| author | hoelzl | 
| Thu, 08 Oct 2015 11:19:43 +0200 | |
| changeset 61362 | 48d1b147f094 | 
| parent 61359 | e985b52c3eb3 | 
| child 61378 | 3e04c9ca001a | 
| permissions | -rw-r--r-- | 
| 13586 | 1 | (* Title: HOL/Library/FuncSet.thy | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 2 | Author: Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn | 
| 13586 | 3 | *) | 
| 4 | ||
| 58881 | 5 | section \<open>Pi and Function Sets\<close> | 
| 13586 | 6 | |
| 15131 | 7 | theory FuncSet | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
28524diff
changeset | 8 | imports Hilbert_Choice Main | 
| 15131 | 9 | begin | 
| 13586 | 10 | |
| 58783 | 11 | definition Pi :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 12 |   where "Pi A B = {f. \<forall>x. x \<in> A \<longrightarrow> f x \<in> B x}"
 | |
| 13586 | 13 | |
| 58783 | 14 | definition extensional :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 15 |   where "extensional A = {f. \<forall>x. x \<notin> A \<longrightarrow> f x = undefined}"
 | |
| 13586 | 16 | |
| 58783 | 17 | definition "restrict" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
| 18 | where "restrict f A = (\<lambda>x. if x \<in> A then f x else undefined)" | |
| 13586 | 19 | |
| 58783 | 20 | abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  (infixr "->" 60)
 | 
| 21 | where "A -> B \<equiv> Pi A (\<lambda>_. B)" | |
| 19536 | 22 | |
| 21210 | 23 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 24 | funcset (infixr "\<rightarrow>" 60) | 
| 19536 | 25 | |
| 13586 | 26 | syntax | 
| 58783 | 27 |   "_Pi"  :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3PI _:_./ _)" 10)
 | 
| 28 |   "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)"  ("(3%_:_./ _)" [0,0,3] 3)
 | |
| 13586 | 29 | syntax (xsymbols) | 
| 58783 | 30 |   "_Pi" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 31 |   "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 14565 | 32 | syntax (HTML output) | 
| 58783 | 33 |   "_Pi" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 34 |   "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 13586 | 35 | translations | 
| 58783 | 36 | "\<Pi> x\<in>A. B" \<rightleftharpoons> "CONST Pi A (\<lambda>x. B)" | 
| 37 | "\<lambda>x\<in>A. f" \<rightleftharpoons> "CONST restrict (\<lambda>x. f) A" | |
| 13586 | 38 | |
| 58783 | 39 | definition "compose" :: "'a set \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'c)"
 | 
| 40 | where "compose A g f = (\<lambda>x\<in>A. g (f x))" | |
| 13586 | 41 | |
| 42 | ||
| 58783 | 43 | subsection \<open>Basic Properties of @{term Pi}\<close>
 | 
| 13586 | 44 | |
| 58783 | 45 | lemma Pi_I[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" | 
| 14706 | 46 | by (simp add: Pi_def) | 
| 13586 | 47 | |
| 58783 | 48 | lemma Pi_I'[simp]: "(\<And>x. x \<in> A \<longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" | 
| 49 | by (simp add:Pi_def) | |
| 31731 | 50 | |
| 58783 | 51 | lemma funcsetI: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 14706 | 52 | by (simp add: Pi_def) | 
| 13586 | 53 | |
| 58783 | 54 | lemma Pi_mem: "f \<in> Pi A B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B x" | 
| 14706 | 55 | by (simp add: Pi_def) | 
| 13586 | 56 | |
| 47761 | 57 | lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)" | 
| 58 | unfolding Pi_def by auto | |
| 59 | ||
| 58783 | 60 | lemma PiE [elim]: "f \<in> Pi A B \<Longrightarrow> (f x \<in> B x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 61 | by (auto simp: Pi_def) | |
| 31754 | 62 | |
| 58783 | 63 | lemma Pi_cong: "(\<And>w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B" | 
| 38656 | 64 | by (auto simp: Pi_def) | 
| 65 | ||
| 31769 | 66 | lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" | 
| 44382 | 67 | by auto | 
| 31769 | 68 | |
| 58783 | 69 | lemma funcset_mem: "f \<in> A \<rightarrow> B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B" | 
| 14706 | 70 | by (simp add: Pi_def) | 
| 13586 | 71 | |
| 58783 | 72 | lemma funcset_image: "f \<in> A \<rightarrow> B \<Longrightarrow> f ` A \<subseteq> B" | 
| 50104 | 73 | by auto | 
| 74 | ||
| 75 | lemma image_subset_iff_funcset: "F ` A \<subseteq> B \<longleftrightarrow> F \<in> A \<rightarrow> B" | |
| 76 | by auto | |
| 14762 | 77 | |
| 58783 | 78 | lemma Pi_eq_empty[simp]: "(\<Pi> x \<in> A. B x) = {} \<longleftrightarrow> (\<exists>x\<in>A. B x = {})"
 | 
| 79 | apply (simp add: Pi_def) | |
| 80 | apply auto | |
| 81 | txt \<open>Converse direction requires Axiom of Choice to exhibit a function | |
| 82 |   picking an element from each non-empty @{term "B x"}\<close>
 | |
| 83 | apply (drule_tac x = "\<lambda>u. SOME y. y \<in> B u" in spec) | |
| 84 | apply auto | |
| 85 | apply (cut_tac P = "\<lambda>y. y \<in> B x" in some_eq_ex) | |
| 86 | apply auto | |
| 87 | done | |
| 13586 | 88 | |
| 13593 | 89 | lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 58783 | 90 | by (simp add: Pi_def) | 
| 13593 | 91 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 92 | lemma Pi_Int: "Pi I E \<inter> Pi I F = (\<Pi> i\<in>I. E i \<inter> F i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 93 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 94 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 95 | lemma Pi_UN: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 96 | fixes A :: "nat \<Rightarrow> 'i \<Rightarrow> 'a set" | 
| 58783 | 97 | assumes "finite I" | 
| 98 | and mono: "\<And>i n m. i \<in> I \<Longrightarrow> n \<le> m \<Longrightarrow> A n i \<subseteq> A m i" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 99 | shows "(\<Union>n. Pi I (A n)) = (\<Pi> i\<in>I. \<Union>n. A n i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 100 | proof (intro set_eqI iffI) | 
| 58783 | 101 | fix f | 
| 102 | assume "f \<in> (\<Pi> i\<in>I. \<Union>n. A n i)" | |
| 103 | then have "\<forall>i\<in>I. \<exists>n. f i \<in> A n i" | |
| 104 | by auto | |
| 105 | from bchoice[OF this] obtain n where n: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> (A (n i) i)" | |
| 106 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 107 | obtain k where k: "\<And>i. i \<in> I \<Longrightarrow> n i \<le> k" | 
| 58783 | 108 | using \<open>finite I\<close> finite_nat_set_iff_bounded_le[of "n`I"] by auto | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 109 | have "f \<in> Pi I (A k)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 110 | proof (intro Pi_I) | 
| 58783 | 111 | fix i | 
| 112 | assume "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 113 | from mono[OF this, of "n i" k] k[OF this] n[OF this] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 114 | show "f i \<in> A k i" by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 115 | qed | 
| 58783 | 116 | then show "f \<in> (\<Union>n. Pi I (A n))" | 
| 117 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 118 | qed auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 119 | |
| 58783 | 120 | lemma Pi_UNIV [simp]: "A \<rightarrow> UNIV = UNIV" | 
| 121 | by (simp add: Pi_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 122 | |
| 58783 | 123 | text \<open>Covariance of Pi-sets in their second argument\<close> | 
| 124 | lemma Pi_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi A B \<subseteq> Pi A C" | |
| 125 | by auto | |
| 13586 | 126 | |
| 58783 | 127 | text \<open>Contravariance of Pi-sets in their first argument\<close> | 
| 128 | lemma Pi_anti_mono: "A' \<subseteq> A \<Longrightarrow> Pi A B \<subseteq> Pi A' B" | |
| 129 | by auto | |
| 13586 | 130 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 131 | lemma prod_final: | 
| 58783 | 132 | assumes 1: "fst \<circ> f \<in> Pi A B" | 
| 133 | and 2: "snd \<circ> f \<in> Pi A C" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 134 | shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" | 
| 58783 | 135 | proof (rule Pi_I) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 136 | fix z | 
| 58783 | 137 | assume z: "z \<in> A" | 
| 138 | have "f z = (fst (f z), snd (f z))" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 139 | by simp | 
| 58783 | 140 | also have "\<dots> \<in> B z \<times> C z" | 
| 141 | by (metis SigmaI PiE o_apply 1 2 z) | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 142 | finally show "f z \<in> B z \<times> C z" . | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 143 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 144 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 145 | lemma Pi_split_domain[simp]: "x \<in> Pi (I \<union> J) X \<longleftrightarrow> x \<in> Pi I X \<and> x \<in> Pi J X" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 146 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 147 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 148 | lemma Pi_split_insert_domain[simp]: "x \<in> Pi (insert i I) X \<longleftrightarrow> x \<in> Pi I X \<and> x i \<in> X i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 149 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 150 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 151 | lemma Pi_cancel_fupd_range[simp]: "i \<notin> I \<Longrightarrow> x \<in> Pi I (B(i := b)) \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 152 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 153 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 154 | lemma Pi_cancel_fupd[simp]: "i \<notin> I \<Longrightarrow> x(i := a) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 155 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 156 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 157 | lemma Pi_fupd_iff: "i \<in> I \<Longrightarrow> f \<in> Pi I (B(i := A)) \<longleftrightarrow> f \<in> Pi (I - {i}) B \<and> f i \<in> A"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 158 | apply auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 159 | apply (drule_tac x=x in Pi_mem) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 160 | apply (simp_all split: split_if_asm) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 161 | apply (drule_tac x=i in Pi_mem) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 162 | apply (auto dest!: Pi_mem) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 163 | done | 
| 13586 | 164 | |
| 58783 | 165 | |
| 166 | subsection \<open>Composition With a Restricted Domain: @{term compose}\<close>
 | |
| 13586 | 167 | |
| 58783 | 168 | lemma funcset_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> g \<in> B \<rightarrow> C \<Longrightarrow> compose A g f \<in> A \<rightarrow> C" | 
| 169 | by (simp add: Pi_def compose_def restrict_def) | |
| 13586 | 170 | |
| 171 | lemma compose_assoc: | |
| 58783 | 172 | assumes "f \<in> A \<rightarrow> B" | 
| 173 | and "g \<in> B \<rightarrow> C" | |
| 174 | and "h \<in> C \<rightarrow> D" | |
| 175 | shows "compose A h (compose A g f) = compose A (compose B h g) f" | |
| 176 | using assms by (simp add: fun_eq_iff Pi_def compose_def restrict_def) | |
| 13586 | 177 | |
| 58783 | 178 | lemma compose_eq: "x \<in> A \<Longrightarrow> compose A g f x = g (f x)" | 
| 179 | by (simp add: compose_def restrict_def) | |
| 13586 | 180 | |
| 58783 | 181 | lemma surj_compose: "f ` A = B \<Longrightarrow> g ` B = C \<Longrightarrow> compose A g f ` A = C" | 
| 14706 | 182 | by (auto simp add: image_def compose_eq) | 
| 13586 | 183 | |
| 184 | ||
| 58783 | 185 | subsection \<open>Bounded Abstraction: @{term restrict}\<close>
 | 
| 13586 | 186 | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 187 | lemma restrict_cong: "I = J \<Longrightarrow> (\<And>i. i \<in> J =simp=> f i = g i) \<Longrightarrow> restrict f I = restrict g J" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 188 | by (auto simp: restrict_def fun_eq_iff simp_implies_def) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 189 | |
| 54417 | 190 | lemma restrict_in_funcset: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> A \<rightarrow> B" | 
| 14706 | 191 | by (simp add: Pi_def restrict_def) | 
| 13586 | 192 | |
| 54417 | 193 | lemma restrictI[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> Pi A B" | 
| 14706 | 194 | by (simp add: Pi_def restrict_def) | 
| 13586 | 195 | |
| 54417 | 196 | lemma restrict_apply[simp]: "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" | 
| 14706 | 197 | by (simp add: restrict_def) | 
| 13586 | 198 | |
| 54417 | 199 | lemma restrict_apply': "x \<in> A \<Longrightarrow> (\<lambda>y\<in>A. f y) x = f x" | 
| 200 | by simp | |
| 201 | ||
| 58783 | 202 | lemma restrict_ext: "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 203 | by (simp add: fun_eq_iff Pi_def restrict_def) | 
| 13586 | 204 | |
| 58606 | 205 | lemma restrict_UNIV: "restrict f UNIV = f" | 
| 206 | by (simp add: restrict_def) | |
| 207 | ||
| 14853 | 208 | lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" | 
| 14706 | 209 | by (simp add: inj_on_def restrict_def) | 
| 13586 | 210 | |
| 58783 | 211 | lemma Id_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> f \<in> extensional A \<Longrightarrow> compose A (\<lambda>y\<in>B. y) f = f" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 212 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 213 | |
| 58783 | 214 | lemma compose_Id: "g \<in> A \<rightarrow> B \<Longrightarrow> g \<in> extensional A \<Longrightarrow> compose A g (\<lambda>x\<in>A. x) = g" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 215 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 216 | |
| 14853 | 217 | lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" | 
| 19736 | 218 | by (auto simp add: restrict_def) | 
| 13586 | 219 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 220 | lemma restrict_restrict[simp]: "restrict (restrict f A) B = restrict f (A \<inter> B)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 221 | unfolding restrict_def by (simp add: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 222 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 223 | lemma restrict_fupd[simp]: "i \<notin> I \<Longrightarrow> restrict (f (i := x)) I = restrict f I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 224 | by (auto simp: restrict_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 225 | |
| 58783 | 226 | lemma restrict_upd[simp]: "i \<notin> I \<Longrightarrow> (restrict f I)(i := y) = restrict (f(i := y)) (insert i I)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 227 | by (auto simp: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 228 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 229 | lemma restrict_Pi_cancel: "restrict x I \<in> Pi I A \<longleftrightarrow> x \<in> Pi I A" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 230 | by (auto simp: restrict_def Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 231 | |
| 14745 | 232 | |
| 58783 | 233 | subsection \<open>Bijections Between Sets\<close> | 
| 14762 | 234 | |
| 58783 | 235 | text \<open>The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
 | 
| 236 | the theorems belong here, or need at least @{term Hilbert_Choice}.\<close>
 | |
| 14762 | 237 | |
| 39595 | 238 | lemma bij_betwI: | 
| 58783 | 239 | assumes "f \<in> A \<rightarrow> B" | 
| 240 | and "g \<in> B \<rightarrow> A" | |
| 241 | and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" | |
| 242 | and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y" | |
| 243 | shows "bij_betw f A B" | |
| 244 | unfolding bij_betw_def | |
| 39595 | 245 | proof | 
| 58783 | 246 | show "inj_on f A" | 
| 247 | by (metis g_f inj_on_def) | |
| 248 | have "f ` A \<subseteq> B" | |
| 249 | using \<open>f \<in> A \<rightarrow> B\<close> by auto | |
| 39595 | 250 | moreover | 
| 58783 | 251 | have "B \<subseteq> f ` A" | 
| 252 | by auto (metis Pi_mem \<open>g \<in> B \<rightarrow> A\<close> f_g image_iff) | |
| 253 | ultimately show "f ` A = B" | |
| 254 | by blast | |
| 39595 | 255 | qed | 
| 256 | ||
| 14762 | 257 | lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 58783 | 258 | by (auto simp add: bij_betw_def) | 
| 14762 | 259 | |
| 58783 | 260 | lemma inj_on_compose: "bij_betw f A B \<Longrightarrow> inj_on g B \<Longrightarrow> inj_on (compose A g f) A" | 
| 261 | by (auto simp add: bij_betw_def inj_on_def compose_eq) | |
| 14853 | 262 | |
| 58783 | 263 | lemma bij_betw_compose: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (compose A g f) A C" | 
| 264 | apply (simp add: bij_betw_def compose_eq inj_on_compose) | |
| 265 | apply (auto simp add: compose_def image_def) | |
| 266 | done | |
| 14762 | 267 | |
| 58783 | 268 | lemma bij_betw_restrict_eq [simp]: "bij_betw (restrict f A) A B = bij_betw f A B" | 
| 269 | by (simp add: bij_betw_def) | |
| 14853 | 270 | |
| 271 | ||
| 58783 | 272 | subsection \<open>Extensionality\<close> | 
| 14853 | 273 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 274 | lemma extensional_empty[simp]: "extensional {} = {\<lambda>x. undefined}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 275 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 276 | |
| 58783 | 277 | lemma extensional_arb: "f \<in> extensional A \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = undefined" | 
| 278 | by (simp add: extensional_def) | |
| 14853 | 279 | |
| 280 | lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" | |
| 58783 | 281 | by (simp add: restrict_def extensional_def) | 
| 14853 | 282 | |
| 283 | lemma compose_extensional [simp]: "compose A f g \<in> extensional A" | |
| 58783 | 284 | by (simp add: compose_def) | 
| 14853 | 285 | |
| 286 | lemma extensionalityI: | |
| 58783 | 287 | assumes "f \<in> extensional A" | 
| 288 | and "g \<in> extensional A" | |
| 289 | and "\<And>x. x \<in> A \<Longrightarrow> f x = g x" | |
| 290 | shows "f = g" | |
| 291 | using assms by (force simp add: fun_eq_iff extensional_def) | |
| 14853 | 292 | |
| 39595 | 293 | lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f" | 
| 58783 | 294 | by (rule extensionalityI[OF restrict_extensional]) auto | 
| 39595 | 295 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 296 | lemma extensional_subset: "f \<in> extensional A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 297 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 298 | |
| 58783 | 299 | lemma inv_into_funcset: "f ` A = B \<Longrightarrow> (\<lambda>x\<in>B. inv_into A f x) \<in> B \<rightarrow> A" | 
| 300 | by (unfold inv_into_def) (fast intro: someI2) | |
| 14853 | 301 | |
| 58783 | 302 | lemma compose_inv_into_id: "bij_betw f A B \<Longrightarrow> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" | 
| 303 | apply (simp add: bij_betw_def compose_def) | |
| 304 | apply (rule restrict_ext, auto) | |
| 305 | done | |
| 14853 | 306 | |
| 58783 | 307 | lemma compose_id_inv_into: "f ` A = B \<Longrightarrow> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" | 
| 308 | apply (simp add: compose_def) | |
| 309 | apply (rule restrict_ext) | |
| 310 | apply (simp add: f_inv_into_f) | |
| 311 | done | |
| 14853 | 312 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 313 | lemma extensional_insert[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 314 | assumes "a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 315 | shows "a(i := b) \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 316 | using assms unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 317 | |
| 58783 | 318 | lemma extensional_Int[simp]: "extensional I \<inter> extensional I' = extensional (I \<inter> I')" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 319 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 320 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 321 | lemma extensional_UNIV[simp]: "extensional UNIV = UNIV" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 322 | by (auto simp: extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 323 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 324 | lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 325 | unfolding restrict_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 326 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 327 | lemma extensional_insert_undefined[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 328 | "a \<in> extensional (insert i I) \<Longrightarrow> a(i := undefined) \<in> extensional I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 329 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 330 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 331 | lemma extensional_insert_cancel[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 332 | "a \<in> extensional I \<Longrightarrow> a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 333 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 334 | |
| 14762 | 335 | |
| 58783 | 336 | subsection \<open>Cardinality\<close> | 
| 14745 | 337 | |
| 58783 | 338 | lemma card_inj: "f \<in> A \<rightarrow> B \<Longrightarrow> inj_on f A \<Longrightarrow> finite B \<Longrightarrow> card A \<le> card B" | 
| 339 | by (rule card_inj_on_le) auto | |
| 14745 | 340 | |
| 341 | lemma card_bij: | |
| 58783 | 342 | assumes "f \<in> A \<rightarrow> B" "inj_on f A" | 
| 343 | and "g \<in> B \<rightarrow> A" "inj_on g B" | |
| 344 | and "finite A" "finite B" | |
| 345 | shows "card A = card B" | |
| 346 | using assms by (blast intro: card_inj order_antisym) | |
| 14745 | 347 | |
| 58783 | 348 | |
| 349 | subsection \<open>Extensional Function Spaces\<close> | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 350 | |
| 58783 | 351 | definition PiE :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 352 | where "PiE S T = Pi S T \<inter> extensional S" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 353 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 354 | abbreviation "Pi\<^sub>E A B \<equiv> PiE A B" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 355 | |
| 58783 | 356 | syntax | 
| 357 |   "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3PIE _:_./ _)" 10)
 | |
| 358 | syntax (xsymbols) | |
| 359 |   "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi>\<^sub>E _\<in>_./ _)" 10)
 | |
| 360 | syntax (HTML output) | |
| 361 |   "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi>\<^sub>E _\<in>_./ _)" 10)
 | |
| 362 | translations "\<Pi>\<^sub>E x\<in>A. B" \<rightleftharpoons> "CONST Pi\<^sub>E A (\<lambda>x. B)" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 363 | |
| 58783 | 364 | abbreviation extensional_funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "->\<^sub>E" 60)
 | 
| 365 | where "A ->\<^sub>E B \<equiv> (\<Pi>\<^sub>E i\<in>A. B)" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 366 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 367 | notation (xsymbols) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 368 | extensional_funcset (infixr "\<rightarrow>\<^sub>E" 60) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 369 | |
| 58783 | 370 | lemma extensional_funcset_def: "extensional_funcset S T = (S \<rightarrow> T) \<inter> extensional S" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 371 | by (simp add: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 372 | |
| 58783 | 373 | lemma PiE_empty_domain[simp]: "PiE {} T = {\<lambda>x. undefined}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 374 | unfolding PiE_def by simp | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 375 | |
| 54417 | 376 | lemma PiE_UNIV_domain: "PiE UNIV T = Pi UNIV T" | 
| 377 | unfolding PiE_def by simp | |
| 378 | ||
| 58783 | 379 | lemma PiE_empty_range[simp]: "i \<in> I \<Longrightarrow> F i = {} \<Longrightarrow> (\<Pi>\<^sub>E i\<in>I. F i) = {}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 380 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 381 | |
| 58783 | 382 | lemma PiE_eq_empty_iff: "Pi\<^sub>E I F = {} \<longleftrightarrow> (\<exists>i\<in>I. F i = {})"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 383 | proof | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 384 |   assume "Pi\<^sub>E I F = {}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 385 |   show "\<exists>i\<in>I. F i = {}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 386 | proof (rule ccontr) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 387 | assume "\<not> ?thesis" | 
| 58783 | 388 | then have "\<forall>i. \<exists>y. (i \<in> I \<longrightarrow> y \<in> F i) \<and> (i \<notin> I \<longrightarrow> y = undefined)" | 
| 389 | by auto | |
| 53381 | 390 | from choice[OF this] | 
| 391 | obtain f where " \<forall>x. (x \<in> I \<longrightarrow> f x \<in> F x) \<and> (x \<notin> I \<longrightarrow> f x = undefined)" .. | |
| 58783 | 392 | then have "f \<in> Pi\<^sub>E I F" | 
| 393 | by (auto simp: extensional_def PiE_def) | |
| 394 |     with \<open>Pi\<^sub>E I F = {}\<close> show False
 | |
| 395 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 396 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 397 | qed (auto simp: PiE_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 398 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 399 | lemma PiE_arb: "f \<in> PiE S T \<Longrightarrow> x \<notin> S \<Longrightarrow> f x = undefined" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 400 | unfolding PiE_def by auto (auto dest!: extensional_arb) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 401 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 402 | lemma PiE_mem: "f \<in> PiE S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T x" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 403 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 404 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 405 | lemma PiE_fun_upd: "y \<in> T x \<Longrightarrow> f \<in> PiE S T \<Longrightarrow> f(x := y) \<in> PiE (insert x S) T" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 406 | unfolding PiE_def extensional_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 407 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 408 | lemma fun_upd_in_PiE: "x \<notin> S \<Longrightarrow> f \<in> PiE (insert x S) T \<Longrightarrow> f(x := undefined) \<in> PiE S T" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 409 | unfolding PiE_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 410 | |
| 59425 | 411 | lemma PiE_insert_eq: "PiE (insert x S) T = (\<lambda>(y, g). g(x := y)) ` (T x \<times> PiE S T)" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 412 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 413 |   {
 | 
| 59425 | 414 | fix f assume "f \<in> PiE (insert x S) T" "x \<notin> S" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 415 | with assms have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> PiE S T)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 416 | by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 417 | } | 
| 59425 | 418 | moreover | 
| 419 |   {
 | |
| 420 | fix f assume "f \<in> PiE (insert x S) T" "x \<in> S" | |
| 421 | with assms have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> PiE S T)" | |
| 422 | by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb) | |
| 423 | } | |
| 424 | ultimately show ?thesis | |
| 58783 | 425 | using assms by (auto intro: PiE_fun_upd) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 426 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 427 | |
| 58783 | 428 | lemma PiE_Int: "Pi\<^sub>E I A \<inter> Pi\<^sub>E I B = Pi\<^sub>E I (\<lambda>x. A x \<inter> B x)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 429 | by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 430 | |
| 58783 | 431 | lemma PiE_cong: "(\<And>i. i\<in>I \<Longrightarrow> A i = B i) \<Longrightarrow> Pi\<^sub>E I A = Pi\<^sub>E I B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 432 | unfolding PiE_def by (auto simp: Pi_cong) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 433 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 434 | lemma PiE_E [elim]: | 
| 58783 | 435 | assumes "f \<in> PiE A B" | 
| 436 | obtains "x \<in> A" and "f x \<in> B x" | |
| 437 | | "x \<notin> A" and "f x = undefined" | |
| 438 | using assms by (auto simp: Pi_def PiE_def extensional_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 439 | |
| 58783 | 440 | lemma PiE_I[intro!]: | 
| 441 | "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<And>x. x \<notin> A \<Longrightarrow> f x = undefined) \<Longrightarrow> f \<in> PiE A B" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 442 | by (simp add: PiE_def extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 443 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 444 | lemma PiE_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> PiE A B \<subseteq> PiE A C" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 445 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 446 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 447 | lemma PiE_iff: "f \<in> PiE I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i) \<and> f \<in> extensional I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 448 | by (simp add: PiE_def Pi_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 449 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 450 | lemma PiE_restrict[simp]: "f \<in> PiE A B \<Longrightarrow> restrict f A = f" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 451 | by (simp add: extensional_restrict PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 452 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 453 | lemma restrict_PiE[simp]: "restrict f I \<in> PiE I S \<longleftrightarrow> f \<in> Pi I S" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 454 | by (auto simp: PiE_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 455 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 456 | lemma PiE_eq_subset: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 457 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 58783 | 458 | and eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 459 | and "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 460 | shows "F i \<subseteq> F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 461 | proof | 
| 58783 | 462 | fix x | 
| 463 | assume "x \<in> F i" | |
| 464 | with ne have "\<forall>j. \<exists>y. (j \<in> I \<longrightarrow> y \<in> F j \<and> (i = j \<longrightarrow> x = y)) \<and> (j \<notin> I \<longrightarrow> y = undefined)" | |
| 53381 | 465 | by auto | 
| 466 | from choice[OF this] obtain f | |
| 467 | where f: " \<forall>j. (j \<in> I \<longrightarrow> f j \<in> F j \<and> (i = j \<longrightarrow> x = f j)) \<and> (j \<notin> I \<longrightarrow> f j = undefined)" .. | |
| 58783 | 468 | then have "f \<in> Pi\<^sub>E I F" | 
| 469 | by (auto simp: extensional_def PiE_def) | |
| 470 | then have "f \<in> Pi\<^sub>E I F'" | |
| 471 | using assms by simp | |
| 472 | then show "x \<in> F' i" | |
| 473 | using f \<open>i \<in> I\<close> by (auto simp: PiE_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 474 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 475 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 476 | lemma PiE_eq_iff_not_empty: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 477 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 478 | shows "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 479 | proof (intro iffI ballI) | 
| 58783 | 480 | fix i | 
| 481 | assume eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | |
| 482 | assume i: "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 483 | show "F i = F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 484 | using PiE_eq_subset[of I F F', OF ne eq i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 485 | using PiE_eq_subset[of I F' F, OF ne(2,1) eq[symmetric] i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 486 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 487 | qed (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 488 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 489 | lemma PiE_eq_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 490 |   "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 491 | proof (intro iffI disjCI) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 492 | assume eq[simp]: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 493 |   assume "\<not> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 494 |   then have "(\<forall>i\<in>I. F i \<noteq> {}) \<and> (\<forall>i\<in>I. F' i \<noteq> {})"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 495 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by auto | 
| 58783 | 496 | with PiE_eq_iff_not_empty[of I F F'] show "\<forall>i\<in>I. F i = F' i" | 
| 497 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 498 | next | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 499 |   assume "(\<forall>i\<in>I. F i = F' i) \<or> (\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {})"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 500 | then show "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 501 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 502 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 503 | |
| 58783 | 504 | lemma extensional_funcset_fun_upd_restricts_rangeI: | 
| 505 |   "\<forall>y \<in> S. f x \<noteq> f y \<Longrightarrow> f \<in> (insert x S) \<rightarrow>\<^sub>E T \<Longrightarrow> f(x := undefined) \<in> S \<rightarrow>\<^sub>E (T - {f x})"
 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 506 | unfolding extensional_funcset_def extensional_def | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 507 | apply auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 508 | apply (case_tac "x = xa") | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 509 | apply auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 510 | done | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 511 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 512 | lemma extensional_funcset_fun_upd_extends_rangeI: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 513 |   assumes "a \<in> T" "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
 | 
| 58783 | 514 | shows "f(x := a) \<in> insert x S \<rightarrow>\<^sub>E T" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 515 | using assms unfolding extensional_funcset_def extensional_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 516 | |
| 58783 | 517 | |
| 518 | subsubsection \<open>Injective Extensional Function Spaces\<close> | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 519 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 520 | lemma extensional_funcset_fun_upd_inj_onI: | 
| 58783 | 521 |   assumes "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
 | 
| 522 | and "inj_on f S" | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 523 | shows "inj_on (f(x := a)) S" | 
| 58783 | 524 | using assms | 
| 525 | unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI) | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 526 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 527 | lemma extensional_funcset_extend_domain_inj_on_eq: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 528 | assumes "x \<notin> S" | 
| 58783 | 529 |   shows "{f. f \<in> (insert x S) \<rightarrow>\<^sub>E T \<and> inj_on f (insert x S)} =
 | 
| 530 |     (\<lambda>(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | |
| 531 | using assms | |
| 532 | apply (auto del: PiE_I PiE_E) | |
| 533 | apply (auto intro: extensional_funcset_fun_upd_inj_onI | |
| 534 | extensional_funcset_fun_upd_extends_rangeI del: PiE_I PiE_E) | |
| 535 | apply (auto simp add: image_iff inj_on_def) | |
| 536 | apply (rule_tac x="xa x" in exI) | |
| 537 | apply (auto intro: PiE_mem del: PiE_I PiE_E) | |
| 538 | apply (rule_tac x="xa(x := undefined)" in exI) | |
| 539 | apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI) | |
| 540 | apply (auto dest!: PiE_mem split: split_if_asm) | |
| 541 | done | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 542 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 543 | lemma extensional_funcset_extend_domain_inj_onI: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 544 | assumes "x \<notin> S" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 545 |   shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | 
| 58783 | 546 | using assms | 
| 547 | apply (auto intro!: inj_onI) | |
| 548 | apply (metis fun_upd_same) | |
| 549 | apply (metis assms PiE_arb fun_upd_triv fun_upd_upd) | |
| 550 | done | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 551 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 552 | |
| 58783 | 553 | subsubsection \<open>Cardinality\<close> | 
| 554 | ||
| 555 | lemma finite_PiE: "finite S \<Longrightarrow> (\<And>i. i \<in> S \<Longrightarrow> finite (T i)) \<Longrightarrow> finite (\<Pi>\<^sub>E i \<in> S. T i)" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 556 | by (induct S arbitrary: T rule: finite_induct) (simp_all add: PiE_insert_eq) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 557 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 558 | lemma inj_combinator: "x \<notin> S \<Longrightarrow> inj_on (\<lambda>(y, g). g(x := y)) (T x \<times> Pi\<^sub>E S T)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 559 | proof (safe intro!: inj_onI ext) | 
| 58783 | 560 | fix f y g z | 
| 561 | assume "x \<notin> S" | |
| 562 | assume fg: "f \<in> Pi\<^sub>E S T" "g \<in> Pi\<^sub>E S T" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 563 | assume "f(x := y) = g(x := z)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 564 | then have *: "\<And>i. (f(x := y)) i = (g(x := z)) i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 565 | unfolding fun_eq_iff by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 566 | from this[of x] show "y = z" by simp | 
| 58783 | 567 | fix i from *[of i] \<open>x \<notin> S\<close> fg show "f i = g i" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 568 | by (auto split: split_if_asm simp: PiE_def extensional_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 569 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 570 | |
| 58783 | 571 | lemma card_PiE: "finite S \<Longrightarrow> card (\<Pi>\<^sub>E i \<in> S. T i) = (\<Prod> i\<in>S. card (T i))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 572 | proof (induct rule: finite_induct) | 
| 58783 | 573 | case empty | 
| 574 | then show ?case by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 575 | next | 
| 58783 | 576 | case (insert x S) | 
| 577 | then show ?case | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 578 | by (simp add: PiE_insert_eq inj_combinator card_image card_cartesian_product) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 579 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 580 | |
| 13586 | 581 | end |