Suc N"], clarsimp)
  | 
| 
 | 
   306  | 
      apply (rule_tac x="m" in exI)
  | 
| 
 | 
   307  | 
      apply auto
  | 
| 
 | 
   308  | 
      apply (subgoal_tac "Suc N \<noteq> m")
  | 
| 
 | 
   309  | 
      apply simp
  | 
| 
 | 
   310  | 
      apply (rule ccontr, simp)
  | 
| 
 | 
   311  | 
      done
  | 
| 
 | 
   312  | 
    hence f0: "f 0 > Suc N" "s (Suc N) < s (f 0)" by blast+
  | 
| 
 | 
   313  | 
    {fix n
 | 
| 
 | 
   314  | 
      have "f n > N \<and> ?P (f (Suc n)) (f n)"
  | 
| 
 | 
   315  | 
	unfolding f(2)[rule_format, of n] some_eq_ex[of "\<lambda>p. ?P p (f n)"]
  | 
| 
 | 
   316  | 
      proof (induct n)
  | 
| 
 | 
   317  | 
	case 0 thus ?case
  | 
| 
 | 
   318  | 
	  using f0 N apply auto 
  | 
| 
 | 
   319  | 
	  apply (erule allE[where x="f 0"], clarsimp) 
  | 
| 
 | 
   320  | 
	  apply (rule_tac x="m" in exI, simp)
  | 
| 
 | 
   321  | 
	  by (subgoal_tac "f 0 \<noteq> m", auto)
  | 
| 
 | 
   322  | 
      next
  | 
| 
 | 
   323  | 
	case (Suc n)
  | 
| 
 | 
   324  | 
	from Suc.hyps have Nfn: "N < f n" by blast
  | 
| 
 | 
   325  | 
	from Suc.hyps obtain m where m: "m > f n" "s (f n) < s m" by blast
  | 
| 
 | 
   326  | 
	with Nfn have mN: "m > N" by arith
  | 
| 
 | 
   327  | 
	note key = Suc.hyps[unfolded some_eq_ex[of "\<lambda>p. ?P p (f n)", symmetric] f(2)[rule_format, of n, symmetric]]
  | 
| 
 | 
   328  | 
	
  | 
| 
 | 
   329  | 
	from key have th0: "f (Suc n) > N" by simp
  | 
| 
 | 
   330  | 
	from N[rule_format, OF th0]
  | 
| 
 | 
   331  | 
	obtain m' where m': "m' \<ge> f (Suc n)" "s (f (Suc n)) < s m'" by blast
  | 
| 
 | 
   332  | 
	have "m' \<noteq> f (Suc (n))" apply (rule ccontr) using m'(2) by auto
  | 
| 
 | 
   333  | 
	hence "m' > f (Suc n)" using m'(1) by simp
  | 
| 
 | 
   334  | 
	with key m'(2) show ?case by auto
  | 
| 
 | 
   335  | 
      qed}
  | 
| 
 | 
   336  | 
    note fSuc = this
  | 
| 
 | 
   337  | 
    {fix n
 | 
| 
 | 
   338  | 
      have "f n \<ge> Suc N \<and> f(Suc n) > f n \<and> s(f n) < s(f(Suc n))" using fSuc[of n] by auto 
  | 
| 
 | 
   339  | 
      hence "f n \<ge> Suc N" "f(Suc n) > f n" "s(f n) < s(f(Suc n))" by blast+}
  | 
| 
 | 
   340  | 
    note thf = this
  | 
| 
 | 
   341  | 
    have sqf: "subseq f" unfolding subseq_Suc_iff using thf by simp
  | 
| 
 | 
   342  | 
    have "monoseq (\<lambda>n. s (f n))"  unfolding monoseq_Suc using thf
  | 
| 
 | 
   343  | 
      apply -
  | 
| 
 | 
   344  | 
      apply (rule disjI1)
  | 
| 
 | 
   345  | 
      apply auto
  | 
| 
 | 
   346  | 
      apply (rule order_less_imp_le)
  | 
| 
 | 
   347  | 
      apply blast
  | 
| 
 | 
   348  | 
      done
  | 
| 
 | 
   349  | 
    then have ?thesis  using sqf by blast}
  | 
| 
 | 
   350  | 
  ultimately show ?thesis unfolding linorder_not_less[symmetric] by blast
  | 
| 
 | 
   351  | 
qed
  | 
| 
 | 
   352  | 
  | 
| 
 | 
   353  | 
lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n"
  | 
| 
 | 
   354  | 
proof(induct n)
  | 
| 
 | 
   355  | 
  case 0 thus ?case by simp
  | 
| 
 | 
   356  | 
next
  | 
| 
 | 
   357  | 
  case (Suc n)
  | 
| 
 | 
   358  | 
  from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps
  | 
| 
 | 
   359  | 
  have "n < f (Suc n)" by arith 
  | 
| 
 | 
   360  | 
  thus ?case by arith
  | 
| 
 | 
   361  | 
qed
  | 
| 
 | 
   362  | 
  | 
| 
27445
 | 
   363  | 
subsection {* Fundamental theorem of algebra *}
 | 
| 
26123
 | 
   364  | 
lemma  unimodular_reduce_norm:
  | 
| 
 | 
   365  | 
  assumes md: "cmod z = 1"
  | 
| 
 | 
   366  | 
  shows "cmod (z + 1) < 1 \<or> cmod (z - 1) < 1 \<or> cmod (z + ii) < 1 \<or> cmod (z - ii) < 1"
  | 
| 
 | 
   367  | 
proof-
  | 
| 
 | 
   368  | 
  obtain x y where z: "z = Complex x y " by (cases z, auto)
  | 
| 
 | 
   369  | 
  from md z have xy: "x^2 + y^2 = 1" by (simp add: cmod_def)
  | 
| 
 | 
   370  | 
  {assume C: "cmod (z + 1) \<ge> 1" "cmod (z - 1) \<ge> 1" "cmod (z + ii) \<ge> 1" "cmod (z - ii) \<ge> 1"
 | 
| 
 | 
   371  | 
    from C z xy have "2*x \<le> 1" "2*x \<ge> -1" "2*y \<le> 1" "2*y \<ge> -1"
  | 
| 
 | 
   372  | 
      by (simp_all add: cmod_def power2_eq_square ring_simps)
  | 
| 
 | 
   373  | 
    hence "abs (2*x) \<le> 1" "abs (2*y) \<le> 1" by simp_all
  | 
| 
 | 
   374  | 
    hence "(abs (2 * x))^2 <= 1^2" "(abs (2 * y)) ^2 <= 1^2"
  | 
| 
 | 
   375  | 
      by - (rule power_mono, simp, simp)+
  | 
| 
 | 
   376  | 
    hence th0: "4*x^2 \<le> 1" "4*y^2 \<le> 1" 
  | 
| 
 | 
   377  | 
      by (simp_all  add: power2_abs power_mult_distrib)
  | 
| 
 | 
   378  | 
    from add_mono[OF th0] xy have False by simp }
  | 
| 
 | 
   379  | 
  thus ?thesis unfolding linorder_not_le[symmetric] by blast
  | 
| 
 | 
   380  | 
qed
  | 
| 
 | 
   381  | 
  | 
| 
26135
 | 
   382  | 
text{* Hence we can always reduce modulus of @{text "1 + b z^n"} if nonzero *}
 | 
| 
26123
 | 
   383  | 
lemma reduce_poly_simple:
  | 
| 
 | 
   384  | 
 assumes b: "b \<noteq> 0" and n: "n\<noteq>0"
  | 
| 
 | 
   385  | 
  shows "\<exists>z. cmod (1 + b * z^n) < 1"
  | 
| 
 | 
   386  | 
using n
  | 
| 
 | 
   387  | 
proof(induct n rule: nat_less_induct)
  | 
| 
 | 
   388  | 
  fix n
  | 
| 
 | 
   389  | 
  assume IH: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>z. cmod (1 + b * z ^ m) < 1)" and n: "n \<noteq> 0"
  | 
| 
 | 
   390  | 
  let ?P = "\<lambda>z n. cmod (1 + b * z ^ n) < 1"
  | 
| 
 | 
   391  | 
  {assume e: "even n"
 | 
| 
 | 
   392  | 
    hence "\<exists>m. n = 2*m" by presburger
  | 
| 
 | 
   393  | 
    then obtain m where m: "n = 2*m" by blast
  | 
| 
 | 
   394  | 
    from n m have "m\<noteq>0" "m < n" by presburger+
  | 
| 
 | 
   395  | 
    with IH[rule_format, of m] obtain z where z: "?P z m" by blast
  | 
| 
 | 
   396  | 
    from z have "?P (csqrt z) n" by (simp add: m power_mult csqrt)
  | 
| 
 | 
   397  | 
    hence "\<exists>z. ?P z n" ..}
  | 
| 
 | 
   398  | 
  moreover
  | 
| 
 | 
   399  | 
  {assume o: "odd n"
 | 
| 
 | 
   400  | 
    from b have b': "b^2 \<noteq> 0" unfolding power2_eq_square by simp
  | 
| 
 | 
   401  | 
    have "Im (inverse b) * (Im (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) +
  | 
| 
 | 
   402  | 
    Re (inverse b) * (Re (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) = 
  | 
| 
 | 
   403  | 
    ((Re (inverse b))^2 + (Im (inverse b))^2) * \<bar>Im b * Im b + Re b * Re b\<bar>" by algebra
  | 
| 
 | 
   404  | 
    also have "\<dots> = cmod (inverse b) ^2 * cmod b ^ 2" 
  | 
| 
 | 
   405  | 
      apply (simp add: cmod_def) using realpow_two_le_add_order[of "Re b" "Im b"]
  | 
| 
 | 
   406  | 
      by (simp add: power2_eq_square)
  | 
| 
 | 
   407  | 
    finally 
  | 
| 
 | 
   408  | 
    have th0: "Im (inverse b) * (Im (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) +
  | 
| 
 | 
   409  | 
    Re (inverse b) * (Re (inverse b) * \<bar>Im b * Im b + Re b * Re b\<bar>) =
  | 
| 
 | 
   410  | 
    1" 
  | 
| 
 | 
   411  | 
      apply (simp add: power2_eq_square cmod_mult[symmetric] cmod_inverse[symmetric])
  | 
| 
 | 
   412  | 
      using right_inverse[OF b']
  | 
| 
 | 
   413  | 
      by (simp add: power2_eq_square[symmetric] power_inverse[symmetric] ring_simps)
  | 
| 
 | 
   414  | 
    have th0: "cmod (complex_of_real (cmod b) / b) = 1"
  | 
| 
 | 
   415  | 
      apply (simp add: complex_Re_mult cmod_def power2_eq_square Re_complex_of_real Im_complex_of_real divide_inverse ring_simps )
  | 
| 
 | 
   416  | 
      by (simp add: real_sqrt_mult[symmetric] th0)        
  | 
| 
 | 
   417  | 
    from o have "\<exists>m. n = Suc (2*m)" by presburger+
  | 
| 
 | 
   418  | 
    then obtain m where m: "n = Suc (2*m)" by blast
  | 
| 
 | 
   419  | 
    from unimodular_reduce_norm[OF th0] o
  | 
| 
 | 
   420  | 
    have "\<exists>v. cmod (complex_of_real (cmod b) / b + v^n) < 1"
  | 
| 
 | 
   421  | 
      apply (cases "cmod (complex_of_real (cmod b) / b + 1) < 1", rule_tac x="1" in exI, simp)
  | 
| 
 | 
   422  | 
      apply (cases "cmod (complex_of_real (cmod b) / b - 1) < 1", rule_tac x="-1" in exI, simp add: diff_def)
  | 
| 
 | 
   423  | 
      apply (cases "cmod (complex_of_real (cmod b) / b + ii) < 1")
  | 
| 
 | 
   424  | 
      apply (cases "even m", rule_tac x="ii" in exI, simp add: m power_mult)
  | 
| 
 | 
   425  | 
      apply (rule_tac x="- ii" in exI, simp add: m power_mult)
  | 
| 
 | 
   426  | 
      apply (cases "even m", rule_tac x="- ii" in exI, simp add: m power_mult diff_def)
  | 
| 
 | 
   427  | 
      apply (rule_tac x="ii" in exI, simp add: m power_mult diff_def)
  | 
| 
 | 
   428  | 
      done
  | 
| 
 | 
   429  | 
    then obtain v where v: "cmod (complex_of_real (cmod b) / b + v^n) < 1" by blast
  | 
| 
 | 
   430  | 
    let ?w = "v / complex_of_real (root n (cmod b))"
  | 
| 
 | 
   431  | 
    from odd_real_root_pow[OF o, of "cmod b"]
  | 
| 
 | 
   432  | 
    have th1: "?w ^ n = v^n / complex_of_real (cmod b)" 
  | 
| 
 | 
   433  | 
      by (simp add: power_divide complex_of_real_power)
  | 
| 
 | 
   434  | 
    have th2:"cmod (complex_of_real (cmod b) / b) = 1" using b by (simp add: cmod_divide)
  | 
| 
 | 
   435  | 
    hence th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0" by simp
  | 
| 
 | 
   436  | 
    have th4: "cmod (complex_of_real (cmod b) / b) *
  | 
| 
 | 
   437  | 
   cmod (1 + b * (v ^ n / complex_of_real (cmod b)))
  | 
| 
 | 
   438  | 
   < cmod (complex_of_real (cmod b) / b) * 1"
  | 
| 
 | 
   439  | 
      apply (simp only: cmod_mult[symmetric] right_distrib)
  | 
| 
 | 
   440  | 
      using b v by (simp add: th2)
  | 
| 
 | 
   441  | 
  | 
| 
 | 
   442  | 
    from mult_less_imp_less_left[OF th4 th3]
  | 
| 
 | 
   443  | 
    have "?P ?w n" unfolding th1 . 
  | 
| 
 | 
   444  | 
    hence "\<exists>z. ?P z n" .. }
  | 
| 
 | 
   445  | 
  ultimately show "\<exists>z. ?P z n" by blast
  | 
| 
 | 
   446  | 
qed
  | 
| 
 | 
   447  | 
  | 
| 
 | 
   448  | 
  | 
| 
 | 
   449  | 
text{* Bolzano-Weierstrass type property for closed disc in complex plane. *}
 | 
| 
 | 
   450  | 
  | 
| 
 | 
   451  | 
lemma metric_bound_lemma: "cmod (x - y) <= \<bar>Re x - Re y\<bar> + \<bar>Im x - Im y\<bar>"
  | 
| 
 | 
   452  | 
  using real_sqrt_sum_squares_triangle_ineq[of "Re x - Re y" 0 0 "Im x - Im y" ]
  | 
| 
 | 
   453  | 
  unfolding cmod_def by simp
  | 
| 
 | 
   454  | 
  | 
| 
 | 
   455  | 
lemma bolzano_weierstrass_complex_disc:
  | 
| 
 | 
   456  | 
  assumes r: "\<forall>n. cmod (s n) \<le> r"
  | 
| 
 | 
   457  | 
  shows "\<exists>f z. subseq f \<and> (\<forall>e >0. \<exists>N. \<forall>n \<ge> N. cmod (s (f n) - z) < e)"
  | 
| 
 | 
   458  | 
proof-
  | 
| 
 | 
   459  | 
  from seq_monosub[of "Re o s"] 
  | 
| 
 | 
   460  | 
  obtain f g where f: "subseq f" "monoseq (\<lambda>n. Re (s (f n)))" 
  | 
| 
 | 
   461  | 
    unfolding o_def by blast
  | 
| 
 | 
   462  | 
  from seq_monosub[of "Im o s o f"] 
  | 
| 
 | 
   463  | 
  obtain g where g: "subseq g" "monoseq (\<lambda>n. Im (s(f(g n))))" unfolding o_def by blast  
  | 
| 
 | 
   464  | 
  let ?h = "f o g"
  | 
| 
 | 
   465  | 
  from r[rule_format, of 0] have rp: "r \<ge> 0" using cmod_pos[of "s 0"] by arith 
  | 
| 
 | 
   466  | 
  have th:"\<forall>n. r + 1 \<ge> \<bar> Re (s n)\<bar>" 
  | 
| 
 | 
   467  | 
  proof
  | 
| 
 | 
   468  | 
    fix n
  | 
| 
 | 
   469  | 
    from abs_Re_le_cmod[of "s n"] r[rule_format, of n]  show "\<bar>Re (s n)\<bar> \<le> r + 1" by arith
  | 
| 
 | 
   470  | 
  qed
  | 
| 
 | 
   471  | 
  have conv1: "convergent (\<lambda>n. Re (s ( f n)))"
  | 
| 
 | 
   472  | 
    apply (rule Bseq_monoseq_convergent)
  | 
| 
 | 
   473  | 
    apply (simp add: Bseq_def)
  | 
| 
 | 
   474  | 
    apply (rule exI[where x= "r + 1"])
  | 
| 
 | 
   475  | 
    using th rp apply simp
  | 
| 
 | 
   476  | 
    using f(2) .
  | 
| 
 | 
   477  | 
  have th:"\<forall>n. r + 1 \<ge> \<bar> Im (s n)\<bar>" 
  | 
| 
 | 
   478  | 
  proof
  | 
| 
 | 
   479  | 
    fix n
  | 
| 
 | 
   480  | 
    from abs_Im_le_cmod[of "s n"] r[rule_format, of n]  show "\<bar>Im (s n)\<bar> \<le> r + 1" by arith
  | 
| 
 | 
   481  | 
  qed
  | 
| 
 | 
   482  | 
  | 
| 
 | 
   483  | 
  have conv2: "convergent (\<lambda>n. Im (s (f (g n))))"
  | 
| 
 | 
   484  | 
    apply (rule Bseq_monoseq_convergent)
  | 
| 
 | 
   485  | 
    apply (simp add: Bseq_def)
  | 
| 
 | 
   486  | 
    apply (rule exI[where x= "r + 1"])
  | 
| 
 | 
   487  | 
    using th rp apply simp
  | 
| 
 | 
   488  | 
    using g(2) .
  | 
| 
 | 
   489  | 
  | 
| 
 | 
   490  | 
  from conv1[unfolded convergent_def] obtain x where "LIMSEQ (\<lambda>n. Re (s (f n))) x" 
  | 
| 
 | 
   491  | 
    by blast 
  | 
| 
 | 
   492  | 
  hence  x: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Re (s (f n)) - x \<bar> < r" 
  | 
| 
 | 
   493  | 
    unfolding LIMSEQ_def real_norm_def .
  | 
| 
 | 
   494  | 
  | 
| 
 | 
   495  | 
  from conv2[unfolded convergent_def] obtain y where "LIMSEQ (\<lambda>n. Im (s (f (g n)))) y" 
  | 
| 
 | 
   496  | 
    by blast 
  | 
| 
 | 
   497  | 
  hence  y: "\<forall>r>0. \<exists>n0. \<forall>n\<ge>n0. \<bar> Im (s (f (g n))) - y \<bar> < r" 
  | 
| 
 | 
   498  | 
    unfolding LIMSEQ_def real_norm_def .
  | 
| 
 | 
   499  | 
  let ?w = "Complex x y"
  | 
| 
 | 
   500  | 
  from f(1) g(1) have hs: "subseq ?h" unfolding subseq_def by auto 
  | 
| 
 | 
   501  | 
  {fix e assume ep: "e > (0::real)"
 | 
| 
 | 
   502  | 
    hence e2: "e/2 > 0" by simp
  | 
| 
 | 
   503  | 
    from x[rule_format, OF e2] y[rule_format, OF e2]
  | 
| 
 | 
   504  | 
    obtain N1 N2 where N1: "\<forall>n\<ge>N1. \<bar>Re (s (f n)) - x\<bar> < e / 2" and N2: "\<forall>n\<ge>N2. \<bar>Im (s (f (g n))) - y\<bar> < e / 2" by blast
  | 
| 
 | 
   505  | 
    {fix n assume nN12: "n \<ge> N1 + N2"
 | 
| 
 | 
   506  | 
      hence nN1: "g n \<ge> N1" and nN2: "n \<ge> N2" using seq_suble[OF g(1), of n] by arith+
  | 
| 
 | 
   507  | 
      from add_strict_mono[OF N1[rule_format, OF nN1] N2[rule_format, OF nN2]]
  | 
| 
 | 
   508  | 
      have "cmod (s (?h n) - ?w) < e" 
  | 
| 
 | 
   509  | 
	using metric_bound_lemma[of "s (f (g n))" ?w] by simp }
  | 
| 
 | 
   510  | 
    hence "\<exists>N. \<forall>n\<ge>N. cmod (s (?h n) - ?w) < e" by blast }
  | 
| 
 | 
   511  | 
  with hs show ?thesis  by blast  
  | 
| 
 | 
   512  | 
qed
  | 
| 
 | 
   513  | 
  | 
| 
 | 
   514  | 
text{* Polynomial is continuous. *}
 | 
| 
 | 
   515  | 
  | 
| 
 | 
   516  | 
lemma poly_cont:
  | 
| 
 | 
   517  | 
  assumes ep: "e > 0" 
  | 
| 
 | 
   518  | 
  shows "\<exists>d >0. \<forall>w. 0 < cmod (w - z) \<and> cmod (w - z) < d \<longrightarrow> cmod (poly p w - poly p z) < e"
  | 
| 
 | 
   519  | 
proof-
  | 
| 
 | 
   520  | 
  from poly_offset[of p z] obtain q where q: "length q = length p" "\<And>x. poly q x = poly p (z + x)" by blast
  | 
| 
 | 
   521  | 
  {fix w
 | 
| 
 | 
   522  | 
    note q(2)[of "w - z", simplified]}
  | 
| 
 | 
   523  | 
  note th = this
  | 
| 
 | 
   524  | 
  show ?thesis unfolding th[symmetric]
  | 
| 
 | 
   525  | 
  proof(induct q)
  | 
| 
 | 
   526  | 
    case Nil thus ?case  using ep by auto
  | 
| 
 | 
   527  | 
  next
  | 
| 
 | 
   528  | 
    case (Cons c cs)
  | 
| 
 | 
   529  | 
    from poly_bound_exists[of 1 "cs"] 
  | 
| 
 | 
   530  | 
    obtain m where m: "m > 0" "\<And>z. cmod z \<le> 1 \<Longrightarrow> cmod (poly cs z) \<le> m" by blast
  | 
| 
 | 
   531  | 
    from ep m(1) have em0: "e/m > 0" by (simp add: field_simps)
  | 
| 
 | 
   532  | 
    have one0: "1 > (0::real)"  by arith
  | 
| 
 | 
   533  | 
    from real_lbound_gt_zero[OF one0 em0] 
  | 
| 
 | 
   534  | 
    obtain d where d: "d >0" "d < 1" "d < e / m" by blast
  | 
| 
 | 
   535  | 
    from d(1,3) m(1) have dm: "d*m > 0" "d*m < e" 
  | 
| 
 | 
   536  | 
      by (simp_all add: field_simps real_mult_order)
  | 
| 
 | 
   537  | 
    show ?case 
  | 
| 
 | 
   538  | 
      proof(rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: cmod_mult)
  | 
| 
 | 
   539  | 
	fix d w
  | 
| 
 | 
   540  | 
	assume H: "d > 0" "d < 1" "d < e/m" "w\<noteq>z" "cmod (w-z) < d"
  | 
| 
 | 
   541  | 
	hence d1: "cmod (w-z) \<le> 1" "d \<ge> 0" by simp_all
  | 
| 
 | 
   542  | 
	from H(3) m(1) have dme: "d*m < e" by (simp add: field_simps)
  | 
| 
 | 
   543  | 
	from H have th: "cmod (w-z) \<le> d" by simp 
  | 
| 
 | 
   544  | 
	from mult_mono[OF th m(2)[OF d1(1)] d1(2) cmod_pos] dme
  | 
| 
 | 
   545  | 
	show "cmod (w - z) * cmod (poly cs (w - z)) < e" by simp
  | 
| 
 | 
   546  | 
      qed  
  | 
| 
 | 
   547  | 
    qed
  | 
| 
 | 
   548  | 
qed
  | 
| 
 | 
   549  | 
  | 
| 
 | 
   550  | 
text{* Hence a polynomial attains minimum on a closed disc 
 | 
| 
 | 
   551  | 
  in the complex plane. *}
  | 
| 
 | 
   552  | 
lemma  poly_minimum_modulus_disc:
  | 
| 
 | 
   553  | 
  "\<exists>z. \<forall>w. cmod w \<le> r \<longrightarrow> cmod (poly p z) \<le> cmod (poly p w)"
  | 
| 
 | 
   554  | 
proof-
  | 
| 
 | 
   555  | 
  {assume "\<not> r \<ge> 0" hence ?thesis unfolding linorder_not_le
 | 
| 
 | 
   556  | 
      apply -
  | 
| 
 | 
   557  | 
      apply (rule exI[where x=0]) 
  | 
| 
 | 
   558  | 
      apply auto
  | 
| 
 | 
   559  | 
      apply (subgoal_tac "cmod w < 0")
  | 
| 
 | 
   560  | 
      apply simp
  | 
| 
 | 
   561  | 
      apply arith
  | 
| 
 | 
   562  | 
      done }
  | 
| 
 | 
   563  | 
  moreover
  | 
| 
 | 
   564  | 
  {assume rp: "r \<ge> 0"
 | 
| 
 | 
   565  | 
    from rp have "cmod 0 \<le> r \<and> cmod (poly p 0) = - (- cmod (poly p 0))" by simp 
  | 
| 
 | 
   566  | 
    hence mth1: "\<exists>x z. cmod z \<le> r \<and> cmod (poly p z) = - x"  by blast
  | 
| 
 | 
   567  | 
    {fix x z
 | 
| 
 | 
   568  | 
      assume H: "cmod z \<le> r" "cmod (poly p z) = - x" "\<not>x < 1"
  | 
| 
 | 
   569  | 
      hence "- x < 0 " by arith
  | 
| 
 | 
   570  | 
      with H(2) cmod_pos[of "poly p z"]  have False by simp }
  | 
| 
 | 
   571  | 
    then have mth2: "\<exists>z. \<forall>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<longrightarrow> x < z" by blast
  | 
| 
 | 
   572  | 
    from real_sup_exists[OF mth1 mth2] obtain s where 
  | 
| 
 | 
   573  | 
      s: "\<forall>y. (\<exists>x. (\<exists>z. cmod z \<le> r \<and> cmod (poly p z) = - x) \<and> y < x) \<longleftrightarrow>(y < s)" by blast
  | 
| 
 | 
   574  | 
    let ?m = "-s"
  | 
| 
 | 
   575  | 
    {fix y
 | 
| 
 | 
   576  | 
      from s[rule_format, of "-y"] have 
  | 
| 
 | 
   577  | 
    "(\<exists>z x. cmod z \<le> r \<and> -(- cmod (poly p z)) < y) \<longleftrightarrow> ?m < y" 
  | 
| 
 | 
   578  | 
	unfolding minus_less_iff[of y ] equation_minus_iff by blast }
  | 
| 
 | 
   579  | 
    note s1 = this[unfolded minus_minus]
  | 
| 
 | 
   580  | 
    from s1[of ?m] have s1m: "\<And>z x. cmod z \<le> r \<Longrightarrow> cmod (poly p z) \<ge> ?m" 
  | 
| 
 | 
   581  | 
      by auto
  | 
| 
 | 
   582  | 
    {fix n::nat
 | 
| 
 | 
   583  | 
      from s1[rule_format, of "?m + 1/real (Suc n)"] 
  | 
| 
 | 
   584  | 
      have "\<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)"
  | 
| 
 | 
   585  | 
	by simp}
  | 
| 
 | 
   586  | 
    hence th: "\<forall>n. \<exists>z. cmod z \<le> r \<and> cmod (poly p z) < - s + 1 / real (Suc n)" ..
  | 
| 
 | 
   587  | 
    from choice[OF th] obtain g where 
  | 
| 
 | 
   588  | 
      g: "\<forall>n. cmod (g n) \<le> r" "\<forall>n. cmod (poly p (g n)) <?m+1 /real(Suc n)" 
  | 
| 
 | 
   589  | 
      by blast
  | 
| 
 | 
   590  | 
    from bolzano_weierstrass_complex_disc[OF g(1)] 
  | 
| 
 | 
   591  | 
    obtain f z where fz: "subseq f" "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. cmod (g (f n) - z) < e"
  | 
| 
 | 
   592  | 
      by blast    
  | 
| 
 | 
   593  | 
    {fix w 
 | 
| 
 | 
   594  | 
      assume wr: "cmod w \<le> r"
  | 
| 
 | 
   595  | 
      let ?e = "\<bar>cmod (poly p z) - ?m\<bar>"
  | 
| 
 | 
   596  | 
      {assume e: "?e > 0"
 | 
| 
 | 
   597  | 
	hence e2: "?e/2 > 0" by simp
  | 
| 
 | 
   598  | 
	from poly_cont[OF e2, of z p] obtain d where
  | 
| 
 | 
   599  | 
	  d: "d>0" "\<forall>w. 0<cmod (w - z)\<and> cmod(w - z) < d \<longrightarrow> cmod(poly p w - poly p z) < ?e/2" by blast
  | 
| 
 | 
   600  | 
	{fix w assume w: "cmod (w - z) < d"
 | 
| 
 | 
   601  | 
	  have "cmod(poly p w - poly p z) < ?e / 2"
  | 
| 
 | 
   602  | 
	    using d(2)[rule_format, of w] w e by (cases "w=z", simp_all)}
  | 
| 
 | 
   603  | 
	note th1 = this
  | 
| 
 | 
   604  | 
	
  | 
| 
 | 
   605  | 
	from fz(2)[rule_format, OF d(1)] obtain N1 where 
  | 
| 
 | 
   606  | 
	  N1: "\<forall>n\<ge>N1. cmod (g (f n) - z) < d" by blast
  | 
| 
 | 
   607  | 
	from reals_Archimedean2[of "2/?e"] obtain N2::nat where
  | 
| 
 | 
   608  | 
	  N2: "2/?e < real N2" by blast
  | 
| 
 | 
   609  | 
	have th2: "cmod(poly p (g(f(N1 + N2))) - poly p z) < ?e/2"
  | 
| 
 | 
   610  | 
	  using N1[rule_format, of "N1 + N2"] th1 by simp
  | 
| 
 | 
   611  | 
	{fix a b e2 m :: real
 | 
| 
 | 
   612  | 
	have "a < e2 \<Longrightarrow> abs(b - m) < e2 \<Longrightarrow> 2 * e2 <= abs(b - m) + a
  | 
| 
 | 
   613  | 
          ==> False" by arith}
  | 
| 
 | 
   614  | 
      note th0 = this
  | 
| 
 | 
   615  | 
      have ath: 
  | 
| 
 | 
   616  | 
	"\<And>m x e. m <= x \<Longrightarrow>  x < m + e ==> abs(x - m::real) < e" by arith
  | 
| 
 | 
   617  | 
      from s1m[OF g(1)[rule_format]]
  | 
| 
 | 
   618  | 
      have th31: "?m \<le> cmod(poly p (g (f (N1 + N2))))" .
  | 
| 
 | 
   619  | 
      from seq_suble[OF fz(1), of "N1+N2"]
  | 
| 
 | 
   620  | 
      have th00: "real (Suc (N1+N2)) \<le> real (Suc (f (N1+N2)))" by simp
  | 
| 
 | 
   621  | 
      have th000: "0 \<le> (1::real)" "(1::real) \<le> 1" "real (Suc (N1+N2)) > 0"  
  | 
| 
 | 
   622  | 
	using N2 by auto
  | 
| 
 | 
   623  | 
      from frac_le[OF th000 th00] have th00: "?m +1 / real (Suc (f (N1 + N2))) \<le> ?m + 1 / real (Suc (N1 + N2))" by simp
  | 
| 
 | 
   624  | 
      from g(2)[rule_format, of "f (N1 + N2)"]
  | 
| 
 | 
   625  | 
      have th01:"cmod (poly p (g (f (N1 + N2)))) < - s + 1 / real (Suc (f (N1 + N2)))" .
  | 
| 
 | 
   626  | 
      from order_less_le_trans[OF th01 th00]
  | 
| 
 | 
   627  | 
      have th32: "cmod(poly p (g (f (N1 + N2)))) < ?m + (1/ real(Suc (N1 + N2)))" .
  | 
| 
 | 
   628  | 
      from N2 have "2/?e < real (Suc (N1 + N2))" by arith
  | 
| 
 | 
   629  | 
      with e2 less_imp_inverse_less[of "2/?e" "real (Suc (N1 + N2))"]
  | 
| 
 | 
   630  | 
      have "?e/2 > 1/ real (Suc (N1 + N2))" by (simp add: inverse_eq_divide)
  | 
| 
 | 
   631  | 
      with ath[OF th31 th32]
  | 
| 
 | 
   632  | 
      have thc1:"\<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar>< ?e/2" by arith  
  | 
| 
 | 
   633  | 
      have ath2: "\<And>(a::real) b c m. \<bar>a - b\<bar> <= c ==> \<bar>b - m\<bar> <= \<bar>a - m\<bar> + c" 
  | 
| 
 | 
   634  | 
	by arith
  | 
| 
 | 
   635  | 
      have th22: "\<bar>cmod (poly p (g (f (N1 + N2)))) - cmod (poly p z)\<bar>
  | 
| 
 | 
   636  | 
\<le> cmod (poly p (g (f (N1 + N2))) - poly p z)" 
  | 
| 
 | 
   637  | 
	by (simp add: cmod_abs_norm)
  | 
| 
 | 
   638  | 
      from ath2[OF th22, of ?m]
  | 
| 
 | 
   639  | 
      have thc2: "2*(?e/2) \<le> \<bar>cmod(poly p (g (f (N1 + N2)))) - ?m\<bar> + cmod (poly p (g (f (N1 + N2))) - poly p z)" by simp
  | 
| 
 | 
   640  | 
      from th0[OF th2 thc1 thc2] have False .}
  | 
| 
 | 
   641  | 
      hence "?e = 0" by auto
  | 
| 
 | 
   642  | 
      then have "cmod (poly p z) = ?m" by simp  
  | 
| 
 | 
   643  | 
      with s1m[OF wr]
  | 
| 
 | 
   644  | 
      have "cmod (poly p z) \<le> cmod (poly p w)" by simp }
  | 
| 
 | 
   645  | 
    hence ?thesis by blast}
  | 
| 
 | 
   646  | 
  ultimately show ?thesis by blast
  | 
| 
 | 
   647  | 
qed
  | 
| 
 | 
   648  | 
  | 
| 
 | 
   649  | 
lemma "(rcis (sqrt (abs r)) (a/2)) ^ 2 = rcis (abs r) a"
  | 
| 
 | 
   650  | 
  unfolding power2_eq_square
  | 
| 
 | 
   651  | 
  apply (simp add: rcis_mult)
  | 
| 
 | 
   652  | 
  apply (simp add: power2_eq_square[symmetric])
  | 
| 
 | 
   653  | 
  done
  | 
| 
 | 
   654  | 
  | 
| 
 | 
   655  | 
lemma cispi: "cis pi = -1" 
  | 
| 
 | 
   656  | 
  unfolding cis_def
  | 
| 
 | 
   657  | 
  by simp
  | 
| 
 | 
   658  | 
  | 
| 
 | 
   659  | 
lemma "(rcis (sqrt (abs r)) ((pi + a)/2)) ^ 2 = rcis (- abs r) a"
  | 
| 
 | 
   660  | 
  unfolding power2_eq_square
  | 
| 
 | 
   661  | 
  apply (simp add: rcis_mult add_divide_distrib)
  | 
| 
 | 
   662  | 
  apply (simp add: power2_eq_square[symmetric] rcis_def cispi cis_mult[symmetric])
  | 
| 
 | 
   663  | 
  done
  | 
| 
 | 
   664  | 
  | 
| 
 | 
   665  | 
text {* Nonzero polynomial in z goes to infinity as z does. *}
 | 
| 
 | 
   666  | 
  | 
| 
 | 
   667  | 
instance complex::idom_char_0 by (intro_classes)
  | 
| 
 | 
   668  | 
instance complex :: recpower_idom_char_0 by intro_classes
  | 
| 
 | 
   669  | 
  | 
| 
 | 
   670  | 
lemma poly_infinity:
  | 
| 
 | 
   671  | 
  assumes ex: "list_ex (\<lambda>c. c \<noteq> 0) p"
  | 
| 
 | 
   672  | 
  shows "\<exists>r. \<forall>z. r \<le> cmod z \<longrightarrow> d \<le> cmod (poly (a#p) z)"
  | 
| 
 | 
   673  | 
using ex
  | 
| 
 | 
   674  | 
proof(induct p arbitrary: a d)
  | 
| 
 | 
   675  | 
  case (Cons c cs a d) 
  | 
| 
 | 
   676  | 
  {assume H: "list_ex (\<lambda>c. c\<noteq>0) cs"
 | 
| 
 | 
   677  | 
    with Cons.hyps obtain r where r: "\<forall>z. r \<le> cmod z \<longrightarrow> d + cmod a \<le> cmod (poly (c # cs) z)" by blast
  | 
| 
 | 
   678  | 
    let ?r = "1 + \<bar>r\<bar>"
  | 
| 
 | 
   679  | 
    {fix z assume h: "1 + \<bar>r\<bar> \<le> cmod z"
 | 
| 
 | 
   680  | 
      have r0: "r \<le> cmod z" using h by arith
  | 
| 
 | 
   681  | 
      from r[rule_format, OF r0]
  | 
| 
 | 
   682  | 
      have th0: "d + cmod a \<le> 1 * cmod(poly (c#cs) z)" by arith
  | 
| 
 | 
   683  | 
      from h have z1: "cmod z \<ge> 1" by arith
  | 
| 
 | 
   684  | 
      from order_trans[OF th0 mult_right_mono[OF z1 cmod_pos[of "poly (c#cs) z"]]]
  | 
| 
 | 
   685  | 
      have th1: "d \<le> cmod(z * poly (c#cs) z) - cmod a"
  | 
| 
 | 
   686  | 
	unfolding cmod_mult by (simp add: ring_simps)
  | 
| 
 | 
   687  | 
      from complex_mod_triangle_sub[of "z * poly (c#cs) z" a]
  | 
| 
 | 
   688  | 
      have th2: "cmod(z * poly (c#cs) z) - cmod a \<le> cmod (poly (a#c#cs) z)" 
  | 
| 
 | 
   689  | 
	by (simp add: diff_le_eq ring_simps) 
  | 
| 
 | 
   690  | 
      from th1 th2 have "d \<le> cmod (poly (a#c#cs) z)"  by arith}
  | 
| 
 | 
   691  | 
    hence ?case by blast}
  | 
| 
 | 
   692  | 
  moreover
  | 
| 
 | 
   693  | 
  {assume cs0: "\<not> (list_ex (\<lambda>c. c \<noteq> 0) cs)"
 | 
| 
 | 
   694  | 
    with Cons.prems have c0: "c \<noteq> 0" by simp
  | 
| 
 | 
   695  | 
    from cs0 have cs0': "list_all (\<lambda>c. c = 0) cs" 
  | 
| 
 | 
   696  | 
      by (auto simp add: list_all_iff list_ex_iff)
  | 
| 
 | 
   697  | 
    {fix z
 | 
| 
 | 
   698  | 
      assume h: "(\<bar>d\<bar> + cmod a) / cmod c \<le> cmod z"
  | 
| 
 | 
   699  | 
      from c0 have "cmod c > 0" by simp
  | 
| 
 | 
   700  | 
      from h c0 have th0: "\<bar>d\<bar> + cmod a \<le> cmod (z*c)" 
  | 
| 
 | 
   701  | 
	by (simp add: field_simps cmod_mult)
  | 
| 
 | 
   702  | 
      have ath: "\<And>mzh mazh ma. mzh <= mazh + ma ==> abs(d) + ma <= mzh ==> d <= mazh" by arith
  | 
| 
 | 
   703  | 
      from complex_mod_triangle_sub[of "z*c" a ]
  | 
| 
 | 
   704  | 
      have th1: "cmod (z * c) \<le> cmod (a + z * c) + cmod a"
  | 
| 
 | 
   705  | 
	by (simp add: ring_simps)
  | 
| 
 | 
   706  | 
      from ath[OF th1 th0] have "d \<le> cmod (poly (a # c # cs) z)" 
  | 
| 
 | 
   707  | 
	using poly_0[OF cs0'] by simp}
  | 
| 
 | 
   708  | 
    then have ?case  by blast}
  | 
| 
 | 
   709  | 
  ultimately show ?case by blast
  | 
| 
 | 
   710  | 
qed simp
  | 
| 
 | 
   711  | 
  | 
| 
 | 
   712  | 
text {* Hence polynomial's modulus attains its minimum somewhere. *}
 | 
| 
 | 
   713  | 
lemma poly_minimum_modulus:
  | 
| 
 | 
   714  | 
  "\<exists>z.\<forall>w. cmod (poly p z) \<le> cmod (poly p w)"
  | 
| 
 | 
   715  | 
proof(induct p)
  | 
| 
 | 
   716  | 
  case (Cons c cs) 
  | 
| 
 | 
   717  | 
  {assume cs0: "list_ex (\<lambda>c. c \<noteq> 0) cs"
 | 
| 
 | 
   718  | 
    from poly_infinity[OF cs0, of "cmod (poly (c#cs) 0)" c]
  | 
| 
 | 
   719  | 
    obtain r where r: "\<And>z. r \<le> cmod z \<Longrightarrow> cmod (poly (c # cs) 0) \<le> cmod (poly (c # cs) z)" by blast
  | 
| 
 | 
   720  | 
    have ath: "\<And>z r. r \<le> cmod z \<or> cmod z \<le> \<bar>r\<bar>" by arith
  | 
| 
 | 
   721  | 
    from poly_minimum_modulus_disc[of "\<bar>r\<bar>" "c#cs"] 
  | 
| 
 | 
   722  | 
    obtain v where v: "\<And>w. cmod w \<le> \<bar>r\<bar> \<Longrightarrow> cmod (poly (c # cs) v) \<le> cmod (poly (c # cs) w)" by blast
  | 
| 
 | 
   723  | 
    {fix z assume z: "r \<le> cmod z"
 | 
| 
 | 
   724  | 
      from v[of 0] r[OF z] 
  | 
| 
 | 
   725  | 
      have "cmod (poly (c # cs) v) \<le> cmod (poly (c # cs) z)"
  | 
| 
 | 
   726  | 
	by simp }
  | 
| 
 | 
   727  | 
    note v0 = this
  | 
| 
 | 
   728  | 
    from v0 v ath[of r] have ?case by blast}
  | 
| 
 | 
   729  | 
  moreover
  | 
| 
 | 
   730  | 
  {assume cs0: "\<not> (list_ex (\<lambda>c. c\<noteq>0) cs)"
 | 
| 
 | 
   731  | 
    hence th:"list_all (\<lambda>c. c = 0) cs" by (simp add: list_all_iff list_ex_iff)
  | 
| 
 | 
   732  | 
    from poly_0[OF th] Cons.hyps have ?case by simp}
  | 
| 
 | 
   733  | 
  ultimately show ?case by blast
  | 
| 
 | 
   734  | 
qed simp
  | 
| 
 | 
   735  | 
  | 
| 
 | 
   736  | 
text{* Constant function (non-syntactic characterization). *}
 | 
| 
 | 
   737  | 
definition "constant f = (\<forall>x y. f x = f y)"
  | 
| 
 | 
   738  | 
  | 
| 
 | 
   739  | 
lemma nonconstant_length: "\<not> (constant (poly p)) \<Longrightarrow> length p \<ge> 2"
  | 
| 
 | 
   740  | 
  unfolding constant_def
  | 
| 
 | 
   741  | 
  apply (induct p, auto)
  | 
| 
 | 
   742  | 
  apply (unfold not_less[symmetric])
  | 
| 
 | 
   743  | 
  apply simp
  | 
| 
 | 
   744  | 
  apply (rule ccontr)
  | 
| 
 | 
   745  | 
  apply auto
  | 
| 
 | 
   746  | 
  done
  | 
| 
 | 
   747  | 
 
  | 
| 
 | 
   748  | 
lemma poly_replicate_append:
  | 
| 
 | 
   749  | 
  "poly ((replicate n 0)@p) (x::'a::{recpower, comm_ring}) = x^n * poly p x"
 | 
| 
 | 
   750  | 
  by(induct n, auto simp add: power_Suc ring_simps)
  | 
| 
 | 
   751  | 
  | 
| 
 | 
   752  | 
text {* Decomposition of polynomial, skipping zero coefficients 
 | 
| 
 | 
   753  | 
  after the first.  *}
  | 
| 
 | 
   754  | 
  | 
| 
 | 
   755  | 
lemma poly_decompose_lemma:
  | 
| 
 | 
   756  | 
 assumes nz: "\<not>(\<forall>z. z\<noteq>0 \<longrightarrow> poly p z = (0::'a::{recpower,idom}))"
 | 
| 
 | 
   757  | 
  shows "\<exists>k a q. a\<noteq>0 \<and> Suc (length q + k) = length p \<and> 
  | 
| 
 | 
   758  | 
                 (\<forall>z. poly p z = z^k * poly (a#q) z)"
  | 
| 
 | 
   759  | 
using nz
  | 
| 
 | 
   760  | 
proof(induct p)
  | 
| 
 | 
   761  | 
  case Nil thus ?case by simp
  | 
| 
 | 
   762  | 
next
  | 
| 
 | 
   763  | 
  case (Cons c cs)
  | 
| 
 | 
   764  | 
  {assume c0: "c = 0"
 | 
| 
 | 
   765  | 
    
  | 
| 
 | 
   766  | 
    from Cons.hyps Cons.prems c0 have ?case apply auto
  | 
| 
 | 
   767  | 
      apply (rule_tac x="k+1" in exI)
  | 
| 
 | 
   768  | 
      apply (rule_tac x="a" in exI, clarsimp)
  | 
| 
 | 
   769  | 
      apply (rule_tac x="q" in exI)
  | 
| 
 | 
   770  | 
      by (auto simp add: power_Suc)}
  | 
| 
 | 
   771  | 
  moreover
  | 
| 
 | 
   772  | 
  {assume c0: "c\<noteq>0"
 | 
| 
 | 
   773  | 
    hence ?case apply-
  | 
| 
 | 
   774  | 
      apply (rule exI[where x=0])
  | 
| 
 | 
   775  | 
      apply (rule exI[where x=c], clarsimp)
  | 
| 
 | 
   776  | 
      apply (rule exI[where x=cs])
  | 
| 
 | 
   777  | 
      apply auto
  | 
| 
 | 
   778  | 
      done}
  | 
| 
 | 
   779  | 
  ultimately show ?case by blast
  | 
| 
 | 
   780  | 
qed
  | 
| 
 | 
   781  | 
  | 
| 
 | 
   782  | 
lemma poly_decompose:
  | 
| 
 | 
   783  | 
  assumes nc: "~constant(poly p)"
  | 
| 
 | 
   784  | 
  shows "\<exists>k a q. a\<noteq>(0::'a::{recpower,idom}) \<and> k\<noteq>0 \<and>
 | 
| 
 | 
   785  | 
               length q + k + 1 = length p \<and> 
  | 
| 
 | 
   786  | 
              (\<forall>z. poly p z = poly p 0 + z^k * poly (a#q) z)"
  | 
| 
 | 
   787  | 
using nc 
  | 
| 
 | 
   788  | 
proof(induct p)
  | 
| 
 | 
   789  | 
  case Nil thus ?case by (simp add: constant_def)
  | 
| 
 | 
   790  | 
next
  | 
| 
 | 
   791  | 
  case (Cons c cs)
  | 
| 
 | 
   792  | 
  {assume C:"\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0"
 | 
| 
 | 
   793  | 
    {fix x y
 | 
| 
 | 
   794  | 
      from C have "poly (c#cs) x = poly (c#cs) y" by (cases "x=0", auto)}
  | 
| 
 | 
   795  | 
    with Cons.prems have False by (auto simp add: constant_def)}
  | 
| 
 | 
   796  | 
  hence th: "\<not> (\<forall>z. z \<noteq> 0 \<longrightarrow> poly cs z = 0)" ..
  | 
| 
 | 
   797  | 
  from poly_decompose_lemma[OF th] 
  | 
| 
 | 
   798  | 
  show ?case 
  | 
| 
 | 
   799  | 
    apply clarsimp    
  | 
| 
 | 
   800  | 
    apply (rule_tac x="k+1" in exI)
  | 
| 
 | 
   801  | 
    apply (rule_tac x="a" in exI)
  | 
| 
 | 
   802  | 
    apply simp
  | 
| 
 | 
   803  | 
    apply (rule_tac x="q" in exI)
  | 
| 
 | 
   804  | 
    apply (auto simp add: power_Suc)
  | 
| 
 | 
   805  | 
    done
  | 
| 
 | 
   806  | 
qed
  | 
| 
 | 
   807  | 
  | 
| 
 | 
   808  | 
text{* Fundamental theorem of algebral *}
 | 
| 
 | 
   809  | 
  | 
| 
 | 
   810  | 
lemma fundamental_theorem_of_algebra:
  | 
| 
 | 
   811  | 
  assumes nc: "~constant(poly p)"
  | 
| 
 | 
   812  | 
  shows "\<exists>z::complex. poly p z = 0"
  | 
| 
 | 
   813  | 
using nc
  | 
| 
 | 
   814  | 
proof(induct n\<equiv> "length p" arbitrary: p rule: nat_less_induct)
  | 
| 
 | 
   815  | 
  fix n fix p :: "complex list"
  | 
| 
 | 
   816  | 
  let ?p = "poly p"
  | 
| 
 | 
   817  | 
  assume H: "\<forall>m<n. \<forall>p. \<not> constant (poly p) \<longrightarrow> m = length p \<longrightarrow> (\<exists>(z::complex). poly p z = 0)" and nc: "\<not> constant ?p" and n: "n = length p"
  | 
| 
 | 
   818  | 
  let ?ths = "\<exists>z. ?p z = 0"
  | 
| 
 | 
   819  | 
  | 
| 
 | 
   820  | 
  from nonconstant_length[OF nc] have n2: "n\<ge> 2" by (simp add: n)
  | 
| 
 | 
   821  | 
  from poly_minimum_modulus obtain c where 
  | 
| 
 | 
   822  | 
    c: "\<forall>w. cmod (?p c) \<le> cmod (?p w)" by blast
  | 
| 
 | 
   823  | 
  {assume pc: "?p c = 0" hence ?ths by blast}
 | 
| 
 | 
   824  | 
  moreover
  | 
| 
 | 
   825  | 
  {assume pc0: "?p c \<noteq> 0"
 | 
| 
 | 
   826  | 
    from poly_offset[of p c] obtain q where
  | 
| 
 | 
   827  | 
      q: "length q = length p" "\<forall>x. poly q x = ?p (c+x)" by blast
  | 
| 
 | 
   828  | 
    {assume h: "constant (poly q)"
 | 
| 
 | 
   829  | 
      from q(2) have th: "\<forall>x. poly q (x - c) = ?p x" by auto
  | 
| 
 | 
   830  | 
      {fix x y
 | 
| 
 | 
   831  | 
	from th have "?p x = poly q (x - c)" by auto 
  | 
| 
 | 
   832  | 
	also have "\<dots> = poly q (y - c)" 
  | 
| 
 | 
   833  | 
	  using h unfolding constant_def by blast
  | 
| 
 | 
   834  | 
	also have "\<dots> = ?p y" using th by auto
  | 
| 
 | 
   835  | 
	finally have "?p x = ?p y" .}
  | 
| 
 | 
   836  | 
      with nc have False unfolding constant_def by blast }
  | 
| 
 | 
   837  | 
    hence qnc: "\<not> constant (poly q)" by blast
  | 
| 
 | 
   838  | 
    from q(2) have pqc0: "?p c = poly q 0" by simp
  | 
| 
 | 
   839  | 
    from c pqc0 have cq0: "\<forall>w. cmod (poly q 0) \<le> cmod (?p w)" by simp 
  | 
| 
 | 
   840  | 
    let ?a0 = "poly q 0"
  | 
| 
 | 
   841  | 
    from pc0 pqc0 have a00: "?a0 \<noteq> 0" by simp 
  | 
| 
 | 
   842  | 
    from a00 
  | 
| 
 | 
   843  | 
    have qr: "\<forall>z. poly q z = poly (map (op * (inverse ?a0)) q) z * ?a0"
  | 
| 
 | 
   844  | 
      by (simp add: poly_cmult_map)
  | 
| 
 | 
   845  | 
    let ?r = "map (op * (inverse ?a0)) q"
  | 
| 
 | 
   846  | 
    have lgqr: "length q = length ?r" by simp 
  | 
| 
 | 
   847  | 
    {assume h: "\<And>x y. poly ?r x = poly ?r y"
 | 
| 
 | 
   848  | 
      {fix x y
 | 
| 
 | 
   849  | 
	from qr[rule_format, of x] 
  | 
| 
 | 
   850  | 
	have "poly q x = poly ?r x * ?a0" by auto
  | 
| 
 | 
   851  | 
	also have "\<dots> = poly ?r y * ?a0" using h by simp
  | 
| 
 | 
   852  | 
	also have "\<dots> = poly q y" using qr[rule_format, of y] by simp
  | 
| 
 | 
   853  | 
	finally have "poly q x = poly q y" .} 
  | 
| 
 | 
   854  | 
      with qnc have False unfolding constant_def by blast}
  | 
| 
 | 
   855  | 
    hence rnc: "\<not> constant (poly ?r)" unfolding constant_def by blast
  | 
| 
 | 
   856  | 
    from qr[rule_format, of 0] a00  have r01: "poly ?r 0 = 1" by auto
  | 
| 
 | 
   857  | 
    {fix w 
 | 
| 
 | 
   858  | 
      have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w / ?a0) < 1"
  | 
| 
 | 
   859  | 
	using qr[rule_format, of w] a00 by simp
  | 
| 
 | 
   860  | 
      also have "\<dots> \<longleftrightarrow> cmod (poly q w) < cmod ?a0"
  | 
| 
 | 
   861  | 
	using a00 unfolding cmod_divide by (simp add: field_simps)
  | 
| 
 | 
   862  | 
      finally have "cmod (poly ?r w) < 1 \<longleftrightarrow> cmod (poly q w) < cmod ?a0" .}
  | 
| 
 | 
   863  | 
    note mrmq_eq = this
  | 
| 
 | 
   864  | 
    from poly_decompose[OF rnc] obtain k a s where 
  | 
| 
 | 
   865  | 
      kas: "a\<noteq>0" "k\<noteq>0" "length s + k + 1 = length ?r" 
  | 
| 
 | 
   866  | 
      "\<forall>z. poly ?r z = poly ?r 0 + z^k* poly (a#s) z" by blast
  | 
| 
 | 
   867  | 
    {assume "k + 1 = n"
 | 
| 
 | 
   868  | 
      with kas(3) lgqr[symmetric] q(1) n[symmetric] have s0:"s=[]" by auto
  | 
| 
 | 
   869  | 
      {fix w
 | 
| 
 | 
   870  | 
	have "cmod (poly ?r w) = cmod (1 + a * w ^ k)" 
  | 
| 
 | 
   871  | 
	  using kas(4)[rule_format, of w] s0 r01 by (simp add: ring_simps)}
  | 
| 
 | 
   872  | 
      note hth = this [symmetric]
  | 
| 
 | 
   873  | 
	from reduce_poly_simple[OF kas(1,2)] 
  | 
| 
 | 
   874  | 
      have "\<exists>w. cmod (poly ?r w) < 1" unfolding hth by blast}
  | 
| 
 | 
   875  | 
    moreover
  | 
| 
 | 
   876  | 
    {assume kn: "k+1 \<noteq> n"
 | 
| 
 | 
   877  | 
      from kn kas(3) q(1) n[symmetric] have k1n: "k + 1 < n" by simp
  | 
| 
 | 
   878  | 
      have th01: "\<not> constant (poly (1#((replicate (k - 1) 0)@[a])))" 
  | 
| 
 | 
   879  | 
	unfolding constant_def poly_Nil poly_Cons poly_replicate_append
  | 
| 
 | 
   880  | 
	using kas(1) apply simp 
  | 
| 
 | 
   881  | 
	by (rule exI[where x=0], rule exI[where x=1], simp)
  | 
| 
 | 
   882  | 
      from kas(2) have th02: "k+1 = length (1#((replicate (k - 1) 0)@[a]))" 
  | 
| 
 | 
   883  | 
	by simp
  | 
| 
 | 
   884  | 
      from H[rule_format, OF k1n th01 th02]
  | 
| 
 | 
   885  | 
      obtain w where w: "1 + w^k * a = 0"
  | 
| 
 | 
   886  | 
	unfolding poly_Nil poly_Cons poly_replicate_append
  | 
| 
 | 
   887  | 
	using kas(2) by (auto simp add: power_Suc[symmetric, of _ "k - Suc 0"] 
  | 
| 
 | 
   888  | 
	  mult_assoc[of _ _ a, symmetric])
  | 
| 
 | 
   889  | 
      from poly_bound_exists[of "cmod w" s] obtain m where 
  | 
| 
 | 
   890  | 
	m: "m > 0" "\<forall>z. cmod z \<le> cmod w \<longrightarrow> cmod (poly s z) \<le> m" by blast
  | 
| 
 | 
   891  | 
      have w0: "w\<noteq>0" using kas(2) w by (auto simp add: power_0_left)
  | 
| 
 | 
   892  | 
      from w have "(1 + w ^ k * a) - 1 = 0 - 1" by simp
  | 
| 
 | 
   893  | 
      then have wm1: "w^k * a = - 1" by simp
  | 
| 
 | 
   894  | 
      have inv0: "0 < inverse (cmod w ^ (k + 1) * m)" 
  | 
| 
 | 
   895  | 
	using cmod_pos[of w] w0 m(1)
  | 
| 
 | 
   896  | 
	  by (simp add: inverse_eq_divide zero_less_mult_iff)
  | 
| 
 | 
   897  | 
      with real_down2[OF zero_less_one] obtain t where
  | 
| 
 | 
   898  | 
	t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast
  | 
| 
 | 
   899  | 
      let ?ct = "complex_of_real t"
  | 
| 
 | 
   900  | 
      let ?w = "?ct * w"
  | 
| 
 | 
   901  | 
      have "1 + ?w^k * (a + ?w * poly s ?w) = 1 + ?ct^k * (w^k * a) + ?w^k * ?w * poly s ?w" using kas(1) by (simp add: ring_simps power_mult_distrib)
  | 
| 
 | 
   902  | 
      also have "\<dots> = complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w"
  | 
| 
 | 
   903  | 
	unfolding wm1 by (simp)
  | 
| 
 | 
   904  | 
      finally have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) = cmod (complex_of_real (1 - t^k) + ?w^k * ?w * poly s ?w)" 
  | 
| 
 | 
   905  | 
	apply -
  | 
| 
 | 
   906  | 
	apply (rule cong[OF refl[of cmod]])
  | 
| 
 | 
   907  | 
	apply assumption
  | 
| 
 | 
   908  | 
	done
  | 
| 
 | 
   909  | 
      with complex_mod_triangle_ineq[of "complex_of_real (1 - t^k)" "?w^k * ?w * poly s ?w"] 
  | 
| 
 | 
   910  | 
      have th11: "cmod (1 + ?w^k * (a + ?w * poly s ?w)) \<le> \<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w)" unfolding cmod_complex_of_real by simp 
  | 
| 
 | 
   911  | 
      have ath: "\<And>x (t::real). 0\<le> x \<Longrightarrow> x < t \<Longrightarrow> t\<le>1 \<Longrightarrow> \<bar>1 - t\<bar> + x < 1" by arith
  | 
| 
 | 
   912  | 
      have "t *cmod w \<le> 1 * cmod w" apply (rule mult_mono) using t(1,2) by auto
  | 
| 
 | 
   913  | 
      then have tw: "cmod ?w \<le> cmod w" using t(1) by (simp add: cmod_mult) 
  | 
| 
 | 
   914  | 
      from t inv0 have "t* (cmod w ^ (k + 1) * m) < 1"
  | 
| 
 | 
   915  | 
	by (simp add: inverse_eq_divide field_simps)
  | 
| 
 | 
   916  | 
      with zero_less_power[OF t(1), of k] 
  | 
| 
 | 
   917  | 
      have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1" 
  | 
| 
 | 
   918  | 
	apply - apply (rule mult_strict_left_mono) by simp_all
  | 
| 
 | 
   919  | 
      have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k+1) * cmod (poly s ?w)))"  using w0 t(1)
  | 
| 
 | 
   920  | 
	by (simp add: ring_simps power_mult_distrib cmod_complex_of_real cmod_power cmod_mult)
  | 
| 
 | 
   921  | 
      then have "cmod (?w^k * ?w * poly s ?w) \<le> t^k * (t* (cmod w ^ (k + 1) * m))"
  | 
| 
 | 
   922  | 
	using t(1,2) m(2)[rule_format, OF tw] w0
  | 
| 
 | 
   923  | 
	apply (simp only: )
  | 
| 
 | 
   924  | 
	apply auto
  | 
| 
 | 
   925  | 
	apply (rule mult_mono, simp_all add: cmod_pos)+
  | 
| 
 | 
   926  | 
	apply (simp add: zero_le_mult_iff zero_le_power)
  | 
| 
 | 
   927  | 
	done
  | 
| 
 | 
   928  | 
      with th30 have th120: "cmod (?w^k * ?w * poly s ?w) < t^k" by simp 
  | 
| 
 | 
   929  | 
      from power_strict_mono[OF t(2), of k] t(1) kas(2) have th121: "t^k \<le> 1" 
  | 
| 
 | 
   930  | 
	by auto
  | 
| 
 | 
   931  | 
      from ath[OF cmod_pos[of "?w^k * ?w * poly s ?w"] th120 th121]
  | 
| 
 | 
   932  | 
      have th12: "\<bar>1 - t^k\<bar> + cmod (?w^k * ?w * poly s ?w) < 1" . 
  | 
| 
 | 
   933  | 
      from th11 th12
  | 
| 
 | 
   934  | 
      have "cmod (1 + ?w^k * (a + ?w * poly s ?w)) < 1"  by arith 
  | 
| 
 | 
   935  | 
      then have "cmod (poly ?r ?w) < 1" 
  | 
| 
 | 
   936  | 
	unfolding kas(4)[rule_format, of ?w] r01 by simp 
  | 
| 
 | 
   937  | 
      then have "\<exists>w. cmod (poly ?r w) < 1" by blast}
  | 
| 
 | 
   938  | 
    ultimately have cr0_contr: "\<exists>w. cmod (poly ?r w) < 1" by blast
  | 
| 
 | 
   939  | 
    from cr0_contr cq0 q(2)
  | 
| 
 | 
   940  | 
    have ?ths unfolding mrmq_eq not_less[symmetric] by auto}
  | 
| 
 | 
   941  | 
  ultimately show ?ths by blast
  | 
| 
 | 
   942  | 
qed
  | 
| 
 | 
   943  | 
  | 
| 
 | 
   944  | 
text {* Alternative version with a syntactic notion of constant polynomial. *}
 | 
| 
 | 
   945  | 
  | 
| 
 | 
   946  | 
lemma fundamental_theorem_of_algebra_alt:
  | 
| 
 | 
   947  | 
  assumes nc: "~(\<exists>a l. a\<noteq> 0 \<and> list_all(\<lambda>b. b = 0) l \<and> p = a#l)"
  | 
| 
 | 
   948  | 
  shows "\<exists>z. poly p z = (0::complex)"
  | 
| 
 | 
   949  | 
using nc
  | 
| 
 | 
   950  | 
proof(induct p)
  | 
| 
 | 
   951  | 
  case (Cons c cs)
  | 
| 
 | 
   952  | 
  {assume "c=0" hence ?case by auto}
 | 
| 
 | 
   953  | 
  moreover
  | 
| 
 | 
   954  | 
  {assume c0: "c\<noteq>0"
 | 
| 
 | 
   955  | 
    {assume nc: "constant (poly (c#cs))"
 | 
| 
 | 
   956  | 
      from nc[unfolded constant_def, rule_format, of 0] 
  | 
| 
 | 
   957  | 
      have "\<forall>w. w \<noteq> 0 \<longrightarrow> poly cs w = 0" by auto 
  | 
| 
 | 
   958  | 
      hence "list_all (\<lambda>c. c=0) cs"
  | 
| 
 | 
   959  | 
	proof(induct cs)
  | 
| 
 | 
   960  | 
	  case (Cons d ds)
  | 
| 
 | 
   961  | 
	  {assume "d=0" hence ?case using Cons.prems Cons.hyps by simp}
 | 
| 
 | 
   962  | 
	  moreover
  | 
| 
 | 
   963  | 
	  {assume d0: "d\<noteq>0"
 | 
| 
 | 
   964  | 
	    from poly_bound_exists[of 1 ds] obtain m where 
  | 
| 
 | 
   965  | 
	      m: "m > 0" "\<forall>z. \<forall>z. cmod z \<le> 1 \<longrightarrow> cmod (poly ds z) \<le> m" by blast
  | 
| 
 | 
   966  | 
	    have dm: "cmod d / m > 0" using d0 m(1) by (simp add: field_simps)
  | 
| 
 | 
   967  | 
	    from real_down2[OF dm zero_less_one] obtain x where 
  | 
| 
 | 
   968  | 
	      x: "x > 0" "x < cmod d / m" "x < 1" by blast
  | 
| 
 | 
   969  | 
	    let ?x = "complex_of_real x"
  | 
| 
 | 
   970  | 
	    from x have cx: "?x \<noteq> 0"  "cmod ?x \<le> 1" by simp_all
  | 
| 
 | 
   971  | 
	    from Cons.prems[rule_format, OF cx(1)]
  | 
| 
 | 
   972  | 
	    have cth: "cmod (?x*poly ds ?x) = cmod d" by (simp add: eq_diff_eq[symmetric])
  | 
| 
 | 
   973  | 
	    from m(2)[rule_format, OF cx(2)] x(1)
  | 
| 
 | 
   974  | 
	    have th0: "cmod (?x*poly ds ?x) \<le> x*m"
  | 
| 
 | 
   975  | 
	      by (simp add: cmod_mult)
  | 
| 
 | 
   976  | 
	    from x(2) m(1) have "x*m < cmod d" by (simp add: field_simps)
  | 
| 
 | 
   977  | 
	    with th0 have "cmod (?x*poly ds ?x) \<noteq> cmod d" by auto
  | 
| 
 | 
   978  | 
	    with cth  have ?case by blast}
  | 
| 
 | 
   979  | 
	  ultimately show ?case by blast 
  | 
| 
 | 
   980  | 
	qed simp}
  | 
| 
 | 
   981  | 
      then have nc: "\<not> constant (poly (c#cs))" using Cons.prems c0 
  | 
| 
 | 
   982  | 
	by blast
  | 
| 
 | 
   983  | 
      from fundamental_theorem_of_algebra[OF nc] have ?case .}
  | 
| 
 | 
   984  | 
  ultimately show ?case by blast  
  | 
| 
 | 
   985  | 
qed simp
  | 
| 
 | 
   986  | 
  | 
| 
27445
 | 
   987  | 
subsection{* Nullstellenstatz, degrees and divisibility of polynomials *}
 | 
| 
26123
 | 
   988  | 
  | 
| 
 | 
   989  | 
lemma nullstellensatz_lemma:
  | 
| 
 | 
   990  | 
  fixes p :: "complex list"
  | 
| 
 | 
   991  | 
  assumes "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0"
  | 
| 
 | 
   992  | 
  and "degree p = n" and "n \<noteq> 0"
  | 
| 
 | 
   993  | 
  shows "p divides (pexp q n)"
  | 
| 
 | 
   994  | 
using prems
  | 
| 
 | 
   995  | 
proof(induct n arbitrary: p q rule: nat_less_induct)
  | 
| 
 | 
   996  | 
  fix n::nat fix p q :: "complex list"
  | 
| 
 | 
   997  | 
  assume IH: "\<forall>m<n. \<forall>p q.
  | 
| 
 | 
   998  | 
                 (\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longrightarrow>
  | 
| 
 | 
   999  | 
                 degree p = m \<longrightarrow> m \<noteq> 0 \<longrightarrow> p divides (q %^ m)"
  | 
| 
 | 
  1000  | 
    and pq0: "\<forall>x. poly p x = 0 \<longrightarrow> poly q x = 0" 
  | 
| 
 | 
  1001  | 
    and dpn: "degree p = n" and n0: "n \<noteq> 0"
  | 
| 
 | 
  1002  | 
  let ?ths = "p divides (q %^ n)"
  | 
| 
 | 
  1003  | 
  {fix a assume a: "poly p a = 0"
 | 
| 
 | 
  1004  | 
    {assume p0: "poly p = poly []" 
 | 
| 
 | 
  1005  | 
      hence ?ths unfolding divides_def  using pq0 n0
  | 
| 
 | 
  1006  | 
	apply - apply (rule exI[where x="[]"], rule ext)
  | 
| 
 | 
  1007  | 
	by (auto simp add: poly_mult poly_exp)}
  | 
| 
 | 
  1008  | 
    moreover
  | 
| 
 | 
  1009  | 
    {assume p0: "poly p \<noteq> poly []" 
 | 
| 
 | 
  1010  | 
      and oa: "order  a p \<noteq> 0"
  | 
| 
 | 
  1011  | 
      from p0 have pne: "p \<noteq> []" by auto
  | 
| 
 | 
  1012  | 
      let ?op = "order a p"
  | 
| 
 | 
  1013  | 
      from p0 have ap: "([- a, 1] %^ ?op) divides p" 
  | 
| 
 | 
  1014  | 
	"\<not> pexp [- a, 1] (Suc ?op) divides p" using order by blast+ 
  | 
| 
 | 
  1015  | 
      note oop = order_degree[OF p0, unfolded dpn]
  | 
| 
 | 
  1016  | 
      {assume q0: "q = []"
 | 
| 
 | 
  1017  | 
	hence ?ths using n0 unfolding divides_def 
  | 
| 
 | 
  1018  | 
	  apply simp
  | 
| 
 | 
  1019  | 
	  apply (rule exI[where x="[]"], rule ext)
  | 
| 
 | 
  1020  | 
	  by (simp add: divides_def poly_exp poly_mult)}
  | 
| 
 | 
  1021  | 
      moreover
  | 
| 
 | 
  1022  | 
      {assume q0: "q\<noteq>[]"
 | 
| 
 | 
  1023  | 
	from pq0[rule_format, OF a, unfolded poly_linear_divides] q0
  | 
| 
 | 
  1024  | 
	obtain r where r: "q = pmult [- a, 1] r" by blast
  | 
| 
 | 
  1025  | 
	from ap[unfolded divides_def] obtain s where
  | 
| 
 | 
  1026  | 
	  s: "poly p = poly (pmult (pexp [- a, 1] ?op) s)" by blast
  | 
| 
 | 
  1027  | 
	have s0: "poly s \<noteq> poly []"
  | 
| 
 | 
  1028  | 
	  using s p0 by (simp add: poly_entire)
  | 
| 
 | 
  1029  | 
	hence pns0: "poly (pnormalize s) \<noteq> poly []" and sne: "s\<noteq>[]" by auto
  | 
| 
 | 
  1030  | 
	{assume ds0: "degree s = 0"
 | 
| 
 | 
  1031  | 
	  from ds0 pns0 have "\<exists>k. pnormalize s = [k]" unfolding degree_def 
  | 
| 
 | 
  1032  | 
	    by (cases "pnormalize s", auto)
  | 
| 
 | 
  1033  | 
	  then obtain k where kpn: "pnormalize s = [k]" by blast
  | 
| 
 | 
  1034  | 
	  from pns0[unfolded poly_zero] kpn have k: "k \<noteq>0" "poly s = poly [k]"
  | 
| 
 | 
  1035  | 
	    using poly_normalize[of s] by simp_all
  | 
| 
 | 
  1036  | 
	  let ?w = "pmult (pmult [1/k] (pexp [-a,1] (n - ?op))) (pexp r n)"
  | 
| 
 | 
  1037  | 
	  from k r s oop have "poly (pexp q n) = poly (pmult p ?w)"
  | 
| 
 | 
  1038  | 
	    by - (rule ext, simp add: poly_mult poly_exp poly_cmult poly_add power_add[symmetric] ring_simps power_mult_distrib[symmetric])
  | 
| 
 | 
  1039  | 
	  hence ?ths unfolding divides_def by blast}
  | 
| 
 | 
  1040  | 
	moreover
  | 
| 
 | 
  1041  | 
	{assume ds0: "degree s \<noteq> 0"
 | 
| 
 | 
  1042  | 
	  from ds0 s0 dpn degree_unique[OF s, unfolded linear_pow_mul_degree] oa
  | 
| 
 | 
  1043  | 
	    have dsn: "degree s < n" by auto 
  | 
| 
 | 
  1044  | 
	    {fix x assume h: "poly s x = 0"
 | 
| 
 | 
  1045  | 
	      {assume xa: "x = a"
 | 
| 
 | 
  1046  | 
		from h[unfolded xa poly_linear_divides] sne obtain u where
  | 
| 
 | 
  1047  | 
		  u: "s = pmult [- a, 1] u" by blast
  | 
| 
 | 
  1048  | 
		have "poly p = poly (pmult (pexp [- a, 1] (Suc ?op)) u)"
  | 
| 
 | 
  1049  | 
		  unfolding s u
  | 
| 
 | 
  1050  | 
		  apply (rule ext)
  | 
| 
 | 
  1051  | 
		  by (simp add: ring_simps power_mult_distrib[symmetric] poly_mult poly_cmult poly_add poly_exp)
  | 
| 
 | 
  1052  | 
		with ap(2)[unfolded divides_def] have False by blast}
  | 
| 
 | 
  1053  | 
	      note xa = this
  | 
| 
 | 
  1054  | 
	      from h s have "poly p x = 0" by (simp add: poly_mult)
  | 
| 
 | 
  1055  | 
	      with pq0 have "poly q x = 0" by blast
  | 
| 
 | 
  1056  | 
	      with r xa have "poly r x = 0"
  | 
| 
 | 
  1057  | 
		by (auto simp add: poly_mult poly_add poly_cmult eq_diff_eq[symmetric])}
  | 
| 
 | 
  1058  | 
	    note impth = this
  | 
| 
 | 
  1059  | 
	    from IH[rule_format, OF dsn, of s r] impth ds0
  | 
| 
 | 
  1060  | 
	    have "s divides (pexp r (degree s))" by blast
  | 
| 
 | 
  1061  | 
	    then obtain u where u: "poly (pexp r (degree s)) = poly (pmult s u)"
  | 
| 
 | 
  1062  | 
	      unfolding divides_def by blast
  | 
| 
 | 
  1063  | 
	    hence u': "\<And>x. poly s x * poly u x = poly r x ^ degree s"
  | 
| 
 | 
  1064  | 
	      by (simp add: poly_mult[symmetric] poly_exp[symmetric])
  | 
| 
 | 
  1065  | 
	    let ?w = "pmult (pmult u (pexp [-a,1] (n - ?op))) (pexp r (n - degree s))"
  | 
| 
 | 
  1066  | 
	    from u' s r oop[of a] dsn have "poly (pexp q n) = poly (pmult p ?w)"
  | 
| 
 | 
  1067  | 
	      apply - apply (rule ext)
  | 
| 
 | 
  1068  | 
	      apply (simp only:  power_mult_distrib power_add[symmetric] poly_add poly_mult poly_exp poly_cmult ring_simps)
  | 
| 
 | 
  1069  | 
	      
  | 
| 
 | 
  1070  | 
	      apply (simp add:  power_mult_distrib power_add[symmetric] poly_add poly_mult poly_exp poly_cmult mult_assoc[symmetric])
  | 
| 
 | 
  1071  | 
	      done
  | 
| 
 | 
  1072  | 
	    hence ?ths unfolding divides_def by blast}
  | 
| 
 | 
  1073  | 
      ultimately have ?ths by blast }
  | 
| 
 | 
  1074  | 
      ultimately have ?ths by blast}
  | 
| 
 | 
  1075  | 
    ultimately have ?ths using a order_root by blast}
  | 
| 
 | 
  1076  | 
  moreover
  | 
| 
 | 
  1077  | 
  {assume exa: "\<not> (\<exists>a. poly p a = 0)"
 | 
| 
 | 
  1078  | 
    from fundamental_theorem_of_algebra_alt[of p] exa obtain c cs where
  | 
| 
 | 
  1079  | 
      ccs: "c\<noteq>0" "list_all (\<lambda>c. c = 0) cs" "p = c#cs" by blast
  | 
| 
 | 
  1080  | 
    
  | 
| 
 | 
  1081  | 
    from poly_0[OF ccs(2)] ccs(3) 
  | 
| 
 | 
  1082  | 
    have pp: "\<And>x. poly p x =  c" by simp
  | 
| 
 | 
  1083  | 
    let ?w = "pmult [1/c] (pexp q n)"
  | 
| 
 | 
  1084  | 
    from pp ccs(1) 
  | 
| 
 | 
  1085  | 
    have "poly (pexp q n) = poly (pmult p ?w) "
  | 
| 
 | 
  1086  | 
      apply - apply (rule ext)
  | 
| 
 | 
  1087  | 
      unfolding poly_mult_assoc[symmetric] by (simp add: poly_mult)
  | 
| 
 | 
  1088  | 
    hence ?ths unfolding divides_def by blast}
  | 
| 
 | 
  1089  | 
  ultimately show ?ths by blast
  | 
| 
 | 
  1090  | 
qed
  | 
| 
 | 
  1091  | 
  | 
| 
 | 
  1092  | 
lemma nullstellensatz_univariate:
  | 
| 
 | 
  1093  | 
  "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> 
  | 
| 
 | 
  1094  | 
    p divides (q %^ (degree p)) \<or> (poly p = poly [] \<and> poly q = poly [])"
  | 
| 
 | 
  1095  | 
proof-
  | 
| 
 | 
  1096  | 
  {assume pe: "poly p = poly []"
 | 
| 
 | 
  1097  | 
    hence eq: "(\<forall>x. poly p x = (0::complex) \<longrightarrow> poly q x = 0) \<longleftrightarrow> poly q = poly []"
  | 
| 
 | 
  1098  | 
      apply auto
  | 
| 
 | 
  1099  | 
      by (rule ext, simp)
  | 
| 
 | 
  1100  | 
    {assume "p divides (pexp q (degree p))"
 | 
| 
 | 
  1101  | 
      then obtain r where r: "poly (pexp q (degree p)) = poly (pmult p r)" 
  | 
| 
 | 
  1102  | 
	unfolding divides_def by blast
  | 
| 
 | 
  1103  | 
      from cong[OF r refl] pe degree_unique[OF pe]
  | 
| 
 | 
  1104  | 
      have False by (simp add: poly_mult degree_def)}
  | 
| 
 | 
  1105  | 
    with eq pe have ?thesis by blast}
  | 
| 
 | 
  1106  | 
  moreover
  | 
| 
 | 
  1107  | 
  {assume pe: "poly p \<noteq> poly []"
 | 
| 
 | 
  1108  | 
    have p0: "poly [0] = poly []" by (rule ext, simp)
  | 
| 
 | 
  1109  | 
    {assume dp: "degree p = 0"
 | 
| 
 | 
  1110  | 
      then obtain k where "pnormalize p = [k]" using pe poly_normalize[of p]
  | 
| 
 | 
  1111  | 
	unfolding degree_def by (cases "pnormalize p", auto)
  | 
| 
 | 
  1112  | 
      hence k: "pnormalize p = [k]" "poly p = poly [k]" "k\<noteq>0"
  | 
| 
 | 
  1113  | 
	using pe poly_normalize[of p] by (auto simp add: p0)
  | 
| 
 | 
  1114  | 
      hence th1: "\<forall>x. poly p x \<noteq> 0" by simp
  | 
| 
 | 
  1115  | 
      from k(2,3) dp have "poly (pexp q (degree p)) = poly (pmult p [1/k]) "
  | 
| 
 | 
  1116  | 
	by - (rule ext, simp add: poly_mult poly_exp)
  | 
| 
 | 
  1117  | 
      hence th2: "p divides (pexp q (degree p))" unfolding divides_def by blast
  | 
| 
 | 
  1118  | 
      from th1 th2 pe have ?thesis by blast}
  | 
| 
 | 
  1119  | 
    moreover
  | 
| 
 | 
  1120  | 
    {assume dp: "degree p \<noteq> 0"
 | 
| 
 | 
  1121  | 
      then obtain n where n: "degree p = Suc n " by (cases "degree p", auto)
  | 
| 
 | 
  1122  | 
      {assume "p divides (pexp q (Suc n))"
 | 
| 
 | 
  1123  | 
	then obtain u where u: "poly (pexp q (Suc n)) = poly (pmult p u)"
  | 
| 
 | 
  1124  | 
	  unfolding divides_def by blast
  | 
| 
 | 
  1125  | 
	hence u' :"\<And>x. poly (pexp q (Suc n)) x = poly (pmult p u) x" by simp_all
  | 
| 
 | 
  1126  | 
	{fix x assume h: "poly p x = 0" "poly q x \<noteq> 0"
 | 
| 
 | 
  1127  | 
	  hence "poly (pexp q (Suc n)) x \<noteq> 0" by (simp only: poly_exp) simp	  
  | 
| 
 | 
  1128  | 
	  hence False using u' h(1) by (simp only: poly_mult poly_exp) simp}}
  | 
| 
 | 
  1129  | 
	with n nullstellensatz_lemma[of p q "degree p"] dp 
  | 
| 
 | 
  1130  | 
	have ?thesis by auto}
  | 
| 
 | 
  1131  | 
    ultimately have ?thesis by blast}
  | 
| 
 | 
  1132  | 
  ultimately show ?thesis by blast
  | 
| 
 | 
  1133  | 
qed
  | 
| 
 | 
  1134  | 
  | 
| 
 | 
  1135  | 
text{* Useful lemma *}
 | 
| 
 | 
  1136  | 
  | 
| 
 | 
  1137  | 
lemma (in idom_char_0) constant_degree: "constant (poly p) \<longleftrightarrow> degree p = 0" (is "?lhs = ?rhs")
  | 
| 
 | 
  1138  | 
proof
  | 
| 
 | 
  1139  | 
  assume l: ?lhs
  | 
| 
 | 
  1140  | 
  from l[unfolded constant_def, rule_format, of _ "zero"]
  | 
| 
 | 
  1141  | 
  have th: "poly p = poly [poly p 0]" apply - by (rule ext, simp)
  | 
| 
 | 
  1142  | 
  from degree_unique[OF th] show ?rhs by (simp add: degree_def)
  | 
| 
 | 
  1143  | 
next
  | 
| 
 | 
  1144  | 
  assume r: ?rhs
  | 
| 
 | 
  1145  | 
  from r have "pnormalize p = [] \<or> (\<exists>k. pnormalize p = [k])"
  | 
| 
 | 
  1146  | 
    unfolding degree_def by (cases "pnormalize p", auto)
  | 
| 
 | 
  1147  | 
  then show ?lhs unfolding constant_def poly_normalize[of p, symmetric]
  | 
| 
 | 
  1148  | 
    by (auto simp del: poly_normalize)
  | 
| 
 | 
  1149  | 
qed
  | 
| 
 | 
  1150  | 
  | 
| 
 | 
  1151  | 
(* It would be nicer to prove this without using algebraic closure...        *)
  | 
| 
 | 
  1152  | 
  | 
| 
 | 
  1153  | 
lemma divides_degree_lemma: assumes dpn: "degree (p::complex list) = n"
  | 
| 
 | 
  1154  | 
  shows "n \<le> degree (p *** q) \<or> poly (p *** q) = poly []"
  | 
| 
 | 
  1155  | 
  using dpn
  | 
| 
 | 
  1156  | 
proof(induct n arbitrary: p q)
  | 
| 
 | 
  1157  | 
  case 0 thus ?case by simp
  | 
| 
 | 
  1158  | 
next
  | 
| 
 | 
  1159  | 
  case (Suc n p q)
  | 
| 
 | 
  1160  | 
  from Suc.prems fundamental_theorem_of_algebra[of p] constant_degree[of p]
  | 
| 
 | 
  1161  | 
  obtain a where a: "poly p a = 0" by auto
  | 
| 
 | 
  1162  | 
  then obtain r where r: "p = pmult [-a, 1] r" unfolding poly_linear_divides
  | 
| 
 | 
  1163  | 
    using Suc.prems by (auto simp add: degree_def)
  | 
| 
 | 
  1164  | 
  {assume h: "poly (pmult r q) = poly []"
 | 
| 
 | 
  1165  | 
    hence "poly (pmult p q) = poly []" using r
  | 
| 
 | 
  1166  | 
      apply - apply (rule ext)  by (auto simp add: poly_entire poly_mult poly_add poly_cmult) hence ?case by blast}
  | 
| 
 | 
  1167  | 
  moreover
  | 
| 
 | 
  1168  | 
  {assume h: "poly (pmult r q) \<noteq> poly []" 
 | 
| 
 | 
  1169  | 
    hence r0: "poly r \<noteq> poly []" and q0: "poly q \<noteq> poly []"
  | 
| 
 | 
  1170  | 
      by (auto simp add: poly_entire)
  | 
| 
 | 
  1171  | 
    have eq: "poly (pmult p q) = poly (pmult [-a, 1] (pmult r q))"
  | 
| 
 | 
  1172  | 
      apply - apply (rule ext)
  | 
| 
 | 
  1173  | 
      by (simp add: r poly_mult poly_add poly_cmult ring_simps)
  | 
| 
 | 
  1174  | 
    from linear_mul_degree[OF h, of "- a"]
  | 
| 
 | 
  1175  | 
    have dqe: "degree (pmult p q) = degree (pmult r q) + 1"
  | 
| 
 | 
  1176  | 
      unfolding degree_unique[OF eq] .
  | 
| 
 | 
  1177  | 
    from linear_mul_degree[OF r0, of "- a", unfolded r[symmetric]] r Suc.prems 
  | 
| 
 | 
  1178  | 
    have dr: "degree r = n" by auto
  | 
| 
 | 
  1179  | 
    from  Suc.hyps[OF dr, of q] have "Suc n \<le> degree (pmult p q)"
  | 
| 
 | 
  1180  | 
      unfolding dqe using h by (auto simp del: poly.simps) 
  | 
| 
 | 
  1181  | 
    hence ?case by blast}
  | 
| 
 | 
  1182  | 
  ultimately show ?case by blast
  | 
| 
 | 
  1183  | 
qed
  | 
| 
 | 
  1184  | 
  | 
| 
 | 
  1185  | 
lemma divides_degree: assumes pq: "p divides (q:: complex list)"
  | 
| 
 | 
  1186  | 
  shows "degree p \<le> degree q \<or> poly q = poly []"
  | 
| 
 | 
  1187  | 
using pq  divides_degree_lemma[OF refl, of p]
  | 
| 
 | 
  1188  | 
apply (auto simp add: divides_def poly_entire)
  | 
| 
 | 
  1189  | 
apply atomize
  | 
| 
 | 
  1190  | 
apply (erule_tac x="qa" in allE, auto)
  | 
| 
 | 
  1191  | 
apply (subgoal_tac "degree q = degree (p *** qa)", simp)
  | 
| 
 | 
  1192  | 
apply (rule degree_unique, simp)
  | 
| 
 | 
  1193  | 
done
  | 
| 
 | 
  1194  | 
  | 
| 
 | 
  1195  | 
(* Arithmetic operations on multivariate polynomials.                        *)
  | 
| 
 | 
  1196  | 
  | 
| 
 | 
  1197  | 
lemma mpoly_base_conv: 
  | 
| 
 | 
  1198  | 
  "(0::complex) \<equiv> poly [] x" "c \<equiv> poly [c] x" "x \<equiv> poly [0,1] x" by simp_all
  | 
| 
 | 
  1199  | 
  | 
| 
 | 
  1200  | 
lemma mpoly_norm_conv: 
  | 
| 
 | 
  1201  | 
  "poly [0] (x::complex) \<equiv> poly [] x" "poly [poly [] y] x \<equiv> poly [] x" by simp_all
  | 
| 
 | 
  1202  | 
  | 
| 
 | 
  1203  | 
lemma mpoly_sub_conv: 
  | 
| 
 | 
  1204  | 
  "poly p (x::complex) - poly q x \<equiv> poly p x + -1 * poly q x"
  | 
| 
 | 
  1205  | 
  by (simp add: diff_def)
  | 
| 
 | 
  1206  | 
  | 
| 
 | 
  1207  | 
lemma poly_pad_rule: "poly p x = 0 ==> poly (0#p) x = (0::complex)" by simp
  | 
| 
 | 
  1208  | 
  | 
| 
 | 
  1209  | 
lemma poly_cancel_eq_conv: "p = (0::complex) \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> (q = 0) \<equiv> (a * q - b * p = 0)" apply (atomize (full)) by auto
  | 
| 
 | 
  1210  | 
  | 
| 
 | 
  1211  | 
lemma resolve_eq_raw:  "poly [] x \<equiv> 0" "poly [c] x \<equiv> (c::complex)" by auto
  | 
| 
 | 
  1212  | 
lemma  resolve_eq_then: "(P \<Longrightarrow> (Q \<equiv> Q1)) \<Longrightarrow> (\<not>P \<Longrightarrow> (Q \<equiv> Q2))
  | 
| 
 | 
  1213  | 
  \<Longrightarrow> Q \<equiv> P \<and> Q1 \<or> \<not>P\<and> Q2" apply (atomize (full)) by blast 
  | 
| 
 | 
  1214  | 
lemma expand_ex_beta_conv: "list_ex P [c] \<equiv> P c" by simp
  | 
| 
 | 
  1215  | 
  | 
| 
 | 
  1216  | 
lemma poly_divides_pad_rule: 
  | 
| 
 | 
  1217  | 
  fixes p q :: "complex list"
  | 
| 
 | 
  1218  | 
  assumes pq: "p divides q"
  | 
| 
 | 
  1219  | 
  shows "p divides ((0::complex)#q)"
  | 
| 
 | 
  1220  | 
proof-
  | 
| 
 | 
  1221  | 
  from pq obtain r where r: "poly q = poly (p *** r)" unfolding divides_def by blast
  | 
| 
 | 
  1222  | 
  hence "poly (0#q) = poly (p *** ([0,1] *** r))" 
  | 
| 
 | 
  1223  | 
    by - (rule ext, simp add: poly_mult poly_cmult poly_add)
  | 
| 
 | 
  1224  | 
  thus ?thesis unfolding divides_def by blast
  | 
| 
 | 
  1225  | 
qed
  | 
| 
 | 
  1226  | 
  | 
| 
 | 
  1227  | 
lemma poly_divides_pad_const_rule: 
  | 
| 
 | 
  1228  | 
  fixes p q :: "complex list"
  | 
| 
 | 
  1229  | 
  assumes pq: "p divides q"
  | 
| 
 | 
  1230  | 
  shows "p divides (a %* q)"
  | 
| 
 | 
  1231  | 
proof-
  | 
| 
 | 
  1232  | 
  from pq obtain r where r: "poly q = poly (p *** r)" unfolding divides_def by blast
  | 
| 
 | 
  1233  | 
  hence "poly (a %* q) = poly (p *** (a %* r))" 
  | 
| 
 | 
  1234  | 
    by - (rule ext, simp add: poly_mult poly_cmult poly_add)
  | 
| 
 | 
  1235  | 
  thus ?thesis unfolding divides_def by blast
  | 
| 
 | 
  1236  | 
qed
  | 
| 
 | 
  1237  | 
  | 
| 
 | 
  1238  | 
  | 
| 
 | 
  1239  | 
lemma poly_divides_conv0:  
  | 
| 
 | 
  1240  | 
  fixes p :: "complex list"
  | 
| 
 | 
  1241  | 
  assumes lgpq: "length q < length p" and lq:"last p \<noteq> 0"
  | 
| 
 | 
  1242  | 
  shows "p divides q \<equiv> (\<not> (list_ex (\<lambda>c. c \<noteq> 0) q))" (is "?lhs \<equiv> ?rhs")
  | 
| 
 | 
  1243  | 
proof-
  | 
| 
 | 
  1244  | 
  {assume r: ?rhs 
 | 
| 
 | 
  1245  | 
    hence eq: "poly q = poly []" unfolding poly_zero 
  | 
| 
 | 
  1246  | 
      by (simp add: list_all_iff list_ex_iff)
  | 
| 
 | 
  1247  | 
    hence "poly q = poly (p *** [])" by - (rule ext, simp add: poly_mult)
  | 
| 
 | 
  1248  | 
    hence ?lhs unfolding divides_def  by blast}
  | 
| 
 | 
  1249  | 
  moreover
  | 
| 
 | 
  1250  | 
  {assume l: ?lhs
 | 
| 
 | 
  1251  | 
    have ath: "\<And>lq lp dq::nat. lq < lp ==> lq \<noteq> 0 \<Longrightarrow> dq <= lq - 1 ==> dq < lp - 1"
  | 
| 
 | 
  1252  | 
      by arith
  | 
| 
 | 
  1253  | 
    {assume q0: "length q = 0"
 | 
| 
 | 
  1254  | 
      hence "q = []" by simp
  | 
| 
 | 
  1255  | 
      hence ?rhs by simp}
  | 
| 
 | 
  1256  | 
    moreover
  | 
| 
 | 
  1257  | 
    {assume lgq0: "length q \<noteq> 0"
 | 
| 
 | 
  1258  | 
      from pnormalize_length[of q] have dql: "degree q \<le> length q - 1" 
  | 
| 
 | 
  1259  | 
	unfolding degree_def by simp
  | 
| 
 | 
  1260  | 
      from ath[OF lgpq lgq0 dql, unfolded pnormal_degree[OF lq, symmetric]] divides_degree[OF l] have "poly q = poly []" by auto
  | 
| 
 | 
  1261  | 
      hence ?rhs unfolding poly_zero by (simp add: list_all_iff list_ex_iff)}
  | 
| 
 | 
  1262  | 
    ultimately have ?rhs by blast }
  | 
| 
 | 
  1263  | 
  ultimately show "?lhs \<equiv> ?rhs" by - (atomize (full), blast) 
  | 
| 
 | 
  1264  | 
qed
  | 
| 
 | 
  1265  | 
  | 
| 
 | 
  1266  | 
lemma poly_divides_conv1: 
  | 
| 
 | 
  1267  | 
  assumes a0: "a\<noteq> (0::complex)" and pp': "(p::complex list) divides p'"
  | 
| 
 | 
  1268  | 
  and qrp': "\<And>x. a * poly q x - poly p' x \<equiv> poly r x"
  | 
| 
 | 
  1269  | 
  shows "p divides q \<equiv> p divides (r::complex list)" (is "?lhs \<equiv> ?rhs")
  | 
| 
 | 
  1270  | 
proof-
  | 
| 
 | 
  1271  | 
  {
 | 
| 
 | 
  1272  | 
  from pp' obtain t where t: "poly p' = poly (p *** t)" 
  | 
| 
 | 
  1273  | 
    unfolding divides_def by blast
  | 
| 
 | 
  1274  | 
  {assume l: ?lhs
 | 
| 
 | 
  1275  | 
    then obtain u where u: "poly q = poly (p *** u)" unfolding divides_def by blast
  | 
| 
 | 
  1276  | 
     have "poly r = poly (p *** ((a %* u) +++ (-- t)))"
  | 
| 
 | 
  1277  | 
       using u qrp' t
  | 
| 
 | 
  1278  | 
       by - (rule ext, 
  | 
| 
 | 
  1279  | 
	 simp add: poly_add poly_mult poly_cmult poly_minus ring_simps)
  | 
| 
 | 
  1280  | 
     then have ?rhs unfolding divides_def by blast}
  | 
| 
 | 
  1281  | 
  moreover
  | 
| 
 | 
  1282  | 
  {assume r: ?rhs
 | 
| 
 | 
  1283  | 
    then obtain u where u: "poly r = poly (p *** u)" unfolding divides_def by blast
  | 
| 
 | 
  1284  | 
    from u t qrp' a0 have "poly q = poly (p *** ((1/a) %* (u +++ t)))"
  | 
| 
 | 
  1285  | 
      by - (rule ext, atomize (full), simp add: poly_mult poly_add poly_cmult field_simps)
  | 
| 
 | 
  1286  | 
    hence ?lhs  unfolding divides_def by blast}
  | 
| 
 | 
  1287  | 
  ultimately have "?lhs = ?rhs" by blast }
  | 
| 
 | 
  1288  | 
thus "?lhs \<equiv> ?rhs"  by - (atomize(full), blast) 
  | 
| 
 | 
  1289  | 
qed
  | 
| 
 | 
  1290  | 
  | 
| 
 | 
  1291  | 
lemma basic_cqe_conv1:
  | 
| 
 | 
  1292  | 
  "(\<exists>x. poly p x = 0 \<and> poly [] x \<noteq> 0) \<equiv> False"
  | 
| 
 | 
  1293  | 
  "(\<exists>x. poly [] x \<noteq> 0) \<equiv> False"
  | 
| 
 | 
  1294  | 
  "(\<exists>x. poly [c] x \<noteq> 0) \<equiv> c\<noteq>0"
  | 
| 
 | 
  1295  | 
  "(\<exists>x. poly [] x = 0) \<equiv> True"
  | 
| 
 | 
  1296  | 
  "(\<exists>x. poly [c] x = 0) \<equiv> c = 0" by simp_all
  | 
| 
 | 
  1297  | 
  | 
| 
 | 
  1298  | 
lemma basic_cqe_conv2: 
  | 
| 
 | 
  1299  | 
  assumes l:"last (a#b#p) \<noteq> 0" 
  | 
| 
 | 
  1300  | 
  shows "(\<exists>x. poly (a#b#p) x = (0::complex)) \<equiv> True"
  | 
| 
 | 
  1301  | 
proof-
  | 
| 
 | 
  1302  | 
  {fix h t
 | 
| 
 | 
  1303  | 
    assume h: "h\<noteq>0" "list_all (\<lambda>c. c=(0::complex)) t"  "a#b#p = h#t"
  | 
| 
 | 
  1304  | 
    hence "list_all (\<lambda>c. c= 0) (b#p)" by simp
  | 
| 
 | 
  1305  | 
    moreover have "last (b#p) \<in> set (b#p)" by simp
  | 
| 
 | 
  1306  | 
    ultimately have "last (b#p) = 0" by (simp add: list_all_iff)
  | 
| 
 | 
  1307  | 
    with l have False by simp}
  | 
| 
 | 
  1308  | 
  hence th: "\<not> (\<exists> h t. h\<noteq>0 \<and> list_all (\<lambda>c. c=0) t \<and> a#b#p = h#t)"
  | 
| 
 | 
  1309  | 
    by blast
  | 
| 
 | 
  1310  | 
  from fundamental_theorem_of_algebra_alt[OF th] 
  | 
| 
 | 
  1311  | 
  show "(\<exists>x. poly (a#b#p) x = (0::complex)) \<equiv> True" by auto
  | 
| 
 | 
  1312  | 
qed
  | 
| 
 | 
  1313  | 
  | 
| 
 | 
  1314  | 
lemma  basic_cqe_conv_2b: "(\<exists>x. poly p x \<noteq> (0::complex)) \<equiv> (list_ex (\<lambda>c. c \<noteq> 0) p)"
  | 
| 
 | 
  1315  | 
proof-
  | 
| 
 | 
  1316  | 
  have "\<not> (list_ex (\<lambda>c. c \<noteq> 0) p) \<longleftrightarrow> poly p = poly []" 
  | 
| 
 | 
  1317  | 
    by (simp add: poly_zero list_all_iff list_ex_iff)
  | 
| 
 | 
  1318  | 
  also have "\<dots> \<longleftrightarrow> (\<not> (\<exists>x. poly p x \<noteq> 0))" by (auto intro: ext)
  | 
| 
 | 
  1319  | 
  finally show "(\<exists>x. poly p x \<noteq> (0::complex)) \<equiv> (list_ex (\<lambda>c. c \<noteq> 0) p)"
  | 
| 
 | 
  1320  | 
    by - (atomize (full), blast)
  | 
| 
 | 
  1321  | 
qed
  | 
| 
 | 
  1322  | 
  | 
| 
 | 
  1323  | 
lemma basic_cqe_conv3:
  | 
| 
 | 
  1324  | 
  fixes p q :: "complex list"
  | 
| 
 | 
  1325  | 
  assumes l: "last (a#p) \<noteq> 0" 
  | 
| 
 | 
  1326  | 
  shows "(\<exists>x. poly (a#p) x =0 \<and> poly q x \<noteq> 0) \<equiv> \<not> ((a#p) divides (q %^ (length p)))"
  | 
| 
 | 
  1327  | 
proof-
  | 
| 
 | 
  1328  | 
  note np = pnormalize_eq[OF l]
  | 
| 
 | 
  1329  | 
  {assume "poly (a#p) = poly []" hence False using l
 | 
| 
 | 
  1330  | 
      unfolding poly_zero apply (auto simp add: list_all_iff del: last.simps)
  | 
| 
 | 
  1331  | 
      apply (cases p, simp_all) done}
  | 
| 
 | 
  1332  | 
  then have p0: "poly (a#p) \<noteq> poly []"  by blast
  | 
| 
 | 
  1333  | 
  from np have dp:"degree (a#p) = length p" by (simp add: degree_def)
  | 
| 
 | 
  1334  | 
  from nullstellensatz_univariate[of "a#p" q] p0 dp
  | 
| 
 | 
  1335  | 
  show "(\<exists>x. poly (a#p) x =0 \<and> poly q x \<noteq> 0) \<equiv> \<not> ((a#p) divides (q %^ (length p)))"
  | 
| 
 | 
  1336  | 
    by - (atomize (full), auto)
  | 
| 
 | 
  1337  | 
qed
  | 
| 
 | 
  1338  | 
  | 
| 
 | 
  1339  | 
lemma basic_cqe_conv4:
  | 
| 
 | 
  1340  | 
  fixes p q :: "complex list"
  | 
| 
 | 
  1341  | 
  assumes h: "\<And>x. poly (q %^ n) x \<equiv> poly r x"
  | 
| 
 | 
  1342  | 
  shows "p divides (q %^ n) \<equiv> p divides r"
  | 
| 
 | 
  1343  | 
proof-
  | 
| 
 | 
  1344  | 
  from h have "poly (q %^ n) = poly r" by (auto intro: ext)  
  | 
| 
 | 
  1345  | 
  thus "p divides (q %^ n) \<equiv> p divides r" unfolding divides_def by simp
  | 
| 
 | 
  1346  | 
qed
  | 
| 
 | 
  1347  | 
  | 
| 
 | 
  1348  | 
lemma pmult_Cons_Cons: "((a::complex)#b#p) *** q = (a %*q) +++ (0#((b#p) *** q))"
  | 
| 
 | 
  1349  | 
  by simp
  | 
| 
 | 
  1350  | 
  | 
| 
 | 
  1351  | 
lemma elim_neg_conv: "- z \<equiv> (-1) * (z::complex)" by simp
  | 
| 
 | 
  1352  | 
lemma eqT_intr: "PROP P \<Longrightarrow> (True \<Longrightarrow> PROP P )" "PROP P \<Longrightarrow> True" by blast+
  | 
| 
 | 
  1353  | 
lemma negate_negate_rule: "Trueprop P \<equiv> \<not> P \<equiv> False" by (atomize (full), auto)
  | 
| 
 | 
  1354  | 
lemma last_simps: "last [x] = x" "last (x#y#ys) = last (y#ys)" by simp_all
  | 
| 
 | 
  1355  | 
lemma length_simps: "length [] = 0" "length (x#y#xs) = length xs + 2" "length [x] = 1" by simp_all
  | 
| 
 | 
  1356  | 
  | 
| 
 | 
  1357  | 
lemma complex_entire: "(z::complex) \<noteq> 0 \<and> w \<noteq> 0 \<equiv> z*w \<noteq> 0" by simp
  | 
| 
 | 
  1358  | 
lemma resolve_eq_ne: "(P \<equiv> True) \<equiv> (\<not>P \<equiv> False)" "(P \<equiv> False) \<equiv> (\<not>P \<equiv> True)" 
  | 
| 
 | 
  1359  | 
  by (atomize (full)) simp_all
  | 
| 
 | 
  1360  | 
lemma cqe_conv1: "poly [] x = 0 \<longleftrightarrow> True"  by simp
  | 
| 
 | 
  1361  | 
lemma cqe_conv2: "(p \<Longrightarrow> (q \<equiv> r)) \<equiv> ((p \<and> q) \<equiv> (p \<and> r))"  (is "?l \<equiv> ?r")
  | 
| 
 | 
  1362  | 
proof
  | 
| 
 | 
  1363  | 
  assume "p \<Longrightarrow> q \<equiv> r" thus "p \<and> q \<equiv> p \<and> r" apply - apply (atomize (full)) by blast
  | 
| 
 | 
  1364  | 
next
  | 
| 
 | 
  1365  | 
  assume "p \<and> q \<equiv> p \<and> r" "p"
  | 
| 
 | 
  1366  | 
  thus "q \<equiv> r" apply - apply (atomize (full)) apply blast done
  | 
| 
 | 
  1367  | 
qed
  | 
| 
 | 
  1368  | 
lemma poly_const_conv: "poly [c] (x::complex) = y \<longleftrightarrow> c = y" by simp
  | 
| 
 | 
  1369  | 
  | 
| 
 | 
  1370  | 
end  |