| author | hoelzl | 
| Thu, 08 Oct 2015 11:19:43 +0200 | |
| changeset 61362 | 48d1b147f094 | 
| parent 61070 | b72a990adfe2 | 
| child 61426 | d53db136e8fd | 
| permissions | -rw-r--r-- | 
| 36648 | 1 | (* Title: HOL/Library/Convex.thy | 
| 2 | Author: Armin Heller, TU Muenchen | |
| 3 | Author: Johannes Hoelzl, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 60423 | 6 | section \<open>Convexity in real vector spaces\<close> | 
| 36648 | 7 | |
| 36623 | 8 | theory Convex | 
| 9 | imports Product_Vector | |
| 10 | begin | |
| 11 | ||
| 60423 | 12 | subsection \<open>Convexity\<close> | 
| 36623 | 13 | |
| 49609 | 14 | definition convex :: "'a::real_vector set \<Rightarrow> bool" | 
| 15 | where "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 36623 | 16 | |
| 53676 | 17 | lemma convexI: | 
| 18 | assumes "\<And>x y u v. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 19 | shows "convex s" | |
| 20 | using assms unfolding convex_def by fast | |
| 21 | ||
| 22 | lemma convexD: | |
| 23 | assumes "convex s" and "x \<in> s" and "y \<in> s" and "0 \<le> u" and "0 \<le> v" and "u + v = 1" | |
| 24 | shows "u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 25 | using assms unfolding convex_def by fast | |
| 26 | ||
| 36623 | 27 | lemma convex_alt: | 
| 28 | "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)" | |
| 29 | (is "_ \<longleftrightarrow> ?alt") | |
| 30 | proof | |
| 31 | assume alt[rule_format]: ?alt | |
| 56796 | 32 |   {
 | 
| 33 | fix x y and u v :: real | |
| 34 | assume mem: "x \<in> s" "y \<in> s" | |
| 49609 | 35 | assume "0 \<le> u" "0 \<le> v" | 
| 56796 | 36 | moreover | 
| 37 | assume "u + v = 1" | |
| 38 | then have "u = 1 - v" by auto | |
| 39 | ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 40 | using alt[OF mem] by auto | |
| 41 | } | |
| 42 | then show "convex s" | |
| 43 | unfolding convex_def by auto | |
| 36623 | 44 | qed (auto simp: convex_def) | 
| 45 | ||
| 46 | lemma mem_convex: | |
| 47 | assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" | |
| 48 | shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s" | |
| 49 | using assms unfolding convex_alt by auto | |
| 50 | ||
| 60303 | 51 | lemma convex_empty[intro,simp]: "convex {}"
 | 
| 36623 | 52 | unfolding convex_def by simp | 
| 53 | ||
| 60303 | 54 | lemma convex_singleton[intro,simp]: "convex {a}"
 | 
| 36623 | 55 | unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) | 
| 56 | ||
| 60303 | 57 | lemma convex_UNIV[intro,simp]: "convex UNIV" | 
| 36623 | 58 | unfolding convex_def by auto | 
| 59 | ||
| 60423 | 60 | lemma convex_Inter: "(\<forall>s\<in>f. convex s) \<Longrightarrow> convex(\<Inter>f)" | 
| 36623 | 61 | unfolding convex_def by auto | 
| 62 | ||
| 63 | lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" | |
| 64 | unfolding convex_def by auto | |
| 65 | ||
| 53596 | 66 | lemma convex_INT: "\<forall>i\<in>A. convex (B i) \<Longrightarrow> convex (\<Inter>i\<in>A. B i)" | 
| 67 | unfolding convex_def by auto | |
| 68 | ||
| 69 | lemma convex_Times: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<times> t)" | |
| 70 | unfolding convex_def by auto | |
| 71 | ||
| 36623 | 72 | lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
 | 
| 73 | unfolding convex_def | |
| 44142 | 74 | by (auto simp: inner_add intro!: convex_bound_le) | 
| 36623 | 75 | |
| 76 | lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
 | |
| 77 | proof - | |
| 56796 | 78 |   have *: "{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}"
 | 
| 79 | by auto | |
| 80 | show ?thesis | |
| 81 | unfolding * using convex_halfspace_le[of "-a" "-b"] by auto | |
| 36623 | 82 | qed | 
| 83 | ||
| 84 | lemma convex_hyperplane: "convex {x. inner a x = b}"
 | |
| 49609 | 85 | proof - | 
| 56796 | 86 |   have *: "{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}"
 | 
| 87 | by auto | |
| 36623 | 88 | show ?thesis using convex_halfspace_le convex_halfspace_ge | 
| 89 | by (auto intro!: convex_Int simp: *) | |
| 90 | qed | |
| 91 | ||
| 92 | lemma convex_halfspace_lt: "convex {x. inner a x < b}"
 | |
| 93 | unfolding convex_def | |
| 94 | by (auto simp: convex_bound_lt inner_add) | |
| 95 | ||
| 96 | lemma convex_halfspace_gt: "convex {x. inner a x > b}"
 | |
| 97 | using convex_halfspace_lt[of "-a" "-b"] by auto | |
| 98 | ||
| 99 | lemma convex_real_interval: | |
| 100 | fixes a b :: "real" | |
| 101 |   shows "convex {a..}" and "convex {..b}"
 | |
| 49609 | 102 |     and "convex {a<..}" and "convex {..<b}"
 | 
| 103 |     and "convex {a..b}" and "convex {a<..b}"
 | |
| 104 |     and "convex {a..<b}" and "convex {a<..<b}"
 | |
| 36623 | 105 | proof - | 
| 60423 | 106 |   have "{a..} = {x. a \<le> inner 1 x}"
 | 
| 107 | by auto | |
| 108 |   then show 1: "convex {a..}"
 | |
| 109 | by (simp only: convex_halfspace_ge) | |
| 110 |   have "{..b} = {x. inner 1 x \<le> b}"
 | |
| 111 | by auto | |
| 112 |   then show 2: "convex {..b}"
 | |
| 113 | by (simp only: convex_halfspace_le) | |
| 114 |   have "{a<..} = {x. a < inner 1 x}"
 | |
| 115 | by auto | |
| 116 |   then show 3: "convex {a<..}"
 | |
| 117 | by (simp only: convex_halfspace_gt) | |
| 118 |   have "{..<b} = {x. inner 1 x < b}"
 | |
| 119 | by auto | |
| 120 |   then show 4: "convex {..<b}"
 | |
| 121 | by (simp only: convex_halfspace_lt) | |
| 122 |   have "{a..b} = {a..} \<inter> {..b}"
 | |
| 123 | by auto | |
| 124 |   then show "convex {a..b}"
 | |
| 125 | by (simp only: convex_Int 1 2) | |
| 126 |   have "{a<..b} = {a<..} \<inter> {..b}"
 | |
| 127 | by auto | |
| 128 |   then show "convex {a<..b}"
 | |
| 129 | by (simp only: convex_Int 3 2) | |
| 130 |   have "{a..<b} = {a..} \<inter> {..<b}"
 | |
| 131 | by auto | |
| 132 |   then show "convex {a..<b}"
 | |
| 133 | by (simp only: convex_Int 1 4) | |
| 134 |   have "{a<..<b} = {a<..} \<inter> {..<b}"
 | |
| 135 | by auto | |
| 136 |   then show "convex {a<..<b}"
 | |
| 137 | by (simp only: convex_Int 3 4) | |
| 36623 | 138 | qed | 
| 139 | ||
| 61070 | 140 | lemma convex_Reals: "convex \<real>" | 
| 59862 | 141 | by (simp add: convex_def scaleR_conv_of_real) | 
| 60423 | 142 | |
| 143 | ||
| 144 | subsection \<open>Explicit expressions for convexity in terms of arbitrary sums\<close> | |
| 36623 | 145 | |
| 146 | lemma convex_setsum: | |
| 147 | fixes C :: "'a::real_vector set" | |
| 56796 | 148 | assumes "finite s" | 
| 149 | and "convex C" | |
| 150 | and "(\<Sum> i \<in> s. a i) = 1" | |
| 151 | assumes "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 152 | and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 36623 | 153 | shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" | 
| 55909 | 154 | using assms(1,3,4,5) | 
| 155 | proof (induct arbitrary: a set: finite) | |
| 49609 | 156 | case empty | 
| 55909 | 157 | then show ?case by simp | 
| 36623 | 158 | next | 
| 55909 | 159 | case (insert i s) note IH = this(3) | 
| 56796 | 160 | have "a i + setsum a s = 1" | 
| 161 | and "0 \<le> a i" | |
| 162 | and "\<forall>j\<in>s. 0 \<le> a j" | |
| 163 | and "y i \<in> C" | |
| 164 | and "\<forall>j\<in>s. y j \<in> C" | |
| 55909 | 165 | using insert.hyps(1,2) insert.prems by simp_all | 
| 56796 | 166 | then have "0 \<le> setsum a s" | 
| 167 | by (simp add: setsum_nonneg) | |
| 55909 | 168 | have "a i *\<^sub>R y i + (\<Sum>j\<in>s. a j *\<^sub>R y j) \<in> C" | 
| 169 | proof (cases) | |
| 170 | assume z: "setsum a s = 0" | |
| 60423 | 171 | with \<open>a i + setsum a s = 1\<close> have "a i = 1" | 
| 56796 | 172 | by simp | 
| 60423 | 173 | from setsum_nonneg_0 [OF \<open>finite s\<close> _ z] \<open>\<forall>j\<in>s. 0 \<le> a j\<close> have "\<forall>j\<in>s. a j = 0" | 
| 56796 | 174 | by simp | 
| 60423 | 175 | show ?thesis using \<open>a i = 1\<close> and \<open>\<forall>j\<in>s. a j = 0\<close> and \<open>y i \<in> C\<close> | 
| 56796 | 176 | by simp | 
| 55909 | 177 | next | 
| 178 | assume nz: "setsum a s \<noteq> 0" | |
| 60423 | 179 | with \<open>0 \<le> setsum a s\<close> have "0 < setsum a s" | 
| 56796 | 180 | by simp | 
| 55909 | 181 | then have "(\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C" | 
| 60423 | 182 | using \<open>\<forall>j\<in>s. 0 \<le> a j\<close> and \<open>\<forall>j\<in>s. y j \<in> C\<close> | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 183 | by (simp add: IH setsum_divide_distrib [symmetric]) | 
| 60423 | 184 | from \<open>convex C\<close> and \<open>y i \<in> C\<close> and this and \<open>0 \<le> a i\<close> | 
| 185 | and \<open>0 \<le> setsum a s\<close> and \<open>a i + setsum a s = 1\<close> | |
| 55909 | 186 | have "a i *\<^sub>R y i + setsum a s *\<^sub>R (\<Sum>j\<in>s. (a j / setsum a s) *\<^sub>R y j) \<in> C" | 
| 187 | by (rule convexD) | |
| 56796 | 188 | then show ?thesis | 
| 189 | by (simp add: scaleR_setsum_right nz) | |
| 55909 | 190 | qed | 
| 60423 | 191 | then show ?case using \<open>finite s\<close> and \<open>i \<notin> s\<close> | 
| 56796 | 192 | by simp | 
| 36623 | 193 | qed | 
| 194 | ||
| 195 | lemma convex: | |
| 49609 | 196 |   "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | 
| 197 |       \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
 | |
| 36623 | 198 | proof safe | 
| 49609 | 199 | fix k :: nat | 
| 200 | fix u :: "nat \<Rightarrow> real" | |
| 201 | fix x | |
| 36623 | 202 | assume "convex s" | 
| 203 | "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s" | |
| 204 |     "setsum u {1..k} = 1"
 | |
| 60423 | 205 |   with convex_setsum[of "{1 .. k}" s] show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s"
 | 
| 56796 | 206 | by auto | 
| 36623 | 207 | next | 
| 60423 | 208 |   assume *: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
 | 
| 36623 | 209 | \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s" | 
| 56796 | 210 |   {
 | 
| 211 | fix \<mu> :: real | |
| 49609 | 212 | fix x y :: 'a | 
| 213 | assume xy: "x \<in> s" "y \<in> s" | |
| 214 | assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 215 | let ?u = "\<lambda>i. if (i :: nat) = 1 then \<mu> else 1 - \<mu>" | |
| 216 | let ?x = "\<lambda>i. if (i :: nat) = 1 then x else y" | |
| 56796 | 217 |     have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}"
 | 
| 218 | by auto | |
| 219 |     then have card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1"
 | |
| 220 | by simp | |
| 49609 | 221 |     then have "setsum ?u {1 .. 2} = 1"
 | 
| 57418 | 222 |       using setsum.If_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
 | 
| 36623 | 223 | by auto | 
| 60423 | 224 |     with *[rule_format, of "2" ?u ?x] have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
 | 
| 36623 | 225 | using mu xy by auto | 
| 226 |     have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
 | |
| 227 | using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto | |
| 228 | from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this] | |
| 56796 | 229 |     have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y"
 | 
| 230 | by auto | |
| 231 | then have "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" | |
| 60423 | 232 | using s by (auto simp: add.commute) | 
| 49609 | 233 | } | 
| 56796 | 234 | then show "convex s" | 
| 235 | unfolding convex_alt by auto | |
| 36623 | 236 | qed | 
| 237 | ||
| 238 | ||
| 239 | lemma convex_explicit: | |
| 240 | fixes s :: "'a::real_vector set" | |
| 241 | shows "convex s \<longleftrightarrow> | |
| 49609 | 242 | (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)" | 
| 36623 | 243 | proof safe | 
| 49609 | 244 | fix t | 
| 245 | fix u :: "'a \<Rightarrow> real" | |
| 56796 | 246 | assume "convex s" | 
| 247 | and "finite t" | |
| 248 | and "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" | |
| 49609 | 249 | then show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 36623 | 250 | using convex_setsum[of t s u "\<lambda> x. x"] by auto | 
| 251 | next | |
| 60423 | 252 | assume *: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> | 
| 56796 | 253 | setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 36623 | 254 | show "convex s" | 
| 255 | unfolding convex_alt | |
| 256 | proof safe | |
| 49609 | 257 | fix x y | 
| 258 | fix \<mu> :: real | |
| 60423 | 259 | assume **: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 260 | show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | |
| 261 | proof (cases "x = y") | |
| 262 | case False | |
| 263 | then show ?thesis | |
| 264 |         using *[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"] **
 | |
| 265 | by auto | |
| 266 | next | |
| 267 | case True | |
| 268 | then show ?thesis | |
| 269 |         using *[rule_format, of "{x, y}" "\<lambda> z. 1"] **
 | |
| 270 | by (auto simp: field_simps real_vector.scale_left_diff_distrib) | |
| 271 | qed | |
| 36623 | 272 | qed | 
| 273 | qed | |
| 274 | ||
| 49609 | 275 | lemma convex_finite: | 
| 276 | assumes "finite s" | |
| 56796 | 277 | shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)" | 
| 36623 | 278 | unfolding convex_explicit | 
| 49609 | 279 | proof safe | 
| 280 | fix t u | |
| 281 | assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" | |
| 36623 | 282 | and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)" | 
| 56796 | 283 | have *: "s \<inter> t = t" | 
| 284 | using as(2) by auto | |
| 49609 | 285 | have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" | 
| 286 | by simp | |
| 36623 | 287 | show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | 
| 288 | using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as * | |
| 57418 | 289 | by (auto simp: assms setsum.If_cases if_distrib if_distrib_arg) | 
| 36623 | 290 | qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) | 
| 291 | ||
| 56796 | 292 | |
| 60423 | 293 | subsection \<open>Functions that are convex on a set\<close> | 
| 55909 | 294 | |
| 49609 | 295 | definition convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool"
 | 
| 296 | where "convex_on s f \<longleftrightarrow> | |
| 297 | (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" | |
| 36623 | 298 | |
| 299 | lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f" | |
| 300 | unfolding convex_on_def by auto | |
| 301 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 302 | lemma convex_on_add [intro]: | 
| 56796 | 303 | assumes "convex_on s f" | 
| 304 | and "convex_on s g" | |
| 36623 | 305 | shows "convex_on s (\<lambda>x. f x + g x)" | 
| 49609 | 306 | proof - | 
| 56796 | 307 |   {
 | 
| 308 | fix x y | |
| 309 | assume "x \<in> s" "y \<in> s" | |
| 49609 | 310 | moreover | 
| 311 | fix u v :: real | |
| 312 | assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 313 | ultimately | |
| 314 | have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" | |
| 60423 | 315 | using assms unfolding convex_on_def by (auto simp: add_mono) | 
| 49609 | 316 | then have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" | 
| 317 | by (simp add: field_simps) | |
| 318 | } | |
| 56796 | 319 | then show ?thesis | 
| 320 | unfolding convex_on_def by auto | |
| 36623 | 321 | qed | 
| 322 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 323 | lemma convex_on_cmul [intro]: | 
| 56796 | 324 | fixes c :: real | 
| 325 | assumes "0 \<le> c" | |
| 326 | and "convex_on s f" | |
| 36623 | 327 | shows "convex_on s (\<lambda>x. c * f x)" | 
| 56796 | 328 | proof - | 
| 60423 | 329 | have *: "\<And>u c fx v fy :: real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" | 
| 49609 | 330 | by (simp add: field_simps) | 
| 331 | show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] | |
| 332 | unfolding convex_on_def and * by auto | |
| 36623 | 333 | qed | 
| 334 | ||
| 335 | lemma convex_lower: | |
| 56796 | 336 | assumes "convex_on s f" | 
| 337 | and "x \<in> s" | |
| 338 | and "y \<in> s" | |
| 339 | and "0 \<le> u" | |
| 340 | and "0 \<le> v" | |
| 341 | and "u + v = 1" | |
| 36623 | 342 | shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)" | 
| 56796 | 343 | proof - | 
| 36623 | 344 | let ?m = "max (f x) (f y)" | 
| 345 | have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" | |
| 60423 | 346 | using assms(4,5) by (auto simp: mult_left_mono add_mono) | 
| 56796 | 347 | also have "\<dots> = max (f x) (f y)" | 
| 60423 | 348 | using assms(6) by (simp add: distrib_right [symmetric]) | 
| 36623 | 349 | finally show ?thesis | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44282diff
changeset | 350 | using assms unfolding convex_on_def by fastforce | 
| 36623 | 351 | qed | 
| 352 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 353 | lemma convex_on_dist [intro]: | 
| 36623 | 354 | fixes s :: "'a::real_normed_vector set" | 
| 355 | shows "convex_on s (\<lambda>x. dist a x)" | |
| 60423 | 356 | proof (auto simp: convex_on_def dist_norm) | 
| 49609 | 357 | fix x y | 
| 56796 | 358 | assume "x \<in> s" "y \<in> s" | 
| 49609 | 359 | fix u v :: real | 
| 56796 | 360 | assume "0 \<le> u" | 
| 361 | assume "0 \<le> v" | |
| 362 | assume "u + v = 1" | |
| 49609 | 363 | have "a = u *\<^sub>R a + v *\<^sub>R a" | 
| 60423 | 364 | unfolding scaleR_left_distrib[symmetric] and \<open>u + v = 1\<close> by simp | 
| 49609 | 365 | then have *: "a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" | 
| 60423 | 366 | by (auto simp: algebra_simps) | 
| 36623 | 367 | show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)" | 
| 368 | unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] | |
| 60423 | 369 | using \<open>0 \<le> u\<close> \<open>0 \<le> v\<close> by auto | 
| 36623 | 370 | qed | 
| 371 | ||
| 49609 | 372 | |
| 60423 | 373 | subsection \<open>Arithmetic operations on sets preserve convexity\<close> | 
| 49609 | 374 | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 375 | lemma convex_linear_image: | 
| 56796 | 376 | assumes "linear f" | 
| 377 | and "convex s" | |
| 378 | shows "convex (f ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 379 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 380 | interpret f: linear f by fact | 
| 60423 | 381 | from \<open>convex s\<close> show "convex (f ` s)" | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 382 | by (simp add: convex_def f.scaleR [symmetric] f.add [symmetric]) | 
| 36623 | 383 | qed | 
| 384 | ||
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 385 | lemma convex_linear_vimage: | 
| 56796 | 386 | assumes "linear f" | 
| 387 | and "convex s" | |
| 388 | shows "convex (f -` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 389 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 390 | interpret f: linear f by fact | 
| 60423 | 391 | from \<open>convex s\<close> show "convex (f -` s)" | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 392 | by (simp add: convex_def f.add f.scaleR) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 393 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 394 | |
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 395 | lemma convex_scaling: | 
| 56796 | 396 | assumes "convex s" | 
| 397 | shows "convex ((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 398 | proof - | 
| 56796 | 399 | have "linear (\<lambda>x. c *\<^sub>R x)" | 
| 400 | by (simp add: linearI scaleR_add_right) | |
| 401 | then show ?thesis | |
| 60423 | 402 | using \<open>convex s\<close> by (rule convex_linear_image) | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 403 | qed | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 404 | |
| 60178 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 405 | lemma convex_scaled: | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 406 | assumes "convex s" | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 407 | shows "convex ((\<lambda>x. x *\<^sub>R c) ` s)" | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 408 | proof - | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 409 | have "linear (\<lambda>x. x *\<^sub>R c)" | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 410 | by (simp add: linearI scaleR_add_left) | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 411 | then show ?thesis | 
| 60423 | 412 | using \<open>convex s\<close> by (rule convex_linear_image) | 
| 60178 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 413 | qed | 
| 
f620c70f9e9b
generalized differentiable_bound; some further variations of differentiable_bound
 immler parents: 
59862diff
changeset | 414 | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 415 | lemma convex_negations: | 
| 56796 | 416 | assumes "convex s" | 
| 417 | shows "convex ((\<lambda>x. - x) ` s)" | |
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 418 | proof - | 
| 56796 | 419 | have "linear (\<lambda>x. - x)" | 
| 420 | by (simp add: linearI) | |
| 421 | then show ?thesis | |
| 60423 | 422 | using \<open>convex s\<close> by (rule convex_linear_image) | 
| 36623 | 423 | qed | 
| 424 | ||
| 425 | lemma convex_sums: | |
| 56796 | 426 | assumes "convex s" | 
| 427 | and "convex t" | |
| 36623 | 428 |   shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 429 | proof - | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 430 | have "linear (\<lambda>(x, y). x + y)" | 
| 60423 | 431 | by (auto intro: linearI simp: scaleR_add_right) | 
| 53620 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 432 | with assms have "convex ((\<lambda>(x, y). x + y) ` (s \<times> t))" | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 433 | by (intro convex_linear_image convex_Times) | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 434 |   also have "((\<lambda>(x, y). x + y) ` (s \<times> t)) = {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 435 | by auto | 
| 
3c7f5e7926dc
generalized and simplified proofs of several theorems about convex sets
 huffman parents: 
53596diff
changeset | 436 | finally show ?thesis . | 
| 36623 | 437 | qed | 
| 438 | ||
| 439 | lemma convex_differences: | |
| 440 | assumes "convex s" "convex t" | |
| 441 |   shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 442 | proof - | |
| 443 |   have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
 | |
| 60423 | 444 | by (auto simp: diff_conv_add_uminus simp del: add_uminus_conv_diff) | 
| 49609 | 445 | then show ?thesis | 
| 446 | using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto | |
| 36623 | 447 | qed | 
| 448 | ||
| 49609 | 449 | lemma convex_translation: | 
| 450 | assumes "convex s" | |
| 451 | shows "convex ((\<lambda>x. a + x) ` s)" | |
| 452 | proof - | |
| 56796 | 453 |   have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s"
 | 
| 454 | by auto | |
| 49609 | 455 | then show ?thesis | 
| 456 | using convex_sums[OF convex_singleton[of a] assms] by auto | |
| 457 | qed | |
| 36623 | 458 | |
| 49609 | 459 | lemma convex_affinity: | 
| 460 | assumes "convex s" | |
| 461 | shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 462 | proof - | |
| 56796 | 463 | have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" | 
| 464 | by auto | |
| 49609 | 465 | then show ?thesis | 
| 466 | using convex_translation[OF convex_scaling[OF assms], of a c] by auto | |
| 467 | qed | |
| 36623 | 468 | |
| 49609 | 469 | lemma pos_is_convex: "convex {0 :: real <..}"
 | 
| 470 | unfolding convex_alt | |
| 36623 | 471 | proof safe | 
| 472 | fix y x \<mu> :: real | |
| 60423 | 473 | assume *: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1" | 
| 56796 | 474 |   {
 | 
| 475 | assume "\<mu> = 0" | |
| 49609 | 476 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp | 
| 60423 | 477 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using * by simp | 
| 56796 | 478 | } | 
| 36623 | 479 | moreover | 
| 56796 | 480 |   {
 | 
| 481 | assume "\<mu> = 1" | |
| 60423 | 482 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using * by simp | 
| 56796 | 483 | } | 
| 36623 | 484 | moreover | 
| 56796 | 485 |   {
 | 
| 486 | assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0" | |
| 60423 | 487 | then have "\<mu> > 0" "(1 - \<mu>) > 0" using * by auto | 
| 488 | then have "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using * | |
| 489 | by (auto simp: add_pos_pos) | |
| 56796 | 490 | } | 
| 491 | ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" | |
| 492 | using assms by fastforce | |
| 36623 | 493 | qed | 
| 494 | ||
| 495 | lemma convex_on_setsum: | |
| 496 | fixes a :: "'a \<Rightarrow> real" | |
| 49609 | 497 | and y :: "'a \<Rightarrow> 'b::real_vector" | 
| 498 | and f :: "'b \<Rightarrow> real" | |
| 36623 | 499 |   assumes "finite s" "s \<noteq> {}"
 | 
| 49609 | 500 | and "convex_on C f" | 
| 501 | and "convex C" | |
| 502 | and "(\<Sum> i \<in> s. a i) = 1" | |
| 503 | and "\<And>i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 504 | and "\<And>i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 36623 | 505 | shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))" | 
| 49609 | 506 | using assms | 
| 507 | proof (induct s arbitrary: a rule: finite_ne_induct) | |
| 36623 | 508 | case (singleton i) | 
| 49609 | 509 | then have ai: "a i = 1" by auto | 
| 510 | then show ?case by auto | |
| 36623 | 511 | next | 
| 60423 | 512 | case (insert i s) | 
| 49609 | 513 | then have "convex_on C f" by simp | 
| 36623 | 514 | from this[unfolded convex_on_def, rule_format] | 
| 56796 | 515 | have conv: "\<And>x y \<mu>. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> 0 \<le> \<mu> \<Longrightarrow> \<mu> \<le> 1 \<Longrightarrow> | 
| 516 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 36623 | 517 | by simp | 
| 60423 | 518 | show ?case | 
| 519 | proof (cases "a i = 1") | |
| 520 | case True | |
| 49609 | 521 | then have "(\<Sum> j \<in> s. a j) = 0" | 
| 60423 | 522 | using insert by auto | 
| 49609 | 523 | then have "\<And>j. j \<in> s \<Longrightarrow> a j = 0" | 
| 60423 | 524 | using setsum_nonneg_0[where 'b=real] insert by fastforce | 
| 525 | then show ?thesis | |
| 526 | using insert by auto | |
| 527 | next | |
| 528 | case False | |
| 529 | from insert have yai: "y i \<in> C" "a i \<ge> 0" | |
| 530 | by auto | |
| 531 | have fis: "finite (insert i s)" | |
| 532 | using insert by auto | |
| 533 | then have ai1: "a i \<le> 1" | |
| 534 | using setsum_nonneg_leq_bound[of "insert i s" a] insert by simp | |
| 535 | then have "a i < 1" | |
| 536 | using False by auto | |
| 537 | then have i0: "1 - a i > 0" | |
| 538 | by auto | |
| 49609 | 539 | let ?a = "\<lambda>j. a j / (1 - a i)" | 
| 60423 | 540 | have a_nonneg: "?a j \<ge> 0" if "j \<in> s" for j | 
| 60449 | 541 | using i0 insert that by fastforce | 
| 60423 | 542 | have "(\<Sum> j \<in> insert i s. a j) = 1" | 
| 543 | using insert by auto | |
| 544 | then have "(\<Sum> j \<in> s. a j) = 1 - a i" | |
| 545 | using setsum.insert insert by fastforce | |
| 546 | then have "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" | |
| 547 | using i0 by auto | |
| 548 | then have a1: "(\<Sum> j \<in> s. ?a j) = 1" | |
| 549 | unfolding setsum_divide_distrib by simp | |
| 550 | have "convex C" using insert by auto | |
| 49609 | 551 | then have asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" | 
| 60423 | 552 | using insert convex_setsum[OF \<open>finite s\<close> | 
| 553 | \<open>convex C\<close> a1 a_nonneg] by auto | |
| 36623 | 554 | have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))" | 
| 60423 | 555 | using a_nonneg a1 insert by blast | 
| 36623 | 556 | have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 60423 | 557 | using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF \<open>finite s\<close> \<open>i \<notin> s\<close>] insert | 
| 558 | by (auto simp only: add.commute) | |
| 36623 | 559 | also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 560 | using i0 by auto | |
| 561 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 49609 | 562 | using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] | 
| 60423 | 563 | by (auto simp: algebra_simps) | 
| 36623 | 564 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 565 | by (auto simp: divide_inverse) | 
| 36623 | 566 | also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)" | 
| 567 | using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] | |
| 60423 | 568 | by (auto simp: add.commute) | 
| 36623 | 569 | also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)" | 
| 570 | using add_right_mono[OF mult_left_mono[of _ _ "1 - a i", | |
| 571 | OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp | |
| 572 | also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44142diff
changeset | 573 | unfolding setsum_right_distrib[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto | 
| 60423 | 574 | also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" | 
| 575 | using i0 by auto | |
| 576 | also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" | |
| 577 | using insert by auto | |
| 578 | finally show ?thesis | |
| 56796 | 579 | by simp | 
| 60423 | 580 | qed | 
| 36623 | 581 | qed | 
| 582 | ||
| 583 | lemma convex_on_alt: | |
| 584 | fixes C :: "'a::real_vector set" | |
| 585 | assumes "convex C" | |
| 56796 | 586 | shows "convex_on C f \<longleftrightarrow> | 
| 587 | (\<forall>x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 \<longrightarrow> | |
| 588 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)" | |
| 36623 | 589 | proof safe | 
| 49609 | 590 | fix x y | 
| 591 | fix \<mu> :: real | |
| 60423 | 592 | assume *: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1" | 
| 36623 | 593 | from this[unfolded convex_on_def, rule_format] | 
| 56796 | 594 | have "\<And>u v. 0 \<le> u \<Longrightarrow> 0 \<le> v \<Longrightarrow> u + v = 1 \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" | 
| 595 | by auto | |
| 60423 | 596 | from this[of "\<mu>" "1 - \<mu>", simplified] * | 
| 56796 | 597 | show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 598 | by auto | |
| 36623 | 599 | next | 
| 60423 | 600 | assume *: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> | 
| 56796 | 601 | f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 602 |   {
 | |
| 603 | fix x y | |
| 49609 | 604 | fix u v :: real | 
| 60423 | 605 | assume **: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1" | 
| 49609 | 606 | then have[simp]: "1 - u = v" by auto | 
| 60423 | 607 | from *[rule_format, of x y u] | 
| 56796 | 608 | have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" | 
| 60423 | 609 | using ** by auto | 
| 49609 | 610 | } | 
| 56796 | 611 | then show "convex_on C f" | 
| 612 | unfolding convex_on_def by auto | |
| 36623 | 613 | qed | 
| 614 | ||
| 43337 | 615 | lemma convex_on_diff: | 
| 616 | fixes f :: "real \<Rightarrow> real" | |
| 56796 | 617 | assumes f: "convex_on I f" | 
| 618 | and I: "x \<in> I" "y \<in> I" | |
| 619 | and t: "x < t" "t < y" | |
| 49609 | 620 | shows "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | 
| 56796 | 621 | and "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | 
| 43337 | 622 | proof - | 
| 623 | def a \<equiv> "(t - y) / (x - y)" | |
| 56796 | 624 | with t have "0 \<le> a" "0 \<le> 1 - a" | 
| 625 | by (auto simp: field_simps) | |
| 60423 | 626 | with f \<open>x \<in> I\<close> \<open>y \<in> I\<close> have cvx: "f (a * x + (1 - a) * y) \<le> a * f x + (1 - a) * f y" | 
| 43337 | 627 | by (auto simp: convex_on_def) | 
| 56796 | 628 | have "a * x + (1 - a) * y = a * (x - y) + y" | 
| 629 | by (simp add: field_simps) | |
| 630 | also have "\<dots> = t" | |
| 60423 | 631 | unfolding a_def using \<open>x < t\<close> \<open>t < y\<close> by simp | 
| 56796 | 632 | finally have "f t \<le> a * f x + (1 - a) * f y" | 
| 633 | using cvx by simp | |
| 634 | also have "\<dots> = a * (f x - f y) + f y" | |
| 635 | by (simp add: field_simps) | |
| 636 | finally have "f t - f y \<le> a * (f x - f y)" | |
| 637 | by simp | |
| 43337 | 638 | with t show "(f x - f t) / (x - t) \<le> (f x - f y) / (x - y)" | 
| 44142 | 639 | by (simp add: le_divide_eq divide_le_eq field_simps a_def) | 
| 43337 | 640 | with t show "(f x - f y) / (x - y) \<le> (f t - f y) / (t - y)" | 
| 44142 | 641 | by (simp add: le_divide_eq divide_le_eq field_simps) | 
| 43337 | 642 | qed | 
| 36623 | 643 | |
| 644 | lemma pos_convex_function: | |
| 645 | fixes f :: "real \<Rightarrow> real" | |
| 646 | assumes "convex C" | |
| 56796 | 647 | and leq: "\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> f' x * (y - x) \<le> f y - f x" | 
| 36623 | 648 | shows "convex_on C f" | 
| 49609 | 649 | unfolding convex_on_alt[OF assms(1)] | 
| 650 | using assms | |
| 36623 | 651 | proof safe | 
| 652 | fix x y \<mu> :: real | |
| 653 | let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" | |
| 60423 | 654 | assume *: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1" | 
| 49609 | 655 | then have "1 - \<mu> \<ge> 0" by auto | 
| 56796 | 656 | then have xpos: "?x \<in> C" | 
| 60423 | 657 | using * unfolding convex_alt by fastforce | 
| 56796 | 658 | have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) \<ge> | 
| 659 | \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)" | |
| 60423 | 660 | using add_mono[OF mult_left_mono[OF leq[OF xpos *(2)] \<open>\<mu> \<ge> 0\<close>] | 
| 661 | mult_left_mono[OF leq[OF xpos *(3)] \<open>1 - \<mu> \<ge> 0\<close>]] | |
| 56796 | 662 | by auto | 
| 49609 | 663 | then have "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0" | 
| 60423 | 664 | by (auto simp: field_simps) | 
| 49609 | 665 | then show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | 
| 36623 | 666 | using convex_on_alt by auto | 
| 667 | qed | |
| 668 | ||
| 669 | lemma atMostAtLeast_subset_convex: | |
| 670 | fixes C :: "real set" | |
| 671 | assumes "convex C" | |
| 49609 | 672 | and "x \<in> C" "y \<in> C" "x < y" | 
| 36623 | 673 |   shows "{x .. y} \<subseteq> C"
 | 
| 674 | proof safe | |
| 60423 | 675 |   fix z assume z: "z \<in> {x .. y}"
 | 
| 676 | have less: "z \<in> C" if *: "x < z" "z < y" | |
| 677 | proof - | |
| 49609 | 678 | let ?\<mu> = "(y - z) / (y - x)" | 
| 56796 | 679 | have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" | 
| 60423 | 680 | using assms * by (auto simp: field_simps) | 
| 49609 | 681 | then have comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C" | 
| 682 | using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] | |
| 683 | by (simp add: algebra_simps) | |
| 36623 | 684 | have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" | 
| 60423 | 685 | by (auto simp: field_simps) | 
| 36623 | 686 | also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" | 
| 49609 | 687 | using assms unfolding add_divide_distrib by (auto simp: field_simps) | 
| 36623 | 688 | also have "\<dots> = z" | 
| 49609 | 689 | using assms by (auto simp: field_simps) | 
| 60423 | 690 | finally show ?thesis | 
| 56796 | 691 | using comb by auto | 
| 60423 | 692 | qed | 
| 693 | show "z \<in> C" using z less assms | |
| 36623 | 694 | unfolding atLeastAtMost_iff le_less by auto | 
| 695 | qed | |
| 696 | ||
| 697 | lemma f''_imp_f': | |
| 698 | fixes f :: "real \<Rightarrow> real" | |
| 699 | assumes "convex C" | |
| 49609 | 700 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 701 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 702 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 703 | and "x \<in> C" "y \<in> C" | |
| 36623 | 704 | shows "f' x * (y - x) \<le> f y - f x" | 
| 49609 | 705 | using assms | 
| 36623 | 706 | proof - | 
| 56796 | 707 |   {
 | 
| 708 | fix x y :: real | |
| 60423 | 709 | assume *: "x \<in> C" "y \<in> C" "y > x" | 
| 710 | then have ge: "y - x > 0" "y - x \<ge> 0" | |
| 711 | by auto | |
| 712 | from * have le: "x - y < 0" "x - y \<le> 0" | |
| 713 | by auto | |
| 36623 | 714 | then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" | 
| 60423 | 715 | using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close>], | 
| 716 | THEN f', THEN MVT2[OF \<open>x < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] | |
| 36623 | 717 | by auto | 
| 60423 | 718 | then have "z1 \<in> C" | 
| 719 | using atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>y \<in> C\<close> \<open>x < y\<close> | |
| 720 | by fastforce | |
| 36623 | 721 | from z1 have z1': "f x - f y = (x - y) * f' z1" | 
| 60423 | 722 | by (simp add: field_simps) | 
| 36623 | 723 | obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" | 
| 60423 | 724 | using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close>], | 
| 725 | THEN f'', THEN MVT2[OF \<open>x < z1\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 36623 | 726 | by auto | 
| 727 | obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" | |
| 60423 | 728 | using subsetD[OF atMostAtLeast_subset_convex[OF \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close>], | 
| 729 | THEN f'', THEN MVT2[OF \<open>z1 < y\<close>, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 36623 | 730 | by auto | 
| 731 | have "f' y - (f x - f y) / (x - y) = f' y - f' z1" | |
| 60423 | 732 | using * z1' by auto | 
| 733 | also have "\<dots> = (y - z1) * f'' z3" | |
| 734 | using z3 by auto | |
| 735 | finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" | |
| 736 | by simp | |
| 737 | have A': "y - z1 \<ge> 0" | |
| 738 | using z1 by auto | |
| 739 | have "z3 \<in> C" | |
| 740 | using z3 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>x \<in> C\<close> \<open>z1 \<in> C\<close> \<open>x < z1\<close> | |
| 741 | by fastforce | |
| 742 | then have B': "f'' z3 \<ge> 0" | |
| 743 | using assms by auto | |
| 744 | from A' B' have "(y - z1) * f'' z3 \<ge> 0" | |
| 745 | by auto | |
| 746 | from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" | |
| 747 | by auto | |
| 36623 | 748 | from mult_right_mono_neg[OF this le(2)] | 
| 749 | have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 750 | by (simp add: algebra_simps) | 
| 60423 | 751 | then have "f' y * (x - y) - (f x - f y) \<le> 0" | 
| 752 | using le by auto | |
| 753 | then have res: "f' y * (x - y) \<le> f x - f y" | |
| 754 | by auto | |
| 36623 | 755 | have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" | 
| 60423 | 756 | using * z1 by auto | 
| 757 | also have "\<dots> = (z1 - x) * f'' z2" | |
| 758 | using z2 by auto | |
| 759 | finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" | |
| 760 | by simp | |
| 761 | have A: "z1 - x \<ge> 0" | |
| 762 | using z1 by auto | |
| 763 | have "z2 \<in> C" | |
| 764 | using z2 z1 * atMostAtLeast_subset_convex \<open>convex C\<close> \<open>z1 \<in> C\<close> \<open>y \<in> C\<close> \<open>z1 < y\<close> | |
| 765 | by fastforce | |
| 766 | then have B: "f'' z2 \<ge> 0" | |
| 767 | using assms by auto | |
| 768 | from A B have "(z1 - x) * f'' z2 \<ge> 0" | |
| 769 | by auto | |
| 770 | with cool have "(f y - f x) / (y - x) - f' x \<ge> 0" | |
| 771 | by auto | |
| 36623 | 772 | from mult_right_mono[OF this ge(2)] | 
| 773 | have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 774 | by (simp add: algebra_simps) | 
| 60423 | 775 | then have "f y - f x - f' x * (y - x) \<ge> 0" | 
| 776 | using ge by auto | |
| 49609 | 777 | then have "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" | 
| 60423 | 778 | using res by auto | 
| 779 | } note less_imp = this | |
| 56796 | 780 |   {
 | 
| 781 | fix x y :: real | |
| 49609 | 782 | assume "x \<in> C" "y \<in> C" "x \<noteq> y" | 
| 783 | then have"f y - f x \<ge> f' x * (y - x)" | |
| 56796 | 784 | unfolding neq_iff using less_imp by auto | 
| 785 | } | |
| 36623 | 786 | moreover | 
| 56796 | 787 |   {
 | 
| 788 | fix x y :: real | |
| 60423 | 789 | assume "x \<in> C" "y \<in> C" "x = y" | 
| 56796 | 790 | then have "f y - f x \<ge> f' x * (y - x)" by auto | 
| 791 | } | |
| 36623 | 792 | ultimately show ?thesis using assms by blast | 
| 793 | qed | |
| 794 | ||
| 795 | lemma f''_ge0_imp_convex: | |
| 796 | fixes f :: "real \<Rightarrow> real" | |
| 797 | assumes conv: "convex C" | |
| 49609 | 798 | and f': "\<And>x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | 
| 799 | and f'': "\<And>x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 800 | and pos: "\<And>x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 36623 | 801 | shows "convex_on C f" | 
| 56796 | 802 | using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function | 
| 803 | by fastforce | |
| 36623 | 804 | |
| 805 | lemma minus_log_convex: | |
| 806 | fixes b :: real | |
| 807 | assumes "b > 1" | |
| 808 |   shows "convex_on {0 <..} (\<lambda> x. - log b x)"
 | |
| 809 | proof - | |
| 56796 | 810 | have "\<And>z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" | 
| 811 | using DERIV_log by auto | |
| 49609 | 812 | then have f': "\<And>z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56409diff
changeset | 813 | by (auto simp: DERIV_minus) | 
| 49609 | 814 | have "\<And>z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" | 
| 36623 | 815 | using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto | 
| 816 | from this[THEN DERIV_cmult, of _ "- 1 / ln b"] | |
| 49609 | 817 | have "\<And>z :: real. z > 0 \<Longrightarrow> | 
| 818 | DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" | |
| 36623 | 819 | by auto | 
| 56796 | 820 | then have f''0: "\<And>z::real. z > 0 \<Longrightarrow> | 
| 821 | DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" | |
| 60423 | 822 | unfolding inverse_eq_divide by (auto simp: mult.assoc) | 
| 56796 | 823 | have f''_ge0: "\<And>z::real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0" | 
| 60423 | 824 | using \<open>b > 1\<close> by (auto intro!: less_imp_le) | 
| 36623 | 825 | from f''_ge0_imp_convex[OF pos_is_convex, | 
| 826 | unfolded greaterThan_iff, OF f' f''0 f''_ge0] | |
| 827 | show ?thesis by auto | |
| 828 | qed | |
| 829 | ||
| 830 | end |