| author | haftmann | 
| Fri, 21 Oct 2005 09:08:42 +0200 | |
| changeset 17943 | 48ec47217fe2 | 
| parent 17589 | 58eeffd73be1 | 
| child 20799 | 46694b230cfb | 
| permissions | -rw-r--r-- | 
| 10213 | 1 | (* Title: HOL/Datatype_Universe.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1993 University of Cambridge | |
| 5 | ||
| 6 | Could <*> be generalized to a general summation (Sigma)? | |
| 7 | *) | |
| 8 | ||
| 15388 | 9 | header{*Analogues of the Cartesian Product and Disjoint Sum for Datatypes*}
 | 
| 10213 | 10 | |
| 15388 | 11 | theory Datatype_Universe | 
| 12 | imports NatArith Sum_Type | |
| 13 | begin | |
| 10213 | 14 | |
| 15 | ||
| 16 | typedef (Node) | |
| 11483 | 17 |   ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
 | 
| 15388 | 18 |     --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*}
 | 
| 19 | by auto | |
| 10213 | 20 | |
| 15388 | 21 | text{*Datatypes will be represented by sets of type @{text node}*}
 | 
| 22 | ||
| 23 | types 'a item        = "('a, unit) node set"
 | |
| 24 |       ('a, 'b) dtree = "('a, 'b) node set"
 | |
| 10213 | 25 | |
| 26 | consts | |
| 27 | apfst :: "['a=>'c, 'a*'b] => 'c*'b" | |
| 28 |   Push      :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
 | |
| 29 | ||
| 30 |   Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
 | |
| 15388 | 31 |   ndepth    :: "('a, 'b) node => nat"
 | 
| 10213 | 32 | |
| 33 |   Atom      :: "('a + nat) => ('a, 'b) dtree"
 | |
| 15388 | 34 |   Leaf      :: "'a => ('a, 'b) dtree"
 | 
| 35 |   Numb      :: "nat => ('a, 'b) dtree"
 | |
| 36 |   Scons     :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
 | |
| 37 |   In0       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 38 |   In1       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 39 |   Lim       :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
 | |
| 10213 | 40 | |
| 15388 | 41 |   ntrunc    :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
 | 
| 10213 | 42 | |
| 15388 | 43 |   uprod     :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | 
| 44 |   usum      :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | |
| 10213 | 45 | |
| 15388 | 46 |   Split     :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | 
| 47 |   Case      :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | |
| 10213 | 48 | |
| 15388 | 49 |   dprod     :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | 
| 10213 | 50 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | 
| 15388 | 51 |   dsum      :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | 
| 10213 | 52 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | 
| 53 | ||
| 54 | ||
| 55 | defs | |
| 56 | ||
| 15388 | 57 | Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" | 
| 10213 | 58 | |
| 59 | (*crude "lists" of nats -- needed for the constructions*) | |
| 15388 | 60 | apfst_def: "apfst == (%f (x,y). (f(x),y))" | 
| 61 | Push_def: "Push == (%b h. nat_case b h)" | |
| 10213 | 62 | |
| 63 | (** operations on S-expressions -- sets of nodes **) | |
| 64 | ||
| 65 | (*S-expression constructors*) | |
| 15388 | 66 |   Atom_def:   "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
 | 
| 67 | Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)" | |
| 10213 | 68 | |
| 69 | (*Leaf nodes, with arbitrary or nat labels*) | |
| 15388 | 70 | Leaf_def: "Leaf == Atom o Inl" | 
| 71 | Numb_def: "Numb == Atom o Inr" | |
| 10213 | 72 | |
| 73 | (*Injections of the "disjoint sum"*) | |
| 15388 | 74 | In0_def: "In0(M) == Scons (Numb 0) M" | 
| 75 | In1_def: "In1(M) == Scons (Numb 1) M" | |
| 10213 | 76 | |
| 77 | (*Function spaces*) | |
| 15388 | 78 |   Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
 | 
| 10213 | 79 | |
| 80 | (*the set of nodes with depth less than k*) | |
| 15388 | 81 | ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)" | 
| 82 |   ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
 | |
| 10213 | 83 | |
| 84 | (*products and sums for the "universe"*) | |
| 15388 | 85 |   uprod_def:  "uprod A B == UN x:A. UN y:B. { Scons x y }"
 | 
| 86 | usum_def: "usum A B == In0`A Un In1`B" | |
| 10213 | 87 | |
| 88 | (*the corresponding eliminators*) | |
| 15388 | 89 | Split_def: "Split c M == THE u. EX x y. M = Scons x y & u = c x y" | 
| 10213 | 90 | |
| 15388 | 91 | Case_def: "Case c d M == THE u. (EX x . M = In0(x) & u = c(x)) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
10832diff
changeset | 92 | | (EX y . M = In1(y) & u = d(y))" | 
| 10213 | 93 | |
| 94 | ||
| 95 | (** equality for the "universe" **) | |
| 96 | ||
| 15388 | 97 |   dprod_def:  "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
 | 
| 10213 | 98 | |
| 15388 | 99 |   dsum_def:   "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
 | 
| 10213 | 100 |                           (UN (y,y'):s. {(In1(y),In1(y'))})"
 | 
| 101 | ||
| 15388 | 102 | |
| 103 | ||
| 104 | (** apfst -- can be used in similar type definitions **) | |
| 105 | ||
| 106 | lemma apfst_conv [simp]: "apfst f (a,b) = (f(a),b)" | |
| 107 | by (simp add: apfst_def) | |
| 108 | ||
| 109 | ||
| 110 | lemma apfst_convE: | |
| 111 | "[| q = apfst f p; !!x y. [| p = (x,y); q = (f(x),y) |] ==> R | |
| 112 | |] ==> R" | |
| 113 | by (force simp add: apfst_def) | |
| 114 | ||
| 115 | (** Push -- an injection, analogous to Cons on lists **) | |
| 116 | ||
| 117 | lemma Push_inject1: "Push i f = Push j g ==> i=j" | |
| 118 | apply (simp add: Push_def expand_fun_eq) | |
| 119 | apply (drule_tac x=0 in spec, simp) | |
| 120 | done | |
| 121 | ||
| 122 | lemma Push_inject2: "Push i f = Push j g ==> f=g" | |
| 123 | apply (auto simp add: Push_def expand_fun_eq) | |
| 124 | apply (drule_tac x="Suc x" in spec, simp) | |
| 125 | done | |
| 126 | ||
| 127 | lemma Push_inject: | |
| 128 | "[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P" | |
| 129 | by (blast dest: Push_inject1 Push_inject2) | |
| 130 | ||
| 131 | lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P" | |
| 132 | by (auto simp add: Push_def expand_fun_eq split: nat.split_asm) | |
| 133 | ||
| 15413 | 134 | lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard] | 
| 15388 | 135 | |
| 136 | ||
| 137 | (*** Introduction rules for Node ***) | |
| 138 | ||
| 139 | lemma Node_K0_I: "(%k. Inr 0, a) : Node" | |
| 140 | by (simp add: Node_def) | |
| 141 | ||
| 15413 | 142 | lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node" | 
| 15388 | 143 | apply (simp add: Node_def Push_def) | 
| 144 | apply (fast intro!: apfst_conv nat_case_Suc [THEN trans]) | |
| 145 | done | |
| 146 | ||
| 147 | ||
| 17472 | 148 | subsection{*Freeness: Distinctness of Constructors*}
 | 
| 15388 | 149 | |
| 150 | (** Scons vs Atom **) | |
| 151 | ||
| 152 | lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)" | |
| 153 | apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def) | |
| 154 | apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] | |
| 155 | dest!: Abs_Node_inj | |
| 156 | elim!: apfst_convE sym [THEN Push_neq_K0]) | |
| 157 | done | |
| 158 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 159 | lemmas Atom_not_Scons = Scons_not_Atom [THEN not_sym, standard] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 160 | declare Atom_not_Scons [iff] | 
| 15388 | 161 | |
| 162 | (*** Injectiveness ***) | |
| 163 | ||
| 164 | (** Atomic nodes **) | |
| 165 | ||
| 166 | lemma inj_Atom: "inj(Atom)" | |
| 167 | apply (simp add: Atom_def) | |
| 168 | apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj) | |
| 169 | done | |
| 170 | lemmas Atom_inject = inj_Atom [THEN injD, standard] | |
| 171 | ||
| 172 | lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)" | |
| 173 | by (blast dest!: Atom_inject) | |
| 174 | ||
| 175 | lemma inj_Leaf: "inj(Leaf)" | |
| 176 | apply (simp add: Leaf_def o_def) | |
| 177 | apply (rule inj_onI) | |
| 178 | apply (erule Atom_inject [THEN Inl_inject]) | |
| 179 | done | |
| 180 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 181 | lemmas Leaf_inject = inj_Leaf [THEN injD, standard] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 182 | declare Leaf_inject [dest!] | 
| 15388 | 183 | |
| 184 | lemma inj_Numb: "inj(Numb)" | |
| 185 | apply (simp add: Numb_def o_def) | |
| 186 | apply (rule inj_onI) | |
| 187 | apply (erule Atom_inject [THEN Inr_inject]) | |
| 188 | done | |
| 189 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 190 | lemmas Numb_inject = inj_Numb [THEN injD, standard] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 191 | declare Numb_inject [dest!] | 
| 15388 | 192 | |
| 193 | ||
| 194 | (** Injectiveness of Push_Node **) | |
| 195 | ||
| 196 | lemma Push_Node_inject: | |
| 197 | "[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P | |
| 198 | |] ==> P" | |
| 199 | apply (simp add: Push_Node_def) | |
| 200 | apply (erule Abs_Node_inj [THEN apfst_convE]) | |
| 201 | apply (rule Rep_Node [THEN Node_Push_I])+ | |
| 202 | apply (erule sym [THEN apfst_convE]) | |
| 15413 | 203 | apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject) | 
| 15388 | 204 | done | 
| 205 | ||
| 206 | ||
| 207 | (** Injectiveness of Scons **) | |
| 208 | ||
| 209 | lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'" | |
| 210 | apply (simp add: Scons_def One_nat_def) | |
| 211 | apply (blast dest!: Push_Node_inject) | |
| 212 | done | |
| 213 | ||
| 214 | lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'" | |
| 215 | apply (simp add: Scons_def One_nat_def) | |
| 216 | apply (blast dest!: Push_Node_inject) | |
| 217 | done | |
| 218 | ||
| 219 | lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'" | |
| 220 | apply (erule equalityE) | |
| 17589 | 221 | apply (iprover intro: equalityI Scons_inject_lemma1) | 
| 15388 | 222 | done | 
| 223 | ||
| 224 | lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'" | |
| 225 | apply (erule equalityE) | |
| 17589 | 226 | apply (iprover intro: equalityI Scons_inject_lemma2) | 
| 15388 | 227 | done | 
| 228 | ||
| 229 | lemma Scons_inject: | |
| 230 | "[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P" | |
| 17589 | 231 | by (iprover dest: Scons_inject1 Scons_inject2) | 
| 15388 | 232 | |
| 233 | lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')" | |
| 234 | by (blast elim!: Scons_inject) | |
| 235 | ||
| 236 | (*** Distinctness involving Leaf and Numb ***) | |
| 237 | ||
| 238 | (** Scons vs Leaf **) | |
| 239 | ||
| 240 | lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)" | |
| 241 | by (simp add: Leaf_def o_def Scons_not_Atom) | |
| 242 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 243 | lemmas Leaf_not_Scons = Scons_not_Leaf [THEN not_sym, standard] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 244 | declare Leaf_not_Scons [iff] | 
| 15388 | 245 | |
| 246 | (** Scons vs Numb **) | |
| 247 | ||
| 248 | lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)" | |
| 249 | by (simp add: Numb_def o_def Scons_not_Atom) | |
| 250 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 251 | lemmas Numb_not_Scons = Scons_not_Numb [THEN not_sym, standard] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 252 | declare Numb_not_Scons [iff] | 
| 15388 | 253 | |
| 254 | ||
| 255 | (** Leaf vs Numb **) | |
| 256 | ||
| 257 | lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)" | |
| 258 | by (simp add: Leaf_def Numb_def) | |
| 259 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 260 | lemmas Numb_not_Leaf = Leaf_not_Numb [THEN not_sym, standard] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 261 | declare Numb_not_Leaf [iff] | 
| 15388 | 262 | |
| 263 | ||
| 264 | (*** ndepth -- the depth of a node ***) | |
| 265 | ||
| 266 | lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0" | |
| 267 | by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality) | |
| 268 | ||
| 269 | lemma ndepth_Push_Node_aux: | |
| 270 | "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k" | |
| 271 | apply (induct_tac "k", auto) | |
| 272 | apply (erule Least_le) | |
| 273 | done | |
| 274 | ||
| 275 | lemma ndepth_Push_Node: | |
| 276 | "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))" | |
| 277 | apply (insert Rep_Node [of n, unfolded Node_def]) | |
| 278 | apply (auto simp add: ndepth_def Push_Node_def | |
| 279 | Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse]) | |
| 280 | apply (rule Least_equality) | |
| 281 | apply (auto simp add: Push_def ndepth_Push_Node_aux) | |
| 282 | apply (erule LeastI) | |
| 283 | done | |
| 284 | ||
| 285 | ||
| 286 | (*** ntrunc applied to the various node sets ***) | |
| 287 | ||
| 288 | lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
 | |
| 289 | by (simp add: ntrunc_def) | |
| 290 | ||
| 291 | lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)" | |
| 292 | by (auto simp add: Atom_def ntrunc_def ndepth_K0) | |
| 293 | ||
| 294 | lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)" | |
| 295 | by (simp add: Leaf_def o_def ntrunc_Atom) | |
| 296 | ||
| 297 | lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)" | |
| 298 | by (simp add: Numb_def o_def ntrunc_Atom) | |
| 299 | ||
| 300 | lemma ntrunc_Scons [simp]: | |
| 301 | "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)" | |
| 302 | by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node) | |
| 303 | ||
| 304 | ||
| 305 | ||
| 306 | (** Injection nodes **) | |
| 307 | ||
| 308 | lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
 | |
| 309 | apply (simp add: In0_def) | |
| 310 | apply (simp add: Scons_def) | |
| 311 | done | |
| 312 | ||
| 313 | lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)" | |
| 314 | by (simp add: In0_def) | |
| 315 | ||
| 316 | lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
 | |
| 317 | apply (simp add: In1_def) | |
| 318 | apply (simp add: Scons_def) | |
| 319 | done | |
| 320 | ||
| 321 | lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)" | |
| 322 | by (simp add: In1_def) | |
| 323 | ||
| 324 | ||
| 325 | subsection{*Set Constructions*}
 | |
| 326 | ||
| 327 | ||
| 328 | (*** Cartesian Product ***) | |
| 329 | ||
| 330 | lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B" | |
| 331 | by (simp add: uprod_def) | |
| 332 | ||
| 333 | (*The general elimination rule*) | |
| 334 | lemma uprodE [elim!]: | |
| 335 | "[| c : uprod A B; | |
| 336 | !!x y. [| x:A; y:B; c = Scons x y |] ==> P | |
| 337 | |] ==> P" | |
| 338 | by (auto simp add: uprod_def) | |
| 339 | ||
| 340 | ||
| 341 | (*Elimination of a pair -- introduces no eigenvariables*) | |
| 342 | lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P" | |
| 343 | by (auto simp add: uprod_def) | |
| 344 | ||
| 345 | ||
| 346 | (*** Disjoint Sum ***) | |
| 347 | ||
| 348 | lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B" | |
| 349 | by (simp add: usum_def) | |
| 350 | ||
| 351 | lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B" | |
| 352 | by (simp add: usum_def) | |
| 353 | ||
| 354 | lemma usumE [elim!]: | |
| 355 | "[| u : usum A B; | |
| 356 | !!x. [| x:A; u=In0(x) |] ==> P; | |
| 357 | !!y. [| y:B; u=In1(y) |] ==> P | |
| 358 | |] ==> P" | |
| 359 | by (auto simp add: usum_def) | |
| 360 | ||
| 361 | ||
| 362 | (** Injection **) | |
| 363 | ||
| 364 | lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)" | |
| 365 | by (auto simp add: In0_def In1_def One_nat_def) | |
| 366 | ||
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 367 | lemmas In1_not_In0 = In0_not_In1 [THEN not_sym, standard] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
15413diff
changeset | 368 | declare In1_not_In0 [iff] | 
| 15388 | 369 | |
| 370 | lemma In0_inject: "In0(M) = In0(N) ==> M=N" | |
| 371 | by (simp add: In0_def) | |
| 372 | ||
| 373 | lemma In1_inject: "In1(M) = In1(N) ==> M=N" | |
| 374 | by (simp add: In1_def) | |
| 375 | ||
| 376 | lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)" | |
| 377 | by (blast dest!: In0_inject) | |
| 378 | ||
| 379 | lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)" | |
| 380 | by (blast dest!: In1_inject) | |
| 381 | ||
| 382 | lemma inj_In0: "inj In0" | |
| 383 | by (blast intro!: inj_onI) | |
| 384 | ||
| 385 | lemma inj_In1: "inj In1" | |
| 386 | by (blast intro!: inj_onI) | |
| 387 | ||
| 388 | ||
| 389 | (*** Function spaces ***) | |
| 390 | ||
| 391 | lemma Lim_inject: "Lim f = Lim g ==> f = g" | |
| 392 | apply (simp add: Lim_def) | |
| 393 | apply (rule ext) | |
| 394 | apply (blast elim!: Push_Node_inject) | |
| 395 | done | |
| 396 | ||
| 397 | ||
| 398 | (*** proving equality of sets and functions using ntrunc ***) | |
| 399 | ||
| 400 | lemma ntrunc_subsetI: "ntrunc k M <= M" | |
| 401 | by (auto simp add: ntrunc_def) | |
| 402 | ||
| 403 | lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N" | |
| 404 | by (auto simp add: ntrunc_def) | |
| 405 | ||
| 406 | (*A generalized form of the take-lemma*) | |
| 407 | lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N" | |
| 408 | apply (rule equalityI) | |
| 409 | apply (rule_tac [!] ntrunc_subsetD) | |
| 410 | apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) | |
| 411 | done | |
| 412 | ||
| 413 | lemma ntrunc_o_equality: | |
| 414 | "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2" | |
| 415 | apply (rule ntrunc_equality [THEN ext]) | |
| 416 | apply (simp add: expand_fun_eq) | |
| 417 | done | |
| 418 | ||
| 419 | ||
| 420 | (*** Monotonicity ***) | |
| 421 | ||
| 422 | lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'" | |
| 423 | by (simp add: uprod_def, blast) | |
| 424 | ||
| 425 | lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'" | |
| 426 | by (simp add: usum_def, blast) | |
| 427 | ||
| 428 | lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'" | |
| 429 | by (simp add: Scons_def, blast) | |
| 430 | ||
| 431 | lemma In0_mono: "M<=N ==> In0(M) <= In0(N)" | |
| 432 | by (simp add: In0_def subset_refl Scons_mono) | |
| 433 | ||
| 434 | lemma In1_mono: "M<=N ==> In1(M) <= In1(N)" | |
| 435 | by (simp add: In1_def subset_refl Scons_mono) | |
| 436 | ||
| 437 | ||
| 438 | (*** Split and Case ***) | |
| 439 | ||
| 440 | lemma Split [simp]: "Split c (Scons M N) = c M N" | |
| 441 | by (simp add: Split_def) | |
| 442 | ||
| 443 | lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)" | |
| 444 | by (simp add: Case_def) | |
| 445 | ||
| 446 | lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)" | |
| 447 | by (simp add: Case_def) | |
| 448 | ||
| 449 | ||
| 450 | ||
| 451 | (**** UN x. B(x) rules ****) | |
| 452 | ||
| 453 | lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))" | |
| 454 | by (simp add: ntrunc_def, blast) | |
| 455 | ||
| 456 | lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)" | |
| 457 | by (simp add: Scons_def, blast) | |
| 458 | ||
| 459 | lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))" | |
| 460 | by (simp add: Scons_def, blast) | |
| 461 | ||
| 462 | lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))" | |
| 463 | by (simp add: In0_def Scons_UN1_y) | |
| 464 | ||
| 465 | lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))" | |
| 466 | by (simp add: In1_def Scons_UN1_y) | |
| 467 | ||
| 468 | ||
| 469 | (*** Equality for Cartesian Product ***) | |
| 470 | ||
| 471 | lemma dprodI [intro!]: | |
| 472 | "[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s" | |
| 473 | by (auto simp add: dprod_def) | |
| 474 | ||
| 475 | (*The general elimination rule*) | |
| 476 | lemma dprodE [elim!]: | |
| 477 | "[| c : dprod r s; | |
| 478 | !!x y x' y'. [| (x,x') : r; (y,y') : s; | |
| 479 | c = (Scons x y, Scons x' y') |] ==> P | |
| 480 | |] ==> P" | |
| 481 | by (auto simp add: dprod_def) | |
| 482 | ||
| 483 | ||
| 484 | (*** Equality for Disjoint Sum ***) | |
| 485 | ||
| 486 | lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s" | |
| 487 | by (auto simp add: dsum_def) | |
| 488 | ||
| 489 | lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s" | |
| 490 | by (auto simp add: dsum_def) | |
| 491 | ||
| 492 | lemma dsumE [elim!]: | |
| 493 | "[| w : dsum r s; | |
| 494 | !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; | |
| 495 | !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P | |
| 496 | |] ==> P" | |
| 497 | by (auto simp add: dsum_def) | |
| 498 | ||
| 499 | ||
| 500 | (*** Monotonicity ***) | |
| 501 | ||
| 502 | lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'" | |
| 503 | by blast | |
| 504 | ||
| 505 | lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'" | |
| 506 | by blast | |
| 507 | ||
| 508 | ||
| 509 | (*** Bounding theorems ***) | |
| 510 | ||
| 511 | lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)" | |
| 512 | by blast | |
| 513 | ||
| 514 | lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard] | |
| 515 | ||
| 516 | (*Dependent version*) | |
| 517 | lemma dprod_subset_Sigma2: | |
| 518 | "(dprod (Sigma A B) (Sigma C D)) <= | |
| 519 | Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" | |
| 520 | by auto | |
| 521 | ||
| 522 | lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)" | |
| 523 | by blast | |
| 524 | ||
| 525 | lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard] | |
| 526 | ||
| 527 | ||
| 528 | (*** Domain ***) | |
| 529 | ||
| 530 | lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)" | |
| 531 | by auto | |
| 532 | ||
| 533 | lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)" | |
| 534 | by auto | |
| 535 | ||
| 536 | ML | |
| 537 | {*
 | |
| 538 | val apfst_conv = thm "apfst_conv"; | |
| 539 | val apfst_convE = thm "apfst_convE"; | |
| 540 | val Push_inject1 = thm "Push_inject1"; | |
| 541 | val Push_inject2 = thm "Push_inject2"; | |
| 542 | val Push_inject = thm "Push_inject"; | |
| 543 | val Push_neq_K0 = thm "Push_neq_K0"; | |
| 544 | val Abs_Node_inj = thm "Abs_Node_inj"; | |
| 545 | val Node_K0_I = thm "Node_K0_I"; | |
| 546 | val Node_Push_I = thm "Node_Push_I"; | |
| 547 | val Scons_not_Atom = thm "Scons_not_Atom"; | |
| 548 | val Atom_not_Scons = thm "Atom_not_Scons"; | |
| 549 | val inj_Atom = thm "inj_Atom"; | |
| 550 | val Atom_inject = thm "Atom_inject"; | |
| 551 | val Atom_Atom_eq = thm "Atom_Atom_eq"; | |
| 552 | val inj_Leaf = thm "inj_Leaf"; | |
| 553 | val Leaf_inject = thm "Leaf_inject"; | |
| 554 | val inj_Numb = thm "inj_Numb"; | |
| 555 | val Numb_inject = thm "Numb_inject"; | |
| 556 | val Push_Node_inject = thm "Push_Node_inject"; | |
| 557 | val Scons_inject1 = thm "Scons_inject1"; | |
| 558 | val Scons_inject2 = thm "Scons_inject2"; | |
| 559 | val Scons_inject = thm "Scons_inject"; | |
| 560 | val Scons_Scons_eq = thm "Scons_Scons_eq"; | |
| 561 | val Scons_not_Leaf = thm "Scons_not_Leaf"; | |
| 562 | val Leaf_not_Scons = thm "Leaf_not_Scons"; | |
| 563 | val Scons_not_Numb = thm "Scons_not_Numb"; | |
| 564 | val Numb_not_Scons = thm "Numb_not_Scons"; | |
| 565 | val Leaf_not_Numb = thm "Leaf_not_Numb"; | |
| 566 | val Numb_not_Leaf = thm "Numb_not_Leaf"; | |
| 567 | val ndepth_K0 = thm "ndepth_K0"; | |
| 568 | val ndepth_Push_Node_aux = thm "ndepth_Push_Node_aux"; | |
| 569 | val ndepth_Push_Node = thm "ndepth_Push_Node"; | |
| 570 | val ntrunc_0 = thm "ntrunc_0"; | |
| 571 | val ntrunc_Atom = thm "ntrunc_Atom"; | |
| 572 | val ntrunc_Leaf = thm "ntrunc_Leaf"; | |
| 573 | val ntrunc_Numb = thm "ntrunc_Numb"; | |
| 574 | val ntrunc_Scons = thm "ntrunc_Scons"; | |
| 575 | val ntrunc_one_In0 = thm "ntrunc_one_In0"; | |
| 576 | val ntrunc_In0 = thm "ntrunc_In0"; | |
| 577 | val ntrunc_one_In1 = thm "ntrunc_one_In1"; | |
| 578 | val ntrunc_In1 = thm "ntrunc_In1"; | |
| 579 | val uprodI = thm "uprodI"; | |
| 580 | val uprodE = thm "uprodE"; | |
| 581 | val uprodE2 = thm "uprodE2"; | |
| 582 | val usum_In0I = thm "usum_In0I"; | |
| 583 | val usum_In1I = thm "usum_In1I"; | |
| 584 | val usumE = thm "usumE"; | |
| 585 | val In0_not_In1 = thm "In0_not_In1"; | |
| 586 | val In1_not_In0 = thm "In1_not_In0"; | |
| 587 | val In0_inject = thm "In0_inject"; | |
| 588 | val In1_inject = thm "In1_inject"; | |
| 589 | val In0_eq = thm "In0_eq"; | |
| 590 | val In1_eq = thm "In1_eq"; | |
| 591 | val inj_In0 = thm "inj_In0"; | |
| 592 | val inj_In1 = thm "inj_In1"; | |
| 593 | val Lim_inject = thm "Lim_inject"; | |
| 594 | val ntrunc_subsetI = thm "ntrunc_subsetI"; | |
| 595 | val ntrunc_subsetD = thm "ntrunc_subsetD"; | |
| 596 | val ntrunc_equality = thm "ntrunc_equality"; | |
| 597 | val ntrunc_o_equality = thm "ntrunc_o_equality"; | |
| 598 | val uprod_mono = thm "uprod_mono"; | |
| 599 | val usum_mono = thm "usum_mono"; | |
| 600 | val Scons_mono = thm "Scons_mono"; | |
| 601 | val In0_mono = thm "In0_mono"; | |
| 602 | val In1_mono = thm "In1_mono"; | |
| 603 | val Split = thm "Split"; | |
| 604 | val Case_In0 = thm "Case_In0"; | |
| 605 | val Case_In1 = thm "Case_In1"; | |
| 606 | val ntrunc_UN1 = thm "ntrunc_UN1"; | |
| 607 | val Scons_UN1_x = thm "Scons_UN1_x"; | |
| 608 | val Scons_UN1_y = thm "Scons_UN1_y"; | |
| 609 | val In0_UN1 = thm "In0_UN1"; | |
| 610 | val In1_UN1 = thm "In1_UN1"; | |
| 611 | val dprodI = thm "dprodI"; | |
| 612 | val dprodE = thm "dprodE"; | |
| 613 | val dsum_In0I = thm "dsum_In0I"; | |
| 614 | val dsum_In1I = thm "dsum_In1I"; | |
| 615 | val dsumE = thm "dsumE"; | |
| 616 | val dprod_mono = thm "dprod_mono"; | |
| 617 | val dsum_mono = thm "dsum_mono"; | |
| 618 | val dprod_Sigma = thm "dprod_Sigma"; | |
| 619 | val dprod_subset_Sigma = thm "dprod_subset_Sigma"; | |
| 620 | val dprod_subset_Sigma2 = thm "dprod_subset_Sigma2"; | |
| 621 | val dsum_Sigma = thm "dsum_Sigma"; | |
| 622 | val dsum_subset_Sigma = thm "dsum_subset_Sigma"; | |
| 623 | val Domain_dprod = thm "Domain_dprod"; | |
| 624 | val Domain_dsum = thm "Domain_dsum"; | |
| 625 | *} | |
| 626 | ||
| 10213 | 627 | end |