src/HOL/Analysis/Sigma_Algebra.thy
author immler
Wed, 02 May 2018 13:49:38 +0200
changeset 68072 493b818e8e10
parent 67982 7643b005b29a
child 68073 fad29d2a17a5
permissions -rw-r--r--
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63626
diff changeset
     1
(*  Title:      HOL/Analysis/Sigma_Algebra.thy
42067
66c8281349ec standardized headers
hoelzl
parents: 42065
diff changeset
     2
    Author:     Stefan Richter, Markus Wenzel, TU München
66c8281349ec standardized headers
hoelzl
parents: 42065
diff changeset
     3
    Author:     Johannes Hölzl, TU München
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41959
diff changeset
     4
    Plus material from the Hurd/Coble measure theory development,
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41959
diff changeset
     5
    translated by Lawrence Paulson.
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
     6
*)
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
     7
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
     8
section \<open>Sigma Algebra\<close>
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
     9
41413
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41095
diff changeset
    10
theory Sigma_Algebra
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41095
diff changeset
    11
imports
42145
8448713d48b7 proved caratheodory_empty_continuous
hoelzl
parents: 42067
diff changeset
    12
  Complex_Main
66453
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 64008
diff changeset
    13
  "HOL-Library.Countable_Set"
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 64008
diff changeset
    14
  "HOL-Library.Indicator_Function"
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 64008
diff changeset
    15
  "HOL-Library.Extended_Nonnegative_Real"
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 64008
diff changeset
    16
  "HOL-Library.Disjoint_Sets"
41413
64cd30d6b0b8 explicit file specifications -- avoid secondary load path;
wenzelm
parents: 41095
diff changeset
    17
begin
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    18
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
    19
text \<open>Sigma algebras are an elementary concept in measure
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    20
  theory. To measure --- that is to integrate --- functions, we first have
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    21
  to measure sets. Unfortunately, when dealing with a large universe,
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    22
  it is often not possible to consistently assign a measure to every
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    23
  subset. Therefore it is necessary to define the set of measurable
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    24
  subsets of the universe. A sigma algebra is such a set that has
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
    25
  three very natural and desirable properties.\<close>
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    26
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
    27
subsection \<open>Families of sets\<close>
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    28
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
    29
locale%important subset_class =
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
    30
  fixes \<Omega> :: "'a set" and M :: "'a set set"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
    31
  assumes space_closed: "M \<subseteq> Pow \<Omega>"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    32
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
    33
lemma (in subset_class) sets_into_space: "x \<in> M \<Longrightarrow> x \<subseteq> \<Omega>"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    34
  by (metis PowD contra_subsetD space_closed)
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    35
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
    36
subsubsection \<open>Semiring of sets\<close>
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    37
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
    38
locale%important semiring_of_sets = subset_class +
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    39
  assumes empty_sets[iff]: "{} \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    40
  assumes Int[intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<inter> b \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    41
  assumes Diff_cover:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    42
    "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> \<exists>C\<subseteq>M. finite C \<and> disjoint C \<and> a - b = \<Union>C"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    43
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    44
lemma (in semiring_of_sets) finite_INT[intro]:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    45
  assumes "finite I" "I \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    46
  shows "(\<Inter>i\<in>I. A i) \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    47
  using assms by (induct rule: finite_ne_induct) auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    48
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    49
lemma (in semiring_of_sets) Int_space_eq1 [simp]: "x \<in> M \<Longrightarrow> \<Omega> \<inter> x = x"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    50
  by (metis Int_absorb1 sets_into_space)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    51
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    52
lemma (in semiring_of_sets) Int_space_eq2 [simp]: "x \<in> M \<Longrightarrow> x \<inter> \<Omega> = x"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    53
  by (metis Int_absorb2 sets_into_space)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    54
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    55
lemma (in semiring_of_sets) sets_Collect_conj:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    56
  assumes "{x\<in>\<Omega>. P x} \<in> M" "{x\<in>\<Omega>. Q x} \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    57
  shows "{x\<in>\<Omega>. Q x \<and> P x} \<in> M"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    58
proof -
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    59
  have "{x\<in>\<Omega>. Q x \<and> P x} = {x\<in>\<Omega>. Q x} \<inter> {x\<in>\<Omega>. P x}"
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
    60
    by auto
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    61
  with assms show ?thesis by auto
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    62
qed
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    63
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 49834
diff changeset
    64
lemma (in semiring_of_sets) sets_Collect_finite_All':
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    65
  assumes "\<And>i. i \<in> S \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M" "finite S" "S \<noteq> {}"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    66
  shows "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    67
proof -
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    68
  have "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} = (\<Inter>i\<in>S. {x\<in>\<Omega>. P i x})"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
    69
    using \<open>S \<noteq> {}\<close> by auto
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    70
  with assms show ?thesis by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    71
qed
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    72
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
    73
subsubsection \<open>Ring of sets\<close>
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
    74
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
    75
locale%important ring_of_sets = semiring_of_sets +
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    76
  assumes Un [intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<union> b \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    77
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
    78
lemma (in ring_of_sets) finite_Union [intro]:
61952
546958347e05 prefer symbols for "Union", "Inter";
wenzelm
parents: 61847
diff changeset
    79
  "finite X \<Longrightarrow> X \<subseteq> M \<Longrightarrow> \<Union>X \<in> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
    80
  by (induct set: finite) (auto simp add: Un)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
    81
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
    82
lemma (in ring_of_sets) finite_UN[intro]:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
    83
  assumes "finite I" and "\<And>i. i \<in> I \<Longrightarrow> A i \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
    84
  shows "(\<Union>i\<in>I. A i) \<in> M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41959
diff changeset
    85
  using assms by induct auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41959
diff changeset
    86
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    87
lemma (in ring_of_sets) Diff [intro]:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    88
  assumes "a \<in> M" "b \<in> M" shows "a - b \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    89
  using Diff_cover[OF assms] by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    90
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    91
lemma ring_of_setsI:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    92
  assumes space_closed: "M \<subseteq> Pow \<Omega>"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    93
  assumes empty_sets[iff]: "{} \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    94
  assumes Un[intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<union> b \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    95
  assumes Diff[intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a - b \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    96
  shows "ring_of_sets \<Omega> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    97
proof
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    98
  fix a b assume ab: "a \<in> M" "b \<in> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
    99
  from ab show "\<exists>C\<subseteq>M. finite C \<and> disjoint C \<and> a - b = \<Union>C"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   100
    by (intro exI[of _ "{a - b}"]) (auto simp: disjoint_def)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   101
  have "a \<inter> b = a - (a - b)" by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   102
  also have "\<dots> \<in> M" using ab by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   103
  finally show "a \<inter> b \<in> M" .
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   104
qed fact+
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   105
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   106
lemma ring_of_sets_iff: "ring_of_sets \<Omega> M \<longleftrightarrow> M \<subseteq> Pow \<Omega> \<and> {} \<in> M \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a \<union> b \<in> M) \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a - b \<in> M)"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   107
proof
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   108
  assume "ring_of_sets \<Omega> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   109
  then interpret ring_of_sets \<Omega> M .
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   110
  show "M \<subseteq> Pow \<Omega> \<and> {} \<in> M \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a \<union> b \<in> M) \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a - b \<in> M)"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   111
    using space_closed by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   112
qed (auto intro!: ring_of_setsI)
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41959
diff changeset
   113
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   114
lemma (in ring_of_sets) insert_in_sets:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   115
  assumes "{x} \<in> M" "A \<in> M" shows "insert x A \<in> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   116
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   117
  have "{x} \<union> A \<in> M" using assms by (rule Un)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   118
  thus ?thesis by auto
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   119
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   120
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   121
lemma (in ring_of_sets) sets_Collect_disj:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   122
  assumes "{x\<in>\<Omega>. P x} \<in> M" "{x\<in>\<Omega>. Q x} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   123
  shows "{x\<in>\<Omega>. Q x \<or> P x} \<in> M"
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   124
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   125
  have "{x\<in>\<Omega>. Q x \<or> P x} = {x\<in>\<Omega>. Q x} \<union> {x\<in>\<Omega>. P x}"
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   126
    by auto
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   127
  with assms show ?thesis by auto
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   128
qed
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   129
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   130
lemma (in ring_of_sets) sets_Collect_finite_Ex:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   131
  assumes "\<And>i. i \<in> S \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M" "finite S"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   132
  shows "{x\<in>\<Omega>. \<exists>i\<in>S. P i x} \<in> M"
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   133
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   134
  have "{x\<in>\<Omega>. \<exists>i\<in>S. P i x} = (\<Union>i\<in>S. {x\<in>\<Omega>. P i x})"
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   135
    by auto
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   136
  with assms show ?thesis by auto
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   137
qed
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   138
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   139
subsubsection \<open>Algebra of sets\<close>
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   140
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   141
locale%important algebra = ring_of_sets +
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   142
  assumes top [iff]: "\<Omega> \<in> M"
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   143
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   144
lemma (in algebra) compl_sets [intro]:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   145
  "a \<in> M \<Longrightarrow> \<Omega> - a \<in> M"
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   146
  by auto
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   147
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   148
lemma%important algebra_iff_Un:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   149
  "algebra \<Omega> M \<longleftrightarrow>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   150
    M \<subseteq> Pow \<Omega> \<and>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   151
    {} \<in> M \<and>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   152
    (\<forall>a \<in> M. \<Omega> - a \<in> M) \<and>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   153
    (\<forall>a \<in> M. \<forall> b \<in> M. a \<union> b \<in> M)" (is "_ \<longleftrightarrow> ?Un")
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   154
proof%unimportant
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   155
  assume "algebra \<Omega> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   156
  then interpret algebra \<Omega> M .
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   157
  show ?Un using sets_into_space by auto
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   158
next
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   159
  assume ?Un
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   160
  then have "\<Omega> \<in> M" by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   161
  interpret ring_of_sets \<Omega> M
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   162
  proof (rule ring_of_setsI)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   163
    show \<Omega>: "M \<subseteq> Pow \<Omega>" "{} \<in> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   164
      using \<open>?Un\<close> by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   165
    fix a b assume a: "a \<in> M" and b: "b \<in> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   166
    then show "a \<union> b \<in> M" using \<open>?Un\<close> by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   167
    have "a - b = \<Omega> - ((\<Omega> - a) \<union> b)"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   168
      using \<Omega> a b by auto
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   169
    then show "a - b \<in> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   170
      using a b  \<open>?Un\<close> by auto
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   171
  qed
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   172
  show "algebra \<Omega> M" proof qed fact
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   173
qed
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   174
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   175
lemma%important algebra_iff_Int:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   176
     "algebra \<Omega> M \<longleftrightarrow>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   177
       M \<subseteq> Pow \<Omega> & {} \<in> M &
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   178
       (\<forall>a \<in> M. \<Omega> - a \<in> M) &
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   179
       (\<forall>a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)" (is "_ \<longleftrightarrow> ?Int")
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   180
proof%unimportant
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   181
  assume "algebra \<Omega> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   182
  then interpret algebra \<Omega> M .
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   183
  show ?Int using sets_into_space by auto
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   184
next
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   185
  assume ?Int
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   186
  show "algebra \<Omega> M"
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   187
  proof (unfold algebra_iff_Un, intro conjI ballI)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   188
    show \<Omega>: "M \<subseteq> Pow \<Omega>" "{} \<in> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   189
      using \<open>?Int\<close> by auto
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   190
    from \<open>?Int\<close> show "\<And>a. a \<in> M \<Longrightarrow> \<Omega> - a \<in> M" by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   191
    fix a b assume M: "a \<in> M" "b \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   192
    hence "a \<union> b = \<Omega> - ((\<Omega> - a) \<inter> (\<Omega> - b))"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   193
      using \<Omega> by blast
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   194
    also have "... \<in> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   195
      using M \<open>?Int\<close> by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   196
    finally show "a \<union> b \<in> M" .
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   197
  qed
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   198
qed
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   199
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   200
lemma (in algebra) sets_Collect_neg:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   201
  assumes "{x\<in>\<Omega>. P x} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   202
  shows "{x\<in>\<Omega>. \<not> P x} \<in> M"
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   203
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   204
  have "{x\<in>\<Omega>. \<not> P x} = \<Omega> - {x\<in>\<Omega>. P x}" by auto
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   205
  with assms show ?thesis by auto
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   206
qed
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   207
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   208
lemma (in algebra) sets_Collect_imp:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   209
  "{x\<in>\<Omega>. P x} \<in> M \<Longrightarrow> {x\<in>\<Omega>. Q x} \<in> M \<Longrightarrow> {x\<in>\<Omega>. Q x \<longrightarrow> P x} \<in> M"
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   210
  unfolding imp_conv_disj by (intro sets_Collect_disj sets_Collect_neg)
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   211
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   212
lemma (in algebra) sets_Collect_const:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   213
  "{x\<in>\<Omega>. P} \<in> M"
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   214
  by (cases P) auto
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   215
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   216
lemma algebra_single_set:
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   217
  "X \<subseteq> S \<Longrightarrow> algebra S { {}, X, S - X, S }"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   218
  by (auto simp: algebra_iff_Int)
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   219
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   220
subsubsection%unimportant \<open>Restricted algebras\<close>
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39090
diff changeset
   221
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39090
diff changeset
   222
abbreviation (in algebra)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
   223
  "restricted_space A \<equiv> ((\<inter>) A) ` M"
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39090
diff changeset
   224
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   225
lemma (in algebra) restricted_algebra:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   226
  assumes "A \<in> M" shows "algebra A (restricted_space A)"
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   227
  using assms by (auto simp: algebra_iff_Int)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   228
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   229
subsubsection \<open>Sigma Algebras\<close>
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   230
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   231
locale%important sigma_algebra = algebra +
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   232
  assumes countable_nat_UN [intro]: "\<And>A. range A \<subseteq> M \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   233
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   234
lemma (in algebra) is_sigma_algebra:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   235
  assumes "finite M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   236
  shows "sigma_algebra \<Omega> M"
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   237
proof
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   238
  fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   239
  then have "(\<Union>i. A i) = (\<Union>s\<in>M \<inter> range A. s)"
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   240
    by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   241
  also have "(\<Union>s\<in>M \<inter> range A. s) \<in> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   242
    using \<open>finite M\<close> by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   243
  finally show "(\<Union>i. A i) \<in> M" .
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   244
qed
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   245
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   246
lemma countable_UN_eq:
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   247
  fixes A :: "'i::countable \<Rightarrow> 'a set"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   248
  shows "(range A \<subseteq> M \<longrightarrow> (\<Union>i. A i) \<in> M) \<longleftrightarrow>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   249
    (range (A \<circ> from_nat) \<subseteq> M \<longrightarrow> (\<Union>i. (A \<circ> from_nat) i) \<in> M)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   250
proof -
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   251
  let ?A' = "A \<circ> from_nat"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   252
  have *: "(\<Union>i. ?A' i) = (\<Union>i. A i)" (is "?l = ?r")
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   253
  proof safe
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   254
    fix x i assume "x \<in> A i" thus "x \<in> ?l"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   255
      by (auto intro!: exI[of _ "to_nat i"])
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   256
  next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   257
    fix x i assume "x \<in> ?A' i" thus "x \<in> ?r"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   258
      by (auto intro!: exI[of _ "from_nat i"])
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   259
  qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   260
  have **: "range ?A' = range A"
40702
cf26dd7395e4 Replace surj by abbreviation; remove surj_on.
hoelzl
parents: 39960
diff changeset
   261
    using surj_from_nat
56154
f0a927235162 more complete set of lemmas wrt. image and composition
haftmann
parents: 54420
diff changeset
   262
    by (auto simp: image_comp [symmetric] intro!: imageI)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   263
  show ?thesis unfolding * ** ..
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   264
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   265
50245
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   266
lemma (in sigma_algebra) countable_Union [intro]:
61952
546958347e05 prefer symbols for "Union", "Inter";
wenzelm
parents: 61847
diff changeset
   267
  assumes "countable X" "X \<subseteq> M" shows "\<Union>X \<in> M"
50245
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   268
proof cases
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   269
  assume "X \<noteq> {}"
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   270
  hence "\<Union>X = (\<Union>n. from_nat_into X n)"
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   271
    using assms by (auto intro: from_nat_into) (metis from_nat_into_surj)
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   272
  also have "\<dots> \<in> M" using assms
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   273
    by (auto intro!: countable_nat_UN) (metis \<open>X \<noteq> {}\<close> from_nat_into set_mp)
50245
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   274
  finally show ?thesis .
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   275
qed simp
dea9363887a6 based countable topological basis on Countable_Set
immler
parents: 50244
diff changeset
   276
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   277
lemma (in sigma_algebra) countable_UN[intro]:
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   278
  fixes A :: "'i::countable \<Rightarrow> 'a set"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   279
  assumes "A`X \<subseteq> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   280
  shows  "(\<Union>x\<in>X. A x) \<in> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   281
proof -
46731
5302e932d1e5 avoid undeclared variables in let bindings;
wenzelm
parents: 44890
diff changeset
   282
  let ?A = "\<lambda>i. if i \<in> X then A i else {}"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   283
  from assms have "range ?A \<subseteq> M" by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   284
  with countable_nat_UN[of "?A \<circ> from_nat"] countable_UN_eq[of ?A M]
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   285
  have "(\<Union>x. ?A x) \<in> M" by auto
62390
842917225d56 more canonical names
nipkow
parents: 62343
diff changeset
   286
  moreover have "(\<Union>x. ?A x) = (\<Union>x\<in>X. A x)" by (auto split: if_split_asm)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   287
  ultimately show ?thesis by simp
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   288
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   289
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   290
lemma (in sigma_algebra) countable_UN':
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   291
  fixes A :: "'i \<Rightarrow> 'a set"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   292
  assumes X: "countable X"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   293
  assumes A: "A`X \<subseteq> M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   294
  shows  "(\<Union>x\<in>X. A x) \<in> M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   295
proof -
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   296
  have "(\<Union>x\<in>X. A x) = (\<Union>i\<in>to_nat_on X ` X. A (from_nat_into X i))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   297
    using X by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   298
  also have "\<dots> \<in> M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   299
    using A X
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   300
    by (intro countable_UN) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   301
  finally show ?thesis .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   302
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   303
61633
64e6d712af16 add lemmas
Andreas Lochbihler
parents: 61610
diff changeset
   304
lemma (in sigma_algebra) countable_UN'':
64e6d712af16 add lemmas
Andreas Lochbihler
parents: 61610
diff changeset
   305
  "\<lbrakk> countable X; \<And>x y. x \<in> X \<Longrightarrow> A x \<in> M \<rbrakk> \<Longrightarrow> (\<Union>x\<in>X. A x) \<in> M"
64e6d712af16 add lemmas
Andreas Lochbihler
parents: 61610
diff changeset
   306
by(erule countable_UN')(auto)
64e6d712af16 add lemmas
Andreas Lochbihler
parents: 61610
diff changeset
   307
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents: 33271
diff changeset
   308
lemma (in sigma_algebra) countable_INT [intro]:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   309
  fixes A :: "'i::countable \<Rightarrow> 'a set"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   310
  assumes A: "A`X \<subseteq> M" "X \<noteq> {}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   311
  shows "(\<Inter>i\<in>X. A i) \<in> M"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   312
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   313
  from A have "\<forall>i\<in>X. A i \<in> M" by fast
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   314
  hence "\<Omega> - (\<Union>i\<in>X. \<Omega> - A i) \<in> M" by blast
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   315
  moreover
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   316
  have "(\<Inter>i\<in>X. A i) = \<Omega> - (\<Union>i\<in>X. \<Omega> - A i)" using space_closed A
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   317
    by blast
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   318
  ultimately show ?thesis by metis
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   319
qed
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   320
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   321
lemma (in sigma_algebra) countable_INT':
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   322
  fixes A :: "'i \<Rightarrow> 'a set"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   323
  assumes X: "countable X" "X \<noteq> {}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   324
  assumes A: "A`X \<subseteq> M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   325
  shows  "(\<Inter>x\<in>X. A x) \<in> M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   326
proof -
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   327
  have "(\<Inter>x\<in>X. A x) = (\<Inter>i\<in>to_nat_on X ` X. A (from_nat_into X i))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   328
    using X by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   329
  also have "\<dots> \<in> M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   330
    using A X
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   331
    by (intro countable_INT) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   332
  finally show ?thesis .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   333
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   334
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
   335
lemma (in sigma_algebra) countable_INT'':
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
   336
  "UNIV \<in> M \<Longrightarrow> countable I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i \<in> M) \<Longrightarrow> (\<Inter>i\<in>I. F i) \<in> M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
   337
  by (cases "I = {}") (auto intro: countable_INT')
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   338
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   339
lemma (in sigma_algebra) countable:
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   340
  assumes "\<And>a. a \<in> A \<Longrightarrow> {a} \<in> M" "countable A"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   341
  shows "A \<in> M"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   342
proof -
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   343
  have "(\<Union>a\<in>A. {a}) \<in> M"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   344
    using assms by (intro countable_UN') auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   345
  also have "(\<Union>a\<in>A. {a}) = A" by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   346
  finally show ?thesis by auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   347
qed
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57138
diff changeset
   348
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   349
lemma ring_of_sets_Pow: "ring_of_sets sp (Pow sp)"
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   350
  by (auto simp: ring_of_sets_iff)
42145
8448713d48b7 proved caratheodory_empty_continuous
hoelzl
parents: 42067
diff changeset
   351
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   352
lemma algebra_Pow: "algebra sp (Pow sp)"
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   353
  by (auto simp: algebra_iff_Un)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   354
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   355
lemma sigma_algebra_iff:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   356
  "sigma_algebra \<Omega> M \<longleftrightarrow>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   357
    algebra \<Omega> M \<and> (\<forall>A. range A \<subseteq> M \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   358
  by (simp add: sigma_algebra_def sigma_algebra_axioms_def)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   359
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   360
lemma sigma_algebra_Pow: "sigma_algebra sp (Pow sp)"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   361
  by (auto simp: sigma_algebra_iff algebra_iff_Int)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   362
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   363
lemma (in sigma_algebra) sets_Collect_countable_All:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   364
  assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   365
  shows "{x\<in>\<Omega>. \<forall>i::'i::countable. P i x} \<in> M"
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   366
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   367
  have "{x\<in>\<Omega>. \<forall>i::'i::countable. P i x} = (\<Inter>i. {x\<in>\<Omega>. P i x})" by auto
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   368
  with assms show ?thesis by auto
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   369
qed
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   370
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   371
lemma (in sigma_algebra) sets_Collect_countable_Ex:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   372
  assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   373
  shows "{x\<in>\<Omega>. \<exists>i::'i::countable. P i x} \<in> M"
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   374
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   375
  have "{x\<in>\<Omega>. \<exists>i::'i::countable. P i x} = (\<Union>i. {x\<in>\<Omega>. P i x})" by auto
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   376
  with assms show ?thesis by auto
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   377
qed
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   378
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   379
lemma (in sigma_algebra) sets_Collect_countable_Ex':
54418
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   380
  assumes "\<And>i. i \<in> I \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   381
  assumes "countable I"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   382
  shows "{x\<in>\<Omega>. \<exists>i\<in>I. P i x} \<in> M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   383
proof -
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   384
  have "{x\<in>\<Omega>. \<exists>i\<in>I. P i x} = (\<Union>i\<in>I. {x\<in>\<Omega>. P i x})" by auto
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
   385
  with assms show ?thesis
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   386
    by (auto intro!: countable_UN')
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   387
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50387
diff changeset
   388
54418
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   389
lemma (in sigma_algebra) sets_Collect_countable_All':
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   390
  assumes "\<And>i. i \<in> I \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M"
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   391
  assumes "countable I"
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   392
  shows "{x\<in>\<Omega>. \<forall>i\<in>I. P i x} \<in> M"
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   393
proof -
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   394
  have "{x\<in>\<Omega>. \<forall>i\<in>I. P i x} = (\<Inter>i\<in>I. {x\<in>\<Omega>. P i x}) \<inter> \<Omega>" by auto
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
   395
  with assms show ?thesis
54418
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   396
    by (cases "I = {}") (auto intro!: countable_INT')
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   397
qed
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   398
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   399
lemma (in sigma_algebra) sets_Collect_countable_Ex1':
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   400
  assumes "\<And>i. i \<in> I \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M"
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   401
  assumes "countable I"
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   402
  shows "{x\<in>\<Omega>. \<exists>!i\<in>I. P i x} \<in> M"
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   403
proof -
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   404
  have "{x\<in>\<Omega>. \<exists>!i\<in>I. P i x} = {x\<in>\<Omega>. \<exists>i\<in>I. P i x \<and> (\<forall>j\<in>I. P j x \<longrightarrow> i = j)}"
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   405
    by auto
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
   406
  with assms show ?thesis
54418
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   407
    by (auto intro!: sets_Collect_countable_All' sets_Collect_countable_Ex' sets_Collect_conj sets_Collect_imp sets_Collect_const)
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   408
qed
3b8e33d1a39a measure of a countable union
hoelzl
parents: 54417
diff changeset
   409
42867
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   410
lemmas (in sigma_algebra) sets_Collect =
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   411
  sets_Collect_imp sets_Collect_disj sets_Collect_conj sets_Collect_neg sets_Collect_const
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   412
  sets_Collect_countable_All sets_Collect_countable_Ex sets_Collect_countable_All
760094e49a2c Collect intro-rules for sigma-algebras
hoelzl
parents: 42864
diff changeset
   413
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   414
lemma (in sigma_algebra) sets_Collect_countable_Ball:
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   415
  assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   416
  shows "{x\<in>\<Omega>. \<forall>i::'i::countable\<in>X. P i x} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   417
  unfolding Ball_def by (intro sets_Collect assms)
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   418
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   419
lemma (in sigma_algebra) sets_Collect_countable_Bex:
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   420
  assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   421
  shows "{x\<in>\<Omega>. \<exists>i::'i::countable\<in>X. P i x} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   422
  unfolding Bex_def by (intro sets_Collect assms)
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   423
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   424
lemma sigma_algebra_single_set:
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   425
  assumes "X \<subseteq> S"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   426
  shows "sigma_algebra S { {}, X, S - X, S }"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   427
  using algebra.is_sigma_algebra[OF algebra_single_set[OF \<open>X \<subseteq> S\<close>]] by simp
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   428
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   429
subsubsection%unimportant \<open>Binary Unions\<close>
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   430
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   431
definition binary :: "'a \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50245
diff changeset
   432
  where "binary a b =  (\<lambda>x. b)(0 := a)"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   433
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   434
lemma range_binary_eq: "range(binary a b) = {a,b}"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   435
  by (auto simp add: binary_def)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   436
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   437
lemma Un_range_binary: "a \<union> b = (\<Union>i::nat. binary a b i)"
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   438
  by (simp add: range_binary_eq cong del: strong_SUP_cong)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   439
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   440
lemma Int_range_binary: "a \<inter> b = (\<Inter>i::nat. binary a b i)"
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   441
  by (simp add: range_binary_eq cong del: strong_INF_cong)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   442
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   443
lemma sigma_algebra_iff2:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   444
     "sigma_algebra \<Omega> M \<longleftrightarrow>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   445
       M \<subseteq> Pow \<Omega> \<and>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   446
       {} \<in> M \<and> (\<forall>s \<in> M. \<Omega> - s \<in> M) \<and>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   447
       (\<forall>A. range A \<subseteq> M \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   448
  by (auto simp add: range_binary_eq sigma_algebra_def sigma_algebra_axioms_def
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   449
         algebra_iff_Un Un_range_binary)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   450
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   451
subsubsection \<open>Initial Sigma Algebra\<close>
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   452
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   453
text%important \<open>Sigma algebras can naturally be created as the closure of any set of
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   454
  M with regard to the properties just postulated.\<close>
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   455
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   456
inductive_set%important sigma_sets :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   457
  for sp :: "'a set" and A :: "'a set set"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   458
  where
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   459
    Basic[intro, simp]: "a \<in> A \<Longrightarrow> a \<in> sigma_sets sp A"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   460
  | Empty: "{} \<in> sigma_sets sp A"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   461
  | Compl: "a \<in> sigma_sets sp A \<Longrightarrow> sp - a \<in> sigma_sets sp A"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   462
  | Union: "(\<And>i::nat. a i \<in> sigma_sets sp A) \<Longrightarrow> (\<Union>i. a i) \<in> sigma_sets sp A"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   463
41543
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   464
lemma (in sigma_algebra) sigma_sets_subset:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   465
  assumes a: "a \<subseteq> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   466
  shows "sigma_sets \<Omega> a \<subseteq> M"
41543
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   467
proof
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   468
  fix x
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   469
  assume "x \<in> sigma_sets \<Omega> a"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   470
  from this show "x \<in> M"
41543
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   471
    by (induct rule: sigma_sets.induct, auto) (metis a subsetD)
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   472
qed
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   473
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   474
lemma sigma_sets_into_sp: "A \<subseteq> Pow sp \<Longrightarrow> x \<in> sigma_sets sp A \<Longrightarrow> x \<subseteq> sp"
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   475
  by (erule sigma_sets.induct, auto)
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   476
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   477
lemma sigma_algebra_sigma_sets:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   478
     "a \<subseteq> Pow \<Omega> \<Longrightarrow> sigma_algebra \<Omega> (sigma_sets \<Omega> a)"
41543
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   479
  by (auto simp add: sigma_algebra_iff2 dest: sigma_sets_into_sp
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   480
           intro!: sigma_sets.Union sigma_sets.Empty sigma_sets.Compl)
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   481
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   482
lemma sigma_sets_least_sigma_algebra:
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   483
  assumes "A \<subseteq> Pow S"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   484
  shows "sigma_sets S A = \<Inter>{B. A \<subseteq> B \<and> sigma_algebra S B}"
41543
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   485
proof safe
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   486
  fix B X assume "A \<subseteq> B" and sa: "sigma_algebra S B"
41543
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   487
    and X: "X \<in> sigma_sets S A"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   488
  from sigma_algebra.sigma_sets_subset[OF sa, simplified, OF \<open>A \<subseteq> B\<close>] X
41543
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   489
  show "X \<in> B" by auto
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   490
next
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   491
  fix X assume "X \<in> \<Inter>{B. A \<subseteq> B \<and> sigma_algebra S B}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   492
  then have [intro!]: "\<And>B. A \<subseteq> B \<Longrightarrow> sigma_algebra S B \<Longrightarrow> X \<in> B"
41543
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   493
     by simp
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   494
  have "A \<subseteq> sigma_sets S A" using assms by auto
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   495
  moreover have "sigma_algebra S (sigma_sets S A)"
41543
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   496
    using assms by (intro sigma_algebra_sigma_sets[of A]) auto
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   497
  ultimately show "X \<in> sigma_sets S A" by auto
646a1399e792 tuned theorem order
hoelzl
parents: 41413
diff changeset
   498
qed
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   499
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   500
lemma sigma_sets_top: "sp \<in> sigma_sets sp A"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   501
  by (metis Diff_empty sigma_sets.Compl sigma_sets.Empty)
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   502
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   503
lemma sigma_sets_Un:
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   504
  "a \<in> sigma_sets sp A \<Longrightarrow> b \<in> sigma_sets sp A \<Longrightarrow> a \<union> b \<in> sigma_sets sp A"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   505
apply (simp add: Un_range_binary range_binary_eq)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   506
apply (rule Union, simp add: binary_def)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   507
done
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   508
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   509
lemma sigma_sets_Inter:
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   510
  assumes Asb: "A \<subseteq> Pow sp"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   511
  shows "(\<And>i::nat. a i \<in> sigma_sets sp A) \<Longrightarrow> (\<Inter>i. a i) \<in> sigma_sets sp A"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   512
proof -
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   513
  assume ai: "\<And>i::nat. a i \<in> sigma_sets sp A"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   514
  hence "\<And>i::nat. sp-(a i) \<in> sigma_sets sp A"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   515
    by (rule sigma_sets.Compl)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   516
  hence "(\<Union>i. sp-(a i)) \<in> sigma_sets sp A"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   517
    by (rule sigma_sets.Union)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   518
  hence "sp-(\<Union>i. sp-(a i)) \<in> sigma_sets sp A"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   519
    by (rule sigma_sets.Compl)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   520
  also have "sp-(\<Union>i. sp-(a i)) = sp Int (\<Inter>i. a i)"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   521
    by auto
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   522
  also have "... = (\<Inter>i. a i)" using ai
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   523
    by (blast dest: sigma_sets_into_sp [OF Asb])
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   524
  finally show ?thesis .
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   525
qed
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   526
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   527
lemma sigma_sets_INTER:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   528
  assumes Asb: "A \<subseteq> Pow sp"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   529
      and ai: "\<And>i::nat. i \<in> S \<Longrightarrow> a i \<in> sigma_sets sp A" and non: "S \<noteq> {}"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   530
  shows "(\<Inter>i\<in>S. a i) \<in> sigma_sets sp A"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   531
proof -
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   532
  from ai have "\<And>i. (if i\<in>S then a i else sp) \<in> sigma_sets sp A"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   533
    by (simp add: sigma_sets.intros(2-) sigma_sets_top)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   534
  hence "(\<Inter>i. (if i\<in>S then a i else sp)) \<in> sigma_sets sp A"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   535
    by (rule sigma_sets_Inter [OF Asb])
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   536
  also have "(\<Inter>i. (if i\<in>S then a i else sp)) = (\<Inter>i\<in>S. a i)"
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   537
    by auto (metis ai non sigma_sets_into_sp subset_empty subset_iff Asb)+
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   538
  finally show ?thesis .
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   539
qed
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   540
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   541
lemma sigma_sets_UNION:
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   542
  "countable B \<Longrightarrow> (\<And>b. b \<in> B \<Longrightarrow> b \<in> sigma_sets X A) \<Longrightarrow> (\<Union>B) \<in> sigma_sets X A"
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 50526
diff changeset
   543
  apply (cases "B = {}")
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 50526
diff changeset
   544
  apply (simp add: sigma_sets.Empty)
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   545
  using from_nat_into [of B] range_from_nat_into [of B] sigma_sets.Union [of "from_nat_into B" X A]
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   546
  apply simp
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   547
  apply auto
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 63040
diff changeset
   548
  apply (metis Sup_bot_conv(1) Union_empty \<open>\<lbrakk>B \<noteq> {}; countable B\<rbrakk> \<Longrightarrow> range (from_nat_into B) = B\<close>)
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 50526
diff changeset
   549
  done
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 50526
diff changeset
   550
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   551
lemma (in sigma_algebra) sigma_sets_eq:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   552
     "sigma_sets \<Omega> M = M"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   553
proof
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   554
  show "M \<subseteq> sigma_sets \<Omega> M"
37032
58a0757031dd speed up some proofs and fix some warnings
huffman
parents: 33536
diff changeset
   555
    by (metis Set.subsetI sigma_sets.Basic)
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   556
  next
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   557
  show "sigma_sets \<Omega> M \<subseteq> M"
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   558
    by (metis sigma_sets_subset subset_refl)
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   559
qed
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
   560
42981
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   561
lemma sigma_sets_eqI:
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   562
  assumes A: "\<And>a. a \<in> A \<Longrightarrow> a \<in> sigma_sets M B"
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   563
  assumes B: "\<And>b. b \<in> B \<Longrightarrow> b \<in> sigma_sets M A"
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   564
  shows "sigma_sets M A = sigma_sets M B"
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   565
proof (intro set_eqI iffI)
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   566
  fix a assume "a \<in> sigma_sets M A"
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   567
  from this A show "a \<in> sigma_sets M B"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   568
    by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic)
42981
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   569
next
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   570
  fix b assume "b \<in> sigma_sets M B"
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   571
  from this B show "b \<in> sigma_sets M A"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   572
    by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic)
42981
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   573
qed
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
   574
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   575
lemma sigma_sets_subseteq: assumes "A \<subseteq> B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   576
proof
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   577
  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   578
    by induct (insert \<open>A \<subseteq> B\<close>, auto intro: sigma_sets.intros(2-))
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   579
qed
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   580
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   581
lemma sigma_sets_mono: assumes "A \<subseteq> sigma_sets X B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   582
proof
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   583
  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   584
    by induct (insert \<open>A \<subseteq> sigma_sets X B\<close>, auto intro: sigma_sets.intros(2-))
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   585
qed
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   586
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   587
lemma sigma_sets_mono': assumes "A \<subseteq> B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   588
proof
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   589
  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   590
    by induct (insert \<open>A \<subseteq> B\<close>, auto intro: sigma_sets.intros(2-))
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   591
qed
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   592
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   593
lemma sigma_sets_superset_generator: "A \<subseteq> sigma_sets X A"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   594
  by (auto intro: sigma_sets.Basic)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   595
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   596
lemma (in sigma_algebra) restriction_in_sets:
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   597
  fixes A :: "nat \<Rightarrow> 'a set"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   598
  assumes "S \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   599
  and *: "range A \<subseteq> (\<lambda>A. S \<inter> A) ` M" (is "_ \<subseteq> ?r")
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   600
  shows "range A \<subseteq> M" "(\<Union>i. A i) \<in> (\<lambda>A. S \<inter> A) ` M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   601
proof -
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   602
  { fix i have "A i \<in> ?r" using * by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   603
    hence "\<exists>B. A i = B \<inter> S \<and> B \<in> M" by auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   604
    hence "A i \<subseteq> S" "A i \<in> M" using \<open>S \<in> M\<close> by auto }
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   605
  thus "range A \<subseteq> M" "(\<Union>i. A i) \<in> (\<lambda>A. S \<inter> A) ` M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   606
    by (auto intro!: image_eqI[of _ _ "(\<Union>i. A i)"])
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   607
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   608
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   609
lemma (in sigma_algebra) restricted_sigma_algebra:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   610
  assumes "S \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   611
  shows "sigma_algebra S (restricted_space S)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   612
  unfolding sigma_algebra_def sigma_algebra_axioms_def
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   613
proof safe
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   614
  show "algebra S (restricted_space S)" using restricted_algebra[OF assms] .
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   615
next
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   616
  fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> restricted_space S"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   617
  from restriction_in_sets[OF assms this[simplified]]
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   618
  show "(\<Union>i. A i) \<in> restricted_space S" by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   619
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   620
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   621
lemma sigma_sets_Int:
41689
3e39b0e730d6 the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents: 41543
diff changeset
   622
  assumes "A \<in> sigma_sets sp st" "A \<subseteq> sp"
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
   623
  shows "(\<inter>) A ` sigma_sets sp st = sigma_sets A ((\<inter>) A ` st)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   624
proof (intro equalityI subsetI)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
   625
  fix x assume "x \<in> (\<inter>) A ` sigma_sets sp st"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   626
  then obtain y where "y \<in> sigma_sets sp st" "x = y \<inter> A" by auto
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
   627
  then have "x \<in> sigma_sets (A \<inter> sp) ((\<inter>) A ` st)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   628
  proof (induct arbitrary: x)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   629
    case (Compl a)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   630
    then show ?case
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   631
      by (force intro!: sigma_sets.Compl simp: Diff_Int_distrib ac_simps)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   632
  next
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   633
    case (Union a)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   634
    then show ?case
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   635
      by (auto intro!: sigma_sets.Union
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   636
               simp add: UN_extend_simps simp del: UN_simps)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   637
  qed (auto intro!: sigma_sets.intros(2-))
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
   638
  then show "x \<in> sigma_sets A ((\<inter>) A ` st)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   639
    using \<open>A \<subseteq> sp\<close> by (simp add: Int_absorb2)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   640
next
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
   641
  fix x assume "x \<in> sigma_sets A ((\<inter>) A ` st)"
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
   642
  then show "x \<in> (\<inter>) A ` sigma_sets sp st"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   643
  proof induct
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   644
    case (Compl a)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   645
    then obtain x where "a = A \<inter> x" "x \<in> sigma_sets sp st" by auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   646
    then show ?case using \<open>A \<subseteq> sp\<close>
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   647
      by (force simp add: image_iff intro!: bexI[of _ "sp - x"] sigma_sets.Compl)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   648
  next
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   649
    case (Union a)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   650
    then have "\<forall>i. \<exists>x. x \<in> sigma_sets sp st \<and> a i = A \<inter> x"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   651
      by (auto simp: image_iff Bex_def)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   652
    from choice[OF this] guess f ..
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   653
    then show ?case
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   654
      by (auto intro!: bexI[of _ "(\<Union>x. f x)"] sigma_sets.Union
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   655
               simp add: image_iff)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   656
  qed (auto intro!: sigma_sets.intros(2-))
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   657
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   658
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   659
lemma sigma_sets_empty_eq: "sigma_sets A {} = {{}, A}"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   660
proof (intro set_eqI iffI)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   661
  fix a assume "a \<in> sigma_sets A {}" then show "a \<in> {{}, A}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   662
    by induct blast+
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   663
qed (auto intro: sigma_sets.Empty sigma_sets_top)
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   664
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   665
lemma sigma_sets_single[simp]: "sigma_sets A {A} = {{}, A}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   666
proof (intro set_eqI iffI)
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   667
  fix x assume "x \<in> sigma_sets A {A}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   668
  then show "x \<in> {{}, A}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   669
    by induct blast+
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   670
next
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   671
  fix x assume "x \<in> {{}, A}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   672
  then show "x \<in> sigma_sets A {A}"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   673
    by (auto intro: sigma_sets.Empty sigma_sets_top)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   674
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
   675
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   676
lemma sigma_sets_sigma_sets_eq:
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   677
  "M \<subseteq> Pow S \<Longrightarrow> sigma_sets S (sigma_sets S M) = sigma_sets S M"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   678
  by (rule sigma_algebra.sigma_sets_eq[OF sigma_algebra_sigma_sets, of M S]) auto
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   679
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   680
lemma sigma_sets_singleton:
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   681
  assumes "X \<subseteq> S"
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   682
  shows "sigma_sets S { X } = { {}, X, S - X, S }"
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   683
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   684
  interpret sigma_algebra S "{ {}, X, S - X, S }"
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   685
    by (rule sigma_algebra_single_set) fact
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   686
  have "sigma_sets S { X } \<subseteq> sigma_sets S { {}, X, S - X, S }"
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   687
    by (rule sigma_sets_subseteq) simp
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   688
  moreover have "\<dots> = { {}, X, S - X, S }"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   689
    using sigma_sets_eq by simp
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   690
  moreover
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   691
  { fix A assume "A \<in> { {}, X, S - X, S }"
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   692
    then have "A \<in> sigma_sets S { X }"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   693
      by (auto intro: sigma_sets.intros(2-) sigma_sets_top) }
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   694
  ultimately have "sigma_sets S { X } = sigma_sets S { {}, X, S - X, S }"
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   695
    by (intro antisym) auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   696
  with sigma_sets_eq show ?thesis by simp
42984
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   697
qed
43864e7475df add lemma sigma_sets_singleton
hoelzl
parents: 42981
diff changeset
   698
42863
b9ff5a0aa12c add restrict_sigma
hoelzl
parents: 42145
diff changeset
   699
lemma restricted_sigma:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   700
  assumes S: "S \<in> sigma_sets \<Omega> M" and M: "M \<subseteq> Pow \<Omega>"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   701
  shows "algebra.restricted_space (sigma_sets \<Omega> M) S =
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   702
    sigma_sets S (algebra.restricted_space M S)"
42863
b9ff5a0aa12c add restrict_sigma
hoelzl
parents: 42145
diff changeset
   703
proof -
b9ff5a0aa12c add restrict_sigma
hoelzl
parents: 42145
diff changeset
   704
  from S sigma_sets_into_sp[OF M]
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   705
  have "S \<in> sigma_sets \<Omega> M" "S \<subseteq> \<Omega>" by auto
42863
b9ff5a0aa12c add restrict_sigma
hoelzl
parents: 42145
diff changeset
   706
  from sigma_sets_Int[OF this]
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   707
  show ?thesis by simp
42863
b9ff5a0aa12c add restrict_sigma
hoelzl
parents: 42145
diff changeset
   708
qed
b9ff5a0aa12c add restrict_sigma
hoelzl
parents: 42145
diff changeset
   709
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   710
lemma sigma_sets_vimage_commute:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   711
  assumes X: "X \<in> \<Omega> \<rightarrow> \<Omega>'"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   712
  shows "{X -` A \<inter> \<Omega> |A. A \<in> sigma_sets \<Omega>' M'}
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   713
       = sigma_sets \<Omega> {X -` A \<inter> \<Omega> |A. A \<in> M'}" (is "?L = ?R")
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   714
proof
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   715
  show "?L \<subseteq> ?R"
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   716
  proof clarify
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   717
    fix A assume "A \<in> sigma_sets \<Omega>' M'"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   718
    then show "X -` A \<inter> \<Omega> \<in> ?R"
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   719
    proof induct
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   720
      case Empty then show ?case
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   721
        by (auto intro!: sigma_sets.Empty)
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   722
    next
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   723
      case (Compl B)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   724
      have [simp]: "X -` (\<Omega>' - B) \<inter> \<Omega> = \<Omega> - (X -` B \<inter> \<Omega>)"
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   725
        by (auto simp add: funcset_mem [OF X])
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   726
      with Compl show ?case
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   727
        by (auto intro!: sigma_sets.Compl)
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   728
    next
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   729
      case (Union F)
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   730
      then show ?case
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   731
        by (auto simp add: vimage_UN UN_extend_simps(4) simp del: UN_simps
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   732
                 intro!: sigma_sets.Union)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   733
    qed auto
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   734
  qed
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   735
  show "?R \<subseteq> ?L"
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   736
  proof clarify
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   737
    fix A assume "A \<in> ?R"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   738
    then show "\<exists>B. A = X -` B \<inter> \<Omega> \<and> B \<in> sigma_sets \<Omega>' M'"
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   739
    proof induct
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   740
      case (Basic B) then show ?case by auto
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   741
    next
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   742
      case Empty then show ?case
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   743
        by (auto intro!: sigma_sets.Empty exI[of _ "{}"])
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   744
    next
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   745
      case (Compl B)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   746
      then obtain A where A: "B = X -` A \<inter> \<Omega>" "A \<in> sigma_sets \<Omega>' M'" by auto
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   747
      then have [simp]: "\<Omega> - B = X -` (\<Omega>' - A) \<inter> \<Omega>"
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   748
        by (auto simp add: funcset_mem [OF X])
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   749
      with A(2) show ?case
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   750
        by (auto intro: sigma_sets.Compl)
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   751
    next
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   752
      case (Union F)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   753
      then have "\<forall>i. \<exists>B. F i = X -` B \<inter> \<Omega> \<and> B \<in> sigma_sets \<Omega>' M'" by auto
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   754
      from choice[OF this] guess A .. note A = this
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   755
      with A show ?case
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   756
        by (auto simp: vimage_UN[symmetric] intro: sigma_sets.Union)
42987
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   757
    qed
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   758
  qed
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   759
qed
73e2d802ea41 add lemma indep_rv_finite
hoelzl
parents: 42984
diff changeset
   760
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   761
lemma (in ring_of_sets) UNION_in_sets:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   762
  fixes A:: "nat \<Rightarrow> 'a set"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   763
  assumes A: "range A \<subseteq> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   764
  shows  "(\<Union>i\<in>{0..<n}. A i) \<in> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   765
proof (induct n)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   766
  case 0 show ?case by simp
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   767
next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   768
  case (Suc n)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   769
  thus ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   770
    by (simp add: atLeastLessThanSuc) (metis A Un UNIV_I image_subset_iff)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   771
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   772
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   773
lemma (in ring_of_sets) range_disjointed_sets:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   774
  assumes A: "range A \<subseteq> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   775
  shows  "range (disjointed A) \<subseteq> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   776
proof (auto simp add: disjointed_def)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   777
  fix n
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   778
  show "A n - (\<Union>i\<in>{0..<n}. A i) \<in> M" using UNION_in_sets
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   779
    by (metis A Diff UNIV_I image_subset_iff)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   780
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   781
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   782
lemma (in algebra) range_disjointed_sets':
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   783
  "range A \<subseteq> M \<Longrightarrow> range (disjointed A) \<subseteq> M"
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   784
  using range_disjointed_sets .
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
   785
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   786
lemma sigma_algebra_disjoint_iff:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   787
  "sigma_algebra \<Omega> M \<longleftrightarrow> algebra \<Omega> M \<and>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   788
    (\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   789
proof (auto simp add: sigma_algebra_iff)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   790
  fix A :: "nat \<Rightarrow> 'a set"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   791
  assume M: "algebra \<Omega> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   792
     and A: "range A \<subseteq> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   793
     and UnA: "\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   794
  hence "range (disjointed A) \<subseteq> M \<longrightarrow>
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   795
         disjoint_family (disjointed A) \<longrightarrow>
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   796
         (\<Union>i. disjointed A i) \<in> M" by blast
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   797
  hence "(\<Union>i. disjointed A i) \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   798
    by (simp add: algebra.range_disjointed_sets'[of \<Omega>] M A disjoint_family_disjointed)
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   799
  thus "(\<Union>i::nat. A i) \<in> M" by (simp add: UN_disjointed_eq)
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   800
qed
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   801
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   802
subsubsection%unimportant \<open>Ring generated by a semiring\<close>
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   803
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   804
definition (in semiring_of_sets)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   805
  "generated_ring = { \<Union>C | C. C \<subseteq> M \<and> finite C \<and> disjoint C }"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   806
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   807
lemma (in semiring_of_sets) generated_ringE[elim?]:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   808
  assumes "a \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   809
  obtains C where "finite C" "disjoint C" "C \<subseteq> M" "a = \<Union>C"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   810
  using assms unfolding generated_ring_def by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   811
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   812
lemma (in semiring_of_sets) generated_ringI[intro?]:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   813
  assumes "finite C" "disjoint C" "C \<subseteq> M" "a = \<Union>C"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   814
  shows "a \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   815
  using assms unfolding generated_ring_def by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   816
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   817
lemma (in semiring_of_sets) generated_ringI_Basic:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   818
  "A \<in> M \<Longrightarrow> A \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   819
  by (rule generated_ringI[of "{A}"]) (auto simp: disjoint_def)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   820
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   821
lemma (in semiring_of_sets) generated_ring_disjoint_Un[intro]:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   822
  assumes a: "a \<in> generated_ring" and b: "b \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   823
  and "a \<inter> b = {}"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   824
  shows "a \<union> b \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   825
proof -
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   826
  from a guess Ca .. note Ca = this
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   827
  from b guess Cb .. note Cb = this
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   828
  show ?thesis
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   829
  proof
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   830
    show "disjoint (Ca \<union> Cb)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   831
      using \<open>a \<inter> b = {}\<close> Ca Cb by (auto intro!: disjoint_union)
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   832
  qed (insert Ca Cb, auto)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   833
qed
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   834
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   835
lemma (in semiring_of_sets) generated_ring_empty: "{} \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   836
  by (auto simp: generated_ring_def disjoint_def)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   837
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   838
lemma (in semiring_of_sets) generated_ring_disjoint_Union:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   839
  assumes "finite A" shows "A \<subseteq> generated_ring \<Longrightarrow> disjoint A \<Longrightarrow> \<Union>A \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   840
  using assms by (induct A) (auto simp: disjoint_def intro!: generated_ring_disjoint_Un generated_ring_empty)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   841
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   842
lemma (in semiring_of_sets) generated_ring_disjoint_UNION:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   843
  "finite I \<Longrightarrow> disjoint (A ` I) \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> A i \<in> generated_ring) \<Longrightarrow> UNION I A \<in> generated_ring"
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   844
  by (intro generated_ring_disjoint_Union) auto
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   845
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   846
lemma (in semiring_of_sets) generated_ring_Int:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   847
  assumes a: "a \<in> generated_ring" and b: "b \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   848
  shows "a \<inter> b \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   849
proof -
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   850
  from a guess Ca .. note Ca = this
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   851
  from b guess Cb .. note Cb = this
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   852
  define C where "C = (\<lambda>(a,b). a \<inter> b)` (Ca\<times>Cb)"
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   853
  show ?thesis
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   854
  proof
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   855
    show "disjoint C"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   856
    proof (simp add: disjoint_def C_def, intro ballI impI)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   857
      fix a1 b1 a2 b2 assume sets: "a1 \<in> Ca" "b1 \<in> Cb" "a2 \<in> Ca" "b2 \<in> Cb"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   858
      assume "a1 \<inter> b1 \<noteq> a2 \<inter> b2"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   859
      then have "a1 \<noteq> a2 \<or> b1 \<noteq> b2" by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   860
      then show "(a1 \<inter> b1) \<inter> (a2 \<inter> b2) = {}"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   861
      proof
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   862
        assume "a1 \<noteq> a2"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   863
        with sets Ca have "a1 \<inter> a2 = {}"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   864
          by (auto simp: disjoint_def)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   865
        then show ?thesis by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   866
      next
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   867
        assume "b1 \<noteq> b2"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   868
        with sets Cb have "b1 \<inter> b2 = {}"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   869
          by (auto simp: disjoint_def)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   870
        then show ?thesis by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   871
      qed
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   872
    qed
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   873
  qed (insert Ca Cb, auto simp: C_def)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   874
qed
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   875
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   876
lemma (in semiring_of_sets) generated_ring_Inter:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   877
  assumes "finite A" "A \<noteq> {}" shows "A \<subseteq> generated_ring \<Longrightarrow> \<Inter>A \<in> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   878
  using assms by (induct A rule: finite_ne_induct) (auto intro: generated_ring_Int)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   879
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   880
lemma (in semiring_of_sets) generated_ring_INTER:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   881
  "finite I \<Longrightarrow> I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> A i \<in> generated_ring) \<Longrightarrow> INTER I A \<in> generated_ring"
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   882
  by (intro generated_ring_Inter) auto
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   883
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   884
lemma (in semiring_of_sets) generating_ring:
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   885
  "ring_of_sets \<Omega> generated_ring"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   886
proof (rule ring_of_setsI)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   887
  let ?R = generated_ring
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   888
  show "?R \<subseteq> Pow \<Omega>"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   889
    using sets_into_space by (auto simp: generated_ring_def generated_ring_empty)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   890
  show "{} \<in> ?R" by (rule generated_ring_empty)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   891
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   892
  { fix a assume a: "a \<in> ?R" then guess Ca .. note Ca = this
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   893
    fix b assume b: "b \<in> ?R" then guess Cb .. note Cb = this
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
   894
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   895
    show "a - b \<in> ?R"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   896
    proof cases
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   897
      assume "Cb = {}" with Cb \<open>a \<in> ?R\<close> show ?thesis
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   898
        by simp
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   899
    next
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   900
      assume "Cb \<noteq> {}"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   901
      with Ca Cb have "a - b = (\<Union>a'\<in>Ca. \<Inter>b'\<in>Cb. a' - b')" by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   902
      also have "\<dots> \<in> ?R"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   903
      proof (intro generated_ring_INTER generated_ring_disjoint_UNION)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   904
        fix a b assume "a \<in> Ca" "b \<in> Cb"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   905
        with Ca Cb Diff_cover[of a b] show "a - b \<in> ?R"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   906
          by (auto simp add: generated_ring_def)
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   907
            (metis DiffI Diff_eq_empty_iff empty_iff)
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   908
      next
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   909
        show "disjoint ((\<lambda>a'. \<Inter>b'\<in>Cb. a' - b')`Ca)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   910
          using Ca by (auto simp add: disjoint_def \<open>Cb \<noteq> {}\<close>)
47762
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   911
      next
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   912
        show "finite Ca" "finite Cb" "Cb \<noteq> {}" by fact+
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   913
      qed
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   914
      finally show "a - b \<in> ?R" .
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   915
    qed }
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   916
  note Diff = this
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   917
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   918
  fix a b assume sets: "a \<in> ?R" "b \<in> ?R"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   919
  have "a \<union> b = (a - b) \<union> (a \<inter> b) \<union> (b - a)" by auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   920
  also have "\<dots> \<in> ?R"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   921
    by (intro sets generated_ring_disjoint_Un generated_ring_Int Diff) auto
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   922
  finally show "a \<union> b \<in> ?R" .
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   923
qed
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   924
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   925
lemma (in semiring_of_sets) sigma_sets_generated_ring_eq: "sigma_sets \<Omega> generated_ring = sigma_sets \<Omega> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   926
proof
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   927
  interpret M: sigma_algebra \<Omega> "sigma_sets \<Omega> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   928
    using space_closed by (rule sigma_algebra_sigma_sets)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   929
  show "sigma_sets \<Omega> generated_ring \<subseteq> sigma_sets \<Omega> M"
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   930
    by (blast intro!: sigma_sets_mono elim: generated_ringE)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   931
qed (auto intro!: generated_ringI_Basic sigma_sets_mono)
d31085f07f60 add Caratheodories theorem for semi-rings of sets
hoelzl
parents: 47756
diff changeset
   932
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   933
subsubsection%unimportant \<open>A Two-Element Series\<close>
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   934
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
   935
definition binaryset :: "'a set \<Rightarrow> 'a set \<Rightarrow> nat \<Rightarrow> 'a set"
50252
4aa34bd43228 eliminated slightly odd identifiers;
wenzelm
parents: 50245
diff changeset
   936
  where "binaryset A B = (\<lambda>x. {})(0 := A, Suc 0 := B)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   937
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   938
lemma range_binaryset_eq: "range(binaryset A B) = {A,B,{}}"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   939
  apply (simp add: binaryset_def)
39302
d7728f65b353 renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents: 39092
diff changeset
   940
  apply (rule set_eqI)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   941
  apply (auto simp add: image_iff)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   942
  done
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   943
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   944
lemma UN_binaryset_eq: "(\<Union>i. binaryset A B i) = A \<union> B"
62343
24106dc44def prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents: 62083
diff changeset
   945
  by (simp add: range_binaryset_eq cong del: strong_SUP_cong)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   946
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
   947
subsubsection \<open>Closed CDI\<close>
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   948
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
   949
definition%important closed_cdi where
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   950
  "closed_cdi \<Omega> M \<longleftrightarrow>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   951
   M \<subseteq> Pow \<Omega> &
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   952
   (\<forall>s \<in> M. \<Omega> - s \<in> M) &
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   953
   (\<forall>A. (range A \<subseteq> M) & (A 0 = {}) & (\<forall>n. A n \<subseteq> A (Suc n)) \<longrightarrow>
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   954
        (\<Union>i. A i) \<in> M) &
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   955
   (\<forall>A. (range A \<subseteq> M) & disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   956
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   957
inductive_set
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   958
  smallest_ccdi_sets :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   959
  for \<Omega> M
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   960
  where
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   961
    Basic [intro]:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   962
      "a \<in> M \<Longrightarrow> a \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   963
  | Compl [intro]:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   964
      "a \<in> smallest_ccdi_sets \<Omega> M \<Longrightarrow> \<Omega> - a \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   965
  | Inc:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   966
      "range A \<in> Pow(smallest_ccdi_sets \<Omega> M) \<Longrightarrow> A 0 = {} \<Longrightarrow> (\<And>n. A n \<subseteq> A (Suc n))
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   967
       \<Longrightarrow> (\<Union>i. A i) \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   968
  | Disj:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   969
      "range A \<in> Pow(smallest_ccdi_sets \<Omega> M) \<Longrightarrow> disjoint_family A
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   970
       \<Longrightarrow> (\<Union>i::nat. A i) \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   971
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   972
lemma (in subset_class) smallest_closed_cdi1: "M \<subseteq> smallest_ccdi_sets \<Omega> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   973
  by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   974
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   975
lemma (in subset_class) smallest_ccdi_sets: "smallest_ccdi_sets \<Omega> M \<subseteq> Pow \<Omega>"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   976
  apply (rule subsetI)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   977
  apply (erule smallest_ccdi_sets.induct)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   978
  apply (auto intro: range_subsetD dest: sets_into_space)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   979
  done
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   980
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   981
lemma (in subset_class) smallest_closed_cdi2: "closed_cdi \<Omega> (smallest_ccdi_sets \<Omega> M)"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   982
  apply (auto simp add: closed_cdi_def smallest_ccdi_sets)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   983
  apply (blast intro: smallest_ccdi_sets.Inc smallest_ccdi_sets.Disj) +
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   984
  done
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   985
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   986
lemma closed_cdi_subset: "closed_cdi \<Omega> M \<Longrightarrow> M \<subseteq> Pow \<Omega>"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   987
  by (simp add: closed_cdi_def)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   988
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   989
lemma closed_cdi_Compl: "closed_cdi \<Omega> M \<Longrightarrow> s \<in> M \<Longrightarrow> \<Omega> - s \<in> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   990
  by (simp add: closed_cdi_def)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   991
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   992
lemma closed_cdi_Inc:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   993
  "closed_cdi \<Omega> M \<Longrightarrow> range A \<subseteq> M \<Longrightarrow> A 0 = {} \<Longrightarrow> (!!n. A n \<subseteq> A (Suc n)) \<Longrightarrow> (\<Union>i. A i) \<in> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   994
  by (simp add: closed_cdi_def)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   995
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   996
lemma closed_cdi_Disj:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
   997
  "closed_cdi \<Omega> M \<Longrightarrow> range A \<subseteq> M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   998
  by (simp add: closed_cdi_def)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
   999
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1000
lemma closed_cdi_Un:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1001
  assumes cdi: "closed_cdi \<Omega> M" and empty: "{} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1002
      and A: "A \<in> M" and B: "B \<in> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1003
      and disj: "A \<inter> B = {}"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1004
    shows "A \<union> B \<in> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1005
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1006
  have ra: "range (binaryset A B) \<subseteq> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1007
   by (simp add: range_binaryset_eq empty A B)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1008
 have di:  "disjoint_family (binaryset A B)" using disj
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1009
   by (simp add: disjoint_family_on_def binaryset_def Int_commute)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1010
 from closed_cdi_Disj [OF cdi ra di]
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1011
 show ?thesis
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1012
   by (simp add: UN_binaryset_eq)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1013
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1014
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1015
lemma (in algebra) smallest_ccdi_sets_Un:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1016
  assumes A: "A \<in> smallest_ccdi_sets \<Omega> M" and B: "B \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1017
      and disj: "A \<inter> B = {}"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1018
    shows "A \<union> B \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1019
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1020
  have ra: "range (binaryset A B) \<in> Pow (smallest_ccdi_sets \<Omega> M)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1021
    by (simp add: range_binaryset_eq  A B smallest_ccdi_sets.Basic)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1022
  have di:  "disjoint_family (binaryset A B)" using disj
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1023
    by (simp add: disjoint_family_on_def binaryset_def Int_commute)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1024
  from Disj [OF ra di]
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1025
  show ?thesis
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1026
    by (simp add: UN_binaryset_eq)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1027
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1028
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1029
lemma (in algebra) smallest_ccdi_sets_Int1:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1030
  assumes a: "a \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1031
  shows "b \<in> smallest_ccdi_sets \<Omega> M \<Longrightarrow> a \<inter> b \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1032
proof (induct rule: smallest_ccdi_sets.induct)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1033
  case (Basic x)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1034
  thus ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1035
    by (metis a Int smallest_ccdi_sets.Basic)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1036
next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1037
  case (Compl x)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1038
  have "a \<inter> (\<Omega> - x) = \<Omega> - ((\<Omega> - a) \<union> (a \<inter> x))"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1039
    by blast
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1040
  also have "... \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1041
    by (metis smallest_ccdi_sets.Compl a Compl(2) Diff_Int2 Diff_Int_distrib2
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1042
           Diff_disjoint Int_Diff Int_empty_right smallest_ccdi_sets_Un
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1043
           smallest_ccdi_sets.Basic smallest_ccdi_sets.Compl)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1044
  finally show ?case .
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1045
next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1046
  case (Inc A)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1047
  have 1: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) = a \<inter> (\<Union>i. A i)"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1048
    by blast
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1049
  have "range (\<lambda>i. a \<inter> A i) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Inc
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1050
    by blast
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1051
  moreover have "(\<lambda>i. a \<inter> A i) 0 = {}"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1052
    by (simp add: Inc)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1053
  moreover have "!!n. (\<lambda>i. a \<inter> A i) n \<subseteq> (\<lambda>i. a \<inter> A i) (Suc n)" using Inc
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1054
    by blast
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1055
  ultimately have 2: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1056
    by (rule smallest_ccdi_sets.Inc)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1057
  show ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1058
    by (metis 1 2)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1059
next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1060
  case (Disj A)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1061
  have 1: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) = a \<inter> (\<Union>i. A i)"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1062
    by blast
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1063
  have "range (\<lambda>i. a \<inter> A i) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Disj
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1064
    by blast
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1065
  moreover have "disjoint_family (\<lambda>i. a \<inter> A i)" using Disj
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1066
    by (auto simp add: disjoint_family_on_def)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1067
  ultimately have 2: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1068
    by (rule smallest_ccdi_sets.Disj)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1069
  show ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1070
    by (metis 1 2)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1071
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1072
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1073
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1074
lemma (in algebra) smallest_ccdi_sets_Int:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1075
  assumes b: "b \<in> smallest_ccdi_sets \<Omega> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1076
  shows "a \<in> smallest_ccdi_sets \<Omega> M \<Longrightarrow> a \<inter> b \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1077
proof (induct rule: smallest_ccdi_sets.induct)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1078
  case (Basic x)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1079
  thus ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1080
    by (metis b smallest_ccdi_sets_Int1)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1081
next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1082
  case (Compl x)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1083
  have "(\<Omega> - x) \<inter> b = \<Omega> - (x \<inter> b \<union> (\<Omega> - b))"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1084
    by blast
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1085
  also have "... \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1086
    by (metis Compl(2) Diff_disjoint Int_Diff Int_commute Int_empty_right b
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1087
           smallest_ccdi_sets.Compl smallest_ccdi_sets_Un)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1088
  finally show ?case .
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1089
next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1090
  case (Inc A)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1091
  have 1: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) = (\<Union>i. A i) \<inter> b"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1092
    by blast
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1093
  have "range (\<lambda>i. A i \<inter> b) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Inc
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1094
    by blast
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1095
  moreover have "(\<lambda>i. A i \<inter> b) 0 = {}"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1096
    by (simp add: Inc)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1097
  moreover have "!!n. (\<lambda>i. A i \<inter> b) n \<subseteq> (\<lambda>i. A i \<inter> b) (Suc n)" using Inc
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1098
    by blast
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1099
  ultimately have 2: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1100
    by (rule smallest_ccdi_sets.Inc)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1101
  show ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1102
    by (metis 1 2)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1103
next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1104
  case (Disj A)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1105
  have 1: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) = (\<Union>i. A i) \<inter> b"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1106
    by blast
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1107
  have "range (\<lambda>i. A i \<inter> b) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Disj
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1108
    by blast
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1109
  moreover have "disjoint_family (\<lambda>i. A i \<inter> b)" using Disj
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1110
    by (auto simp add: disjoint_family_on_def)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1111
  ultimately have 2: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1112
    by (rule smallest_ccdi_sets.Disj)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1113
  show ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1114
    by (metis 1 2)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1115
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1116
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1117
lemma (in algebra) sigma_property_disjoint_lemma:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1118
  assumes sbC: "M \<subseteq> C"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1119
      and ccdi: "closed_cdi \<Omega> C"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1120
  shows "sigma_sets \<Omega> M \<subseteq> C"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1121
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1122
  have "smallest_ccdi_sets \<Omega> M \<in> {B . M \<subseteq> B \<and> sigma_algebra \<Omega> B}"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1123
    apply (auto simp add: sigma_algebra_disjoint_iff algebra_iff_Int
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1124
            smallest_ccdi_sets_Int)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1125
    apply (metis Union_Pow_eq Union_upper subsetD smallest_ccdi_sets)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1126
    apply (blast intro: smallest_ccdi_sets.Disj)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1127
    done
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1128
  hence "sigma_sets (\<Omega>) (M) \<subseteq> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1129
    by clarsimp
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1130
       (drule sigma_algebra.sigma_sets_subset [where a="M"], auto)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1131
  also have "...  \<subseteq> C"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1132
    proof
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1133
      fix x
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1134
      assume x: "x \<in> smallest_ccdi_sets \<Omega> M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1135
      thus "x \<in> C"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1136
        proof (induct rule: smallest_ccdi_sets.induct)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1137
          case (Basic x)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1138
          thus ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1139
            by (metis Basic subsetD sbC)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1140
        next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1141
          case (Compl x)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1142
          thus ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1143
            by (blast intro: closed_cdi_Compl [OF ccdi, simplified])
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1144
        next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1145
          case (Inc A)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1146
          thus ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1147
               by (auto intro: closed_cdi_Inc [OF ccdi, simplified])
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1148
        next
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1149
          case (Disj A)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1150
          thus ?case
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1151
               by (auto intro: closed_cdi_Disj [OF ccdi, simplified])
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1152
        qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1153
    qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1154
  finally show ?thesis .
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1155
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1156
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1157
lemma (in algebra) sigma_property_disjoint:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1158
  assumes sbC: "M \<subseteq> C"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1159
      and compl: "!!s. s \<in> C \<inter> sigma_sets (\<Omega>) (M) \<Longrightarrow> \<Omega> - s \<in> C"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1160
      and inc: "!!A. range A \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1161
                     \<Longrightarrow> A 0 = {} \<Longrightarrow> (!!n. A n \<subseteq> A (Suc n))
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1162
                     \<Longrightarrow> (\<Union>i. A i) \<in> C"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1163
      and disj: "!!A. range A \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1164
                      \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i::nat. A i) \<in> C"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1165
  shows "sigma_sets (\<Omega>) (M) \<subseteq> C"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1166
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1167
  have "sigma_sets (\<Omega>) (M) \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1168
    proof (rule sigma_property_disjoint_lemma)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1169
      show "M \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1170
        by (metis Int_greatest Set.subsetI sbC sigma_sets.Basic)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1171
    next
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1172
      show "closed_cdi \<Omega> (C \<inter> sigma_sets (\<Omega>) (M))"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1173
        by (simp add: closed_cdi_def compl inc disj)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1174
           (metis PowI Set.subsetI le_infI2 sigma_sets_into_sp space_closed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1175
             IntE sigma_sets.Compl range_subsetD sigma_sets.Union)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1176
    qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1177
  thus ?thesis
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1178
    by blast
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1179
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37032
diff changeset
  1180
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1181
subsubsection \<open>Dynkin systems\<close>
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1182
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1183
locale%important dynkin_system = subset_class +
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1184
  assumes space: "\<Omega> \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1185
    and   compl[intro!]: "\<And>A. A \<in> M \<Longrightarrow> \<Omega> - A \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1186
    and   UN[intro!]: "\<And>A. disjoint_family A \<Longrightarrow> range A \<subseteq> M
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1187
                           \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1188
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1189
lemma (in dynkin_system) empty[intro, simp]: "{} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1190
  using space compl[of "\<Omega>"] by simp
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1191
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1192
lemma (in dynkin_system) diff:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1193
  assumes sets: "D \<in> M" "E \<in> M" and "D \<subseteq> E"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1194
  shows "E - D \<in> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1195
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1196
  let ?f = "\<lambda>x. if x = 0 then D else if x = Suc 0 then \<Omega> - E else {}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1197
  have "range ?f = {D, \<Omega> - E, {}}"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1198
    by (auto simp: image_iff)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1199
  moreover have "D \<union> (\<Omega> - E) = (\<Union>i. ?f i)"
62390
842917225d56 more canonical names
nipkow
parents: 62343
diff changeset
  1200
    by (auto simp: image_iff split: if_split_asm)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1201
  moreover
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51683
diff changeset
  1202
  have "disjoint_family ?f" unfolding disjoint_family_on_def
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1203
    using \<open>D \<in> M\<close>[THEN sets_into_space] \<open>D \<subseteq> E\<close> by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1204
  ultimately have "\<Omega> - (D \<union> (\<Omega> - E)) \<in> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1205
    using sets by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1206
  also have "\<Omega> - (D \<union> (\<Omega> - E)) = E - D"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1207
    using assms sets_into_space by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1208
  finally show ?thesis .
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1209
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1210
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1211
lemma dynkin_systemI:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1212
  assumes "\<And> A. A \<in> M \<Longrightarrow> A \<subseteq> \<Omega>" "\<Omega> \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1213
  assumes "\<And> A. A \<in> M \<Longrightarrow> \<Omega> - A \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1214
  assumes "\<And> A. disjoint_family A \<Longrightarrow> range A \<subseteq> M
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1215
          \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1216
  shows "dynkin_system \<Omega> M"
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
  1217
  using assms by (auto simp: dynkin_system_def dynkin_system_axioms_def subset_class_def)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1218
42988
d8f3fc934ff6 add lemma indep_distribution_eq_measure
hoelzl
parents: 42987
diff changeset
  1219
lemma dynkin_systemI':
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1220
  assumes 1: "\<And> A. A \<in> M \<Longrightarrow> A \<subseteq> \<Omega>"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1221
  assumes empty: "{} \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1222
  assumes Diff: "\<And> A. A \<in> M \<Longrightarrow> \<Omega> - A \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1223
  assumes 2: "\<And> A. disjoint_family A \<Longrightarrow> range A \<subseteq> M
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1224
          \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1225
  shows "dynkin_system \<Omega> M"
42988
d8f3fc934ff6 add lemma indep_distribution_eq_measure
hoelzl
parents: 42987
diff changeset
  1226
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1227
  from Diff[OF empty] have "\<Omega> \<in> M" by auto
42988
d8f3fc934ff6 add lemma indep_distribution_eq_measure
hoelzl
parents: 42987
diff changeset
  1228
  from 1 this Diff 2 show ?thesis
d8f3fc934ff6 add lemma indep_distribution_eq_measure
hoelzl
parents: 42987
diff changeset
  1229
    by (intro dynkin_systemI) auto
d8f3fc934ff6 add lemma indep_distribution_eq_measure
hoelzl
parents: 42987
diff changeset
  1230
qed
d8f3fc934ff6 add lemma indep_distribution_eq_measure
hoelzl
parents: 42987
diff changeset
  1231
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1232
lemma dynkin_system_trivial:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1233
  shows "dynkin_system A (Pow A)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1234
  by (rule dynkin_systemI) auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1235
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1236
lemma sigma_algebra_imp_dynkin_system:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1237
  assumes "sigma_algebra \<Omega> M" shows "dynkin_system \<Omega> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1238
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1239
  interpret sigma_algebra \<Omega> M by fact
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44537
diff changeset
  1240
  show ?thesis using sets_into_space by (fastforce intro!: dynkin_systemI)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1241
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1242
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1243
subsubsection "Intersection sets systems"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1244
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1245
definition%important "Int_stable M \<longleftrightarrow> (\<forall> a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1246
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1247
lemma (in algebra) Int_stable: "Int_stable M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1248
  unfolding Int_stable_def by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1249
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  1250
lemma Int_stableI_image:
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  1251
  "(\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. A i \<inter> A j = A k) \<Longrightarrow> Int_stable (A ` I)"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  1252
  by (auto simp: Int_stable_def image_def)
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  1253
42981
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
  1254
lemma Int_stableI:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1255
  "(\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<inter> b \<in> A) \<Longrightarrow> Int_stable A"
42981
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
  1256
  unfolding Int_stable_def by auto
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
  1257
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
  1258
lemma Int_stableD:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1259
  "Int_stable M \<Longrightarrow> a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<inter> b \<in> M"
42981
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
  1260
  unfolding Int_stable_def by auto
fe7f5a26e4c6 add lemma indep_sets_collect_sigma
hoelzl
parents: 42867
diff changeset
  1261
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1262
lemma (in dynkin_system) sigma_algebra_eq_Int_stable:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1263
  "sigma_algebra \<Omega> M \<longleftrightarrow> Int_stable M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1264
proof
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1265
  assume "sigma_algebra \<Omega> M" then show "Int_stable M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1266
    unfolding sigma_algebra_def using algebra.Int_stable by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1267
next
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1268
  assume "Int_stable M"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1269
  show "sigma_algebra \<Omega> M"
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
  1270
    unfolding sigma_algebra_disjoint_iff algebra_iff_Un
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1271
  proof (intro conjI ballI allI impI)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1272
    show "M \<subseteq> Pow (\<Omega>)" using sets_into_space by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1273
  next
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1274
    fix A B assume "A \<in> M" "B \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1275
    then have "A \<union> B = \<Omega> - ((\<Omega> - A) \<inter> (\<Omega> - B))"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1276
              "\<Omega> - A \<in> M" "\<Omega> - B \<in> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1277
      using sets_into_space by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1278
    then show "A \<union> B \<in> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1279
      using \<open>Int_stable M\<close> unfolding Int_stable_def by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1280
  qed auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1281
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1282
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1283
subsubsection "Smallest Dynkin systems"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1284
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1285
definition%important dynkin where
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1286
  "dynkin \<Omega> M =  (\<Inter>{D. dynkin_system \<Omega> D \<and> M \<subseteq> D})"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1287
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1288
lemma dynkin_system_dynkin:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1289
  assumes "M \<subseteq> Pow (\<Omega>)"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1290
  shows "dynkin_system \<Omega> (dynkin \<Omega> M)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1291
proof (rule dynkin_systemI)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1292
  fix A assume "A \<in> dynkin \<Omega> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1293
  moreover
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1294
  { fix D assume "A \<in> D" and d: "dynkin_system \<Omega> D"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1295
    then have "A \<subseteq> \<Omega>" by (auto simp: dynkin_system_def subset_class_def) }
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1296
  moreover have "{D. dynkin_system \<Omega> D \<and> M \<subseteq> D} \<noteq> {}"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44537
diff changeset
  1297
    using assms dynkin_system_trivial by fastforce
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1298
  ultimately show "A \<subseteq> \<Omega>"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1299
    unfolding dynkin_def using assms
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1300
    by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1301
next
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1302
  show "\<Omega> \<in> dynkin \<Omega> M"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44537
diff changeset
  1303
    unfolding dynkin_def using dynkin_system.space by fastforce
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1304
next
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1305
  fix A assume "A \<in> dynkin \<Omega> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1306
  then show "\<Omega> - A \<in> dynkin \<Omega> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1307
    unfolding dynkin_def using dynkin_system.compl by force
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1308
next
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1309
  fix A :: "nat \<Rightarrow> 'a set"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1310
  assume A: "disjoint_family A" "range A \<subseteq> dynkin \<Omega> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1311
  show "(\<Union>i. A i) \<in> dynkin \<Omega> M" unfolding dynkin_def
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1312
  proof (simp, safe)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1313
    fix D assume "dynkin_system \<Omega> D" "M \<subseteq> D"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1314
    with A have "(\<Union>i. A i) \<in> D"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1315
      by (intro dynkin_system.UN) (auto simp: dynkin_def)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1316
    then show "(\<Union>i. A i) \<in> D" by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1317
  qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1318
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1319
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1320
lemma dynkin_Basic[intro]: "A \<in> M \<Longrightarrow> A \<in> dynkin \<Omega> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1321
  unfolding dynkin_def by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1322
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1323
lemma (in dynkin_system) restricted_dynkin_system:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1324
  assumes "D \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1325
  shows "dynkin_system \<Omega> {Q. Q \<subseteq> \<Omega> \<and> Q \<inter> D \<in> M}"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1326
proof (rule dynkin_systemI, simp_all)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1327
  have "\<Omega> \<inter> D = D"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1328
    using \<open>D \<in> M\<close> sets_into_space by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1329
  then show "\<Omega> \<inter> D \<in> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1330
    using \<open>D \<in> M\<close> by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1331
next
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1332
  fix A assume "A \<subseteq> \<Omega> \<and> A \<inter> D \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1333
  moreover have "(\<Omega> - A) \<inter> D = (\<Omega> - (A \<inter> D)) - (\<Omega> - D)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1334
    by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1335
  ultimately show "\<Omega> - A \<subseteq> \<Omega> \<and> (\<Omega> - A) \<inter> D \<in> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1336
    using  \<open>D \<in> M\<close> by (auto intro: diff)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1337
next
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1338
  fix A :: "nat \<Rightarrow> 'a set"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1339
  assume "disjoint_family A" "range A \<subseteq> {Q. Q \<subseteq> \<Omega> \<and> Q \<inter> D \<in> M}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1340
  then have "\<And>i. A i \<subseteq> \<Omega>" "disjoint_family (\<lambda>i. A i \<inter> D)"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1341
    "range (\<lambda>i. A i \<inter> D) \<subseteq> M" "(\<Union>x. A x) \<inter> D = (\<Union>x. A x \<inter> D)"
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44537
diff changeset
  1342
    by ((fastforce simp: disjoint_family_on_def)+)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1343
  then show "(\<Union>x. A x) \<subseteq> \<Omega> \<and> (\<Union>x. A x) \<inter> D \<in> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1344
    by (auto simp del: UN_simps)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1345
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1346
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1347
lemma (in dynkin_system) dynkin_subset:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1348
  assumes "N \<subseteq> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1349
  shows "dynkin \<Omega> N \<subseteq> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1350
proof -
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60772
diff changeset
  1351
  have "dynkin_system \<Omega> M" ..
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1352
  then have "dynkin_system \<Omega> M"
42065
2b98b4c2e2f1 add ring_of_sets and subset_class as basis for algebra
hoelzl
parents: 41983
diff changeset
  1353
    using assms unfolding dynkin_system_def dynkin_system_axioms_def subset_class_def by simp
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1354
  with \<open>N \<subseteq> M\<close> show ?thesis by (auto simp add: dynkin_def)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1355
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1356
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1357
lemma sigma_eq_dynkin:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1358
  assumes sets: "M \<subseteq> Pow \<Omega>"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1359
  assumes "Int_stable M"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1360
  shows "sigma_sets \<Omega> M = dynkin \<Omega> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1361
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1362
  have "dynkin \<Omega> M \<subseteq> sigma_sets (\<Omega>) (M)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1363
    using sigma_algebra_imp_dynkin_system
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1364
    unfolding dynkin_def sigma_sets_least_sigma_algebra[OF sets] by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1365
  moreover
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1366
  interpret dynkin_system \<Omega> "dynkin \<Omega> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1367
    using dynkin_system_dynkin[OF sets] .
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1368
  have "sigma_algebra \<Omega> (dynkin \<Omega> M)"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1369
    unfolding sigma_algebra_eq_Int_stable Int_stable_def
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1370
  proof (intro ballI)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1371
    fix A B assume "A \<in> dynkin \<Omega> M" "B \<in> dynkin \<Omega> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1372
    let ?D = "\<lambda>E. {Q. Q \<subseteq> \<Omega> \<and> Q \<inter> E \<in> dynkin \<Omega> M}"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1373
    have "M \<subseteq> ?D B"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1374
    proof
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1375
      fix E assume "E \<in> M"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1376
      then have "M \<subseteq> ?D E" "E \<in> dynkin \<Omega> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1377
        using sets_into_space \<open>Int_stable M\<close> by (auto simp: Int_stable_def)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1378
      then have "dynkin \<Omega> M \<subseteq> ?D E"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1379
        using restricted_dynkin_system \<open>E \<in> dynkin \<Omega> M\<close>
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1380
        by (intro dynkin_system.dynkin_subset) simp_all
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1381
      then have "B \<in> ?D E"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1382
        using \<open>B \<in> dynkin \<Omega> M\<close> by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1383
      then have "E \<inter> B \<in> dynkin \<Omega> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1384
        by (subst Int_commute) simp
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1385
      then show "E \<in> ?D B"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1386
        using sets \<open>E \<in> M\<close> by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1387
    qed
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1388
    then have "dynkin \<Omega> M \<subseteq> ?D B"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1389
      using restricted_dynkin_system \<open>B \<in> dynkin \<Omega> M\<close>
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1390
      by (intro dynkin_system.dynkin_subset) simp_all
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1391
    then show "A \<inter> B \<in> dynkin \<Omega> M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1392
      using \<open>A \<in> dynkin \<Omega> M\<close> sets_into_space by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1393
  qed
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1394
  from sigma_algebra.sigma_sets_subset[OF this, of "M"]
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1395
  have "sigma_sets (\<Omega>) (M) \<subseteq> dynkin \<Omega> M" by auto
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1396
  ultimately have "sigma_sets (\<Omega>) (M) = dynkin \<Omega> M" by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1397
  then show ?thesis
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1398
    by (auto simp: dynkin_def)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1399
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1400
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1401
lemma (in dynkin_system) dynkin_idem:
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1402
  "dynkin \<Omega> M = M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1403
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1404
  have "dynkin \<Omega> M = M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1405
  proof
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1406
    show "M \<subseteq> dynkin \<Omega> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1407
      using dynkin_Basic by auto
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1408
    show "dynkin \<Omega> M \<subseteq> M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1409
      by (intro dynkin_subset) auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1410
  qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1411
  then show ?thesis
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1412
    by (auto simp: dynkin_def)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1413
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1414
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1415
lemma (in dynkin_system) dynkin_lemma:
41689
3e39b0e730d6 the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents: 41543
diff changeset
  1416
  assumes "Int_stable E"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1417
  and E: "E \<subseteq> M" "M \<subseteq> sigma_sets \<Omega> E"
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1418
  shows "sigma_sets \<Omega> E = M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 40702
diff changeset
  1419
proof -
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1420
  have "E \<subseteq> Pow \<Omega>"
41689
3e39b0e730d6 the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
hoelzl
parents: 41543
diff changeset
  1421
    using E sets_into_space by force
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51683
diff changeset
  1422
  then have *: "sigma_sets \<Omega> E = dynkin \<Omega> E"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1423
    using \<open>Int_stable E\<close> by (rule sigma_eq_dynkin)
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51683
diff changeset
  1424
  then have "dynkin \<Omega> E = M"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1425
    using assms dynkin_subset[OF E(1)] by simp
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51683
diff changeset
  1426
  with * show ?thesis
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46731
diff changeset
  1427
    using assms by (auto simp: dynkin_def)
42864
403e1cba1123 add measurable_Least
hoelzl
parents: 42863
diff changeset
  1428
qed
403e1cba1123 add measurable_Least
hoelzl
parents: 42863
diff changeset
  1429
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1430
subsubsection \<open>Induction rule for intersection-stable generators\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1431
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1432
text%important \<open>The reason to introduce Dynkin-systems is the following induction rules for $\sigma$-algebras
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1433
generated by a generator closed under intersection.\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1434
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1435
lemma%important sigma_sets_induct_disjoint[consumes 3, case_names basic empty compl union]:
49789
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1436
  assumes "Int_stable G"
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1437
    and closed: "G \<subseteq> Pow \<Omega>"
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1438
    and A: "A \<in> sigma_sets \<Omega> G"
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1439
  assumes basic: "\<And>A. A \<in> G \<Longrightarrow> P A"
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1440
    and empty: "P {}"
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1441
    and compl: "\<And>A. A \<in> sigma_sets \<Omega> G \<Longrightarrow> P A \<Longrightarrow> P (\<Omega> - A)"
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1442
    and union: "\<And>A. disjoint_family A \<Longrightarrow> range A \<subseteq> sigma_sets \<Omega> G \<Longrightarrow> (\<And>i. P (A i)) \<Longrightarrow> P (\<Union>i::nat. A i)"
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1443
  shows "P A"
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1444
proof%unimportant -
49789
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1445
  let ?D = "{ A \<in> sigma_sets \<Omega> G. P A }"
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1446
  interpret sigma_algebra \<Omega> "sigma_sets \<Omega> G"
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1447
    using closed by (rule sigma_algebra_sigma_sets)
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1448
  from compl[OF _ empty] closed have space: "P \<Omega>" by simp
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1449
  interpret dynkin_system \<Omega> ?D
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60772
diff changeset
  1450
    by standard (auto dest: sets_into_space intro!: space compl union)
49789
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1451
  have "sigma_sets \<Omega> G = ?D"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1452
    by (rule dynkin_lemma) (auto simp: basic \<open>Int_stable G\<close>)
49789
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1453
  with A show ?thesis by auto
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1454
qed
e0a4cb91a8a9 add induction rule for intersection-stable sigma-sets
hoelzl
parents: 49782
diff changeset
  1455
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1456
subsection \<open>Measure type\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1457
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1458
definition%important positive :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  1459
  "positive M \<mu> \<longleftrightarrow> \<mu> {} = 0"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1460
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1461
definition%important countably_additive :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1462
  "countably_additive M f \<longleftrightarrow> (\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow>
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1463
    (\<Sum>i. f (A i)) = f (\<Union>i. A i))"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1464
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1465
definition%important measure_space :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1466
  "measure_space \<Omega> A \<mu> \<longleftrightarrow> sigma_algebra \<Omega> A \<and> positive A \<mu> \<and> countably_additive A \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1467
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1468
typedef%important 'a measure = "{(\<Omega>::'a set, A, \<mu>). (\<forall>a\<in>-A. \<mu> a = 0) \<and> measure_space \<Omega> A \<mu> }"
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1469
proof%unimportant
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1470
  have "sigma_algebra UNIV {{}, UNIV}"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1471
    by (auto simp: sigma_algebra_iff2)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1472
  then show "(UNIV, {{}, UNIV}, \<lambda>A. 0) \<in> {(\<Omega>, A, \<mu>). (\<forall>a\<in>-A. \<mu> a = 0) \<and> measure_space \<Omega> A \<mu>} "
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1473
    by (auto simp: measure_space_def positive_def countably_additive_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1474
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1475
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1476
definition%important space :: "'a measure \<Rightarrow> 'a set" where
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1477
  "space M = fst (Rep_measure M)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1478
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1479
definition%important sets :: "'a measure \<Rightarrow> 'a set set" where
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1480
  "sets M = fst (snd (Rep_measure M))"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1481
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1482
definition%important emeasure :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal" where
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1483
  "emeasure M = snd (snd (Rep_measure M))"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1484
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1485
definition%important measure :: "'a measure \<Rightarrow> 'a set \<Rightarrow> real" where
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  1486
  "measure M A = enn2real (emeasure M A)"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1487
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1488
declare [[coercion sets]]
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1489
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1490
declare [[coercion measure]]
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1491
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1492
declare [[coercion emeasure]]
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1493
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1494
lemma measure_space: "measure_space (space M) (sets M) (emeasure M)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1495
  by (cases M) (auto simp: space_def sets_def emeasure_def Abs_measure_inverse)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1496
61605
1bf7b186542e qualifier is mandatory by default;
wenzelm
parents: 61384
diff changeset
  1497
interpretation sets: sigma_algebra "space M" "sets M" for M :: "'a measure"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1498
  using measure_space[of M] by (auto simp: measure_space_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1499
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1500
definition%important measure_of :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a measure" where
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1501
  "measure_of \<Omega> A \<mu> = Abs_measure (\<Omega>, if A \<subseteq> Pow \<Omega> then sigma_sets \<Omega> A else {{}, \<Omega>},
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1502
    \<lambda>a. if a \<in> sigma_sets \<Omega> A \<and> measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> then \<mu> a else 0)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1503
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1504
abbreviation "sigma \<Omega> A \<equiv> measure_of \<Omega> A (\<lambda>x. 0)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1505
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1506
lemma measure_space_0: "A \<subseteq> Pow \<Omega> \<Longrightarrow> measure_space \<Omega> (sigma_sets \<Omega> A) (\<lambda>x. 0)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1507
  unfolding measure_space_def
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1508
  by (auto intro!: sigma_algebra_sigma_sets simp: positive_def countably_additive_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1509
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1510
lemma sigma_algebra_trivial: "sigma_algebra \<Omega> {{}, \<Omega>}"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1511
by unfold_locales(fastforce intro: exI[where x="{{}}"] exI[where x="{\<Omega>}"])+
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1512
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1513
lemma measure_space_0': "measure_space \<Omega> {{}, \<Omega>} (\<lambda>x. 0)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1514
by(simp add: measure_space_def positive_def countably_additive_def sigma_algebra_trivial)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1515
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1516
lemma measure_space_closed:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1517
  assumes "measure_space \<Omega> M \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1518
  shows "M \<subseteq> Pow \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1519
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1520
  interpret sigma_algebra \<Omega> M using assms by(simp add: measure_space_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1521
  show ?thesis by(rule space_closed)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1522
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1523
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1524
lemma (in ring_of_sets) positive_cong_eq:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1525
  "(\<And>a. a \<in> M \<Longrightarrow> \<mu>' a = \<mu> a) \<Longrightarrow> positive M \<mu>' = positive M \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1526
  by (auto simp add: positive_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1527
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1528
lemma (in sigma_algebra) countably_additive_eq:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1529
  "(\<And>a. a \<in> M \<Longrightarrow> \<mu>' a = \<mu> a) \<Longrightarrow> countably_additive M \<mu>' = countably_additive M \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1530
  unfolding countably_additive_def
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1531
  by (intro arg_cong[where f=All] ext) (auto simp add: countably_additive_def subset_eq)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1532
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1533
lemma measure_space_eq:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1534
  assumes closed: "A \<subseteq> Pow \<Omega>" and eq: "\<And>a. a \<in> sigma_sets \<Omega> A \<Longrightarrow> \<mu> a = \<mu>' a"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1535
  shows "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> = measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1536
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1537
  interpret sigma_algebra \<Omega> "sigma_sets \<Omega> A" using closed by (rule sigma_algebra_sigma_sets)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1538
  from positive_cong_eq[OF eq, of "\<lambda>i. i"] countably_additive_eq[OF eq, of "\<lambda>i. i"] show ?thesis
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1539
    by (auto simp: measure_space_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1540
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1541
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1542
lemma measure_of_eq:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1543
  assumes closed: "A \<subseteq> Pow \<Omega>" and eq: "(\<And>a. a \<in> sigma_sets \<Omega> A \<Longrightarrow> \<mu> a = \<mu>' a)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1544
  shows "measure_of \<Omega> A \<mu> = measure_of \<Omega> A \<mu>'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1545
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1546
  have "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> = measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1547
    using assms by (rule measure_space_eq)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1548
  with eq show ?thesis
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1549
    by (auto simp add: measure_of_def intro!: arg_cong[where f=Abs_measure])
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1550
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1551
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1552
lemma
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1553
  shows space_measure_of_conv: "space (measure_of \<Omega> A \<mu>) = \<Omega>" (is ?space)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1554
  and sets_measure_of_conv:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1555
  "sets (measure_of \<Omega> A \<mu>) = (if A \<subseteq> Pow \<Omega> then sigma_sets \<Omega> A else {{}, \<Omega>})" (is ?sets)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  1556
  and emeasure_measure_of_conv:
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  1557
  "emeasure (measure_of \<Omega> A \<mu>) =
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1558
  (\<lambda>B. if B \<in> sigma_sets \<Omega> A \<and> measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> then \<mu> B else 0)" (is ?emeasure)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1559
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1560
  have "?space \<and> ?sets \<and> ?emeasure"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1561
  proof(cases "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>")
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1562
    case True
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1563
    from measure_space_closed[OF this] sigma_sets_superset_generator[of A \<Omega>]
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1564
    have "A \<subseteq> Pow \<Omega>" by simp
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1565
    hence "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> = measure_space \<Omega> (sigma_sets \<Omega> A)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1566
      (\<lambda>a. if a \<in> sigma_sets \<Omega> A then \<mu> a else 0)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1567
      by(rule measure_space_eq) auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1568
    with True \<open>A \<subseteq> Pow \<Omega>\<close> show ?thesis
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1569
      by(simp add: measure_of_def space_def sets_def emeasure_def Abs_measure_inverse)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1570
  next
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1571
    case False thus ?thesis
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1572
      by(cases "A \<subseteq> Pow \<Omega>")(simp_all add: Abs_measure_inverse measure_of_def sets_def space_def emeasure_def measure_space_0 measure_space_0')
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1573
  qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1574
  thus ?space ?sets ?emeasure by simp_all
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1575
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1576
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1577
lemma [simp]:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1578
  assumes A: "A \<subseteq> Pow \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1579
  shows sets_measure_of: "sets (measure_of \<Omega> A \<mu>) = sigma_sets \<Omega> A"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1580
    and space_measure_of: "space (measure_of \<Omega> A \<mu>) = \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1581
using assms
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1582
by(simp_all add: sets_measure_of_conv space_measure_of_conv)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1583
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  1584
lemma space_in_measure_of[simp]: "\<Omega> \<in> sets (measure_of \<Omega> M \<mu>)"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  1585
  by (subst sets_measure_of_conv) (auto simp: sigma_sets_top)
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  1586
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1587
lemma (in sigma_algebra) sets_measure_of_eq[simp]: "sets (measure_of \<Omega> M \<mu>) = M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1588
  using space_closed by (auto intro!: sigma_sets_eq)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1589
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1590
lemma (in sigma_algebra) space_measure_of_eq[simp]: "space (measure_of \<Omega> M \<mu>) = \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1591
  by (rule space_measure_of_conv)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1592
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1593
lemma measure_of_subset: "M \<subseteq> Pow \<Omega> \<Longrightarrow> M' \<subseteq> M \<Longrightarrow> sets (measure_of \<Omega> M' \<mu>) \<subseteq> sets (measure_of \<Omega> M \<mu>')"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1594
  by (auto intro!: sigma_sets_subseteq)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1595
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1596
lemma emeasure_sigma: "emeasure (sigma \<Omega> A) = (\<lambda>x. 0)"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1597
  unfolding measure_of_def emeasure_def
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1598
  by (subst Abs_measure_inverse)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1599
     (auto simp: measure_space_def positive_def countably_additive_def
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1600
           intro!: sigma_algebra_sigma_sets sigma_algebra_trivial)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1601
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1602
lemma sigma_sets_mono'':
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1603
  assumes "A \<in> sigma_sets C D"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1604
  assumes "B \<subseteq> D"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1605
  assumes "D \<subseteq> Pow C"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1606
  shows "sigma_sets A B \<subseteq> sigma_sets C D"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1607
proof
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1608
  fix x assume "x \<in> sigma_sets A B"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1609
  thus "x \<in> sigma_sets C D"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1610
  proof induct
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1611
    case (Basic a) with assms have "a \<in> D" by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1612
    thus ?case ..
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1613
  next
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1614
    case Empty show ?case by (rule sigma_sets.Empty)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1615
  next
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1616
    from assms have "A \<in> sets (sigma C D)" by (subst sets_measure_of[OF \<open>D \<subseteq> Pow C\<close>])
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1617
    moreover case (Compl a) hence "a \<in> sets (sigma C D)" by (subst sets_measure_of[OF \<open>D \<subseteq> Pow C\<close>])
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1618
    ultimately have "A - a \<in> sets (sigma C D)" ..
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1619
    thus ?case by (subst (asm) sets_measure_of[OF \<open>D \<subseteq> Pow C\<close>])
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1620
  next
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1621
    case (Union a)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1622
    thus ?case by (intro sigma_sets.Union)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1623
  qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1624
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1625
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1626
lemma in_measure_of[intro, simp]: "M \<subseteq> Pow \<Omega> \<Longrightarrow> A \<in> M \<Longrightarrow> A \<in> sets (measure_of \<Omega> M \<mu>)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1627
  by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1628
58606
9c66f7c541fb add Giry monad
hoelzl
parents: 58588
diff changeset
  1629
lemma space_empty_iff: "space N = {} \<longleftrightarrow> sets N = {{}}"
9c66f7c541fb add Giry monad
hoelzl
parents: 58588
diff changeset
  1630
  by (metis Pow_empty Sup_bot_conv(1) cSup_singleton empty_iff
9c66f7c541fb add Giry monad
hoelzl
parents: 58588
diff changeset
  1631
            sets.sigma_sets_eq sets.space_closed sigma_sets_top subset_singletonD)
9c66f7c541fb add Giry monad
hoelzl
parents: 58588
diff changeset
  1632
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1633
subsubsection \<open>Constructing simple @{typ "'a measure"}\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1634
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1635
lemma%important emeasure_measure_of:
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1636
  assumes M: "M = measure_of \<Omega> A \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1637
  assumes ms: "A \<subseteq> Pow \<Omega>" "positive (sets M) \<mu>" "countably_additive (sets M) \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1638
  assumes X: "X \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1639
  shows "emeasure M X = \<mu> X"
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1640
proof%unimportant -
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1641
  interpret sigma_algebra \<Omega> "sigma_sets \<Omega> A" by (rule sigma_algebra_sigma_sets) fact
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1642
  have "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1643
    using ms M by (simp add: measure_space_def sigma_algebra_sigma_sets)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1644
  thus ?thesis using X ms
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1645
    by(simp add: M emeasure_measure_of_conv sets_measure_of_conv)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1646
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1647
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1648
lemma emeasure_measure_of_sigma:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1649
  assumes ms: "sigma_algebra \<Omega> M" "positive M \<mu>" "countably_additive M \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1650
  assumes A: "A \<in> M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1651
  shows "emeasure (measure_of \<Omega> M \<mu>) A = \<mu> A"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1652
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1653
  interpret sigma_algebra \<Omega> M by fact
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1654
  have "measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1655
    using ms sigma_sets_eq by (simp add: measure_space_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1656
  thus ?thesis by(simp add: emeasure_measure_of_conv A)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1657
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1658
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1659
lemma measure_cases[cases type: measure]:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1660
  obtains (measure) \<Omega> A \<mu> where "x = Abs_measure (\<Omega>, A, \<mu>)" "\<forall>a\<in>-A. \<mu> a = 0" "measure_space \<Omega> A \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1661
  by atomize_elim (cases x, auto)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1662
60772
a0cfa9050fa8 Measures form a CCPO
hoelzl
parents: 60727
diff changeset
  1663
lemma sets_le_imp_space_le: "sets A \<subseteq> sets B \<Longrightarrow> space A \<subseteq> space B"
a0cfa9050fa8 Measures form a CCPO
hoelzl
parents: 60727
diff changeset
  1664
  by (auto dest: sets.sets_into_space)
a0cfa9050fa8 Measures form a CCPO
hoelzl
parents: 60727
diff changeset
  1665
a0cfa9050fa8 Measures form a CCPO
hoelzl
parents: 60727
diff changeset
  1666
lemma sets_eq_imp_space_eq: "sets M = sets M' \<Longrightarrow> space M = space M'"
a0cfa9050fa8 Measures form a CCPO
hoelzl
parents: 60727
diff changeset
  1667
  by (auto intro!: antisym sets_le_imp_space_le)
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1668
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1669
lemma emeasure_notin_sets: "A \<notin> sets M \<Longrightarrow> emeasure M A = 0"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1670
  by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1671
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1672
lemma emeasure_neq_0_sets: "emeasure M A \<noteq> 0 \<Longrightarrow> A \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1673
  using emeasure_notin_sets[of A M] by blast
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1674
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1675
lemma measure_notin_sets: "A \<notin> sets M \<Longrightarrow> measure M A = 0"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  1676
  by (simp add: measure_def emeasure_notin_sets zero_ennreal.rep_eq)
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1677
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1678
lemma measure_eqI:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1679
  fixes M N :: "'a measure"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1680
  assumes "sets M = sets N" and eq: "\<And>A. A \<in> sets M \<Longrightarrow> emeasure M A = emeasure N A"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1681
  shows "M = N"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1682
proof (cases M N rule: measure_cases[case_product measure_cases])
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1683
  case (measure_measure \<Omega> A \<mu> \<Omega>' A' \<mu>')
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1684
  interpret M: sigma_algebra \<Omega> A using measure_measure by (auto simp: measure_space_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1685
  interpret N: sigma_algebra \<Omega>' A' using measure_measure by (auto simp: measure_space_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1686
  have "A = sets M" "A' = sets N"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1687
    using measure_measure by (simp_all add: sets_def Abs_measure_inverse)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1688
  with \<open>sets M = sets N\<close> have AA': "A = A'" by simp
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1689
  moreover from M.top N.top M.space_closed N.space_closed AA' have "\<Omega> = \<Omega>'" by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1690
  moreover { fix B have "\<mu> B = \<mu>' B"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1691
    proof cases
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1692
      assume "B \<in> A"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1693
      with eq \<open>A = sets M\<close> have "emeasure M B = emeasure N B" by simp
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1694
      with measure_measure show "\<mu> B = \<mu>' B"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1695
        by (simp add: emeasure_def Abs_measure_inverse)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1696
    next
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1697
      assume "B \<notin> A"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1698
      with \<open>A = sets M\<close> \<open>A' = sets N\<close> \<open>A = A'\<close> have "B \<notin> sets M" "B \<notin> sets N"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1699
        by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1700
      then have "emeasure M B = 0" "emeasure N B = 0"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1701
        by (simp_all add: emeasure_notin_sets)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1702
      with measure_measure show "\<mu> B = \<mu>' B"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1703
        by (simp add: emeasure_def Abs_measure_inverse)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1704
    qed }
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1705
  then have "\<mu> = \<mu>'" by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1706
  ultimately show "M = N"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1707
    by (simp add: measure_measure)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1708
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1709
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1710
lemma sigma_eqI:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1711
  assumes [simp]: "M \<subseteq> Pow \<Omega>" "N \<subseteq> Pow \<Omega>" "sigma_sets \<Omega> M = sigma_sets \<Omega> N"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1712
  shows "sigma \<Omega> M = sigma \<Omega> N"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1713
  by (rule measure_eqI) (simp_all add: emeasure_sigma)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1714
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1715
subsubsection \<open>Measurable functions\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1716
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1717
definition%important measurable :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>\<^sub>M" 60) where
61384
9f5145281888 prefer symbols;
wenzelm
parents: 61169
diff changeset
  1718
  "measurable A B = {f \<in> space A \<rightarrow> space B. \<forall>y \<in> sets B. f -` y \<inter> space A \<in> sets A}"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1719
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1720
lemma measurableI:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1721
  "(\<And>x. x \<in> space M \<Longrightarrow> f x \<in> space N) \<Longrightarrow> (\<And>A. A \<in> sets N \<Longrightarrow> f -` A \<inter> space M \<in> sets M) \<Longrightarrow>
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1722
    f \<in> measurable M N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1723
  by (auto simp: measurable_def)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1724
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1725
lemma measurable_space:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1726
  "f \<in> measurable M A \<Longrightarrow> x \<in> space M \<Longrightarrow> f x \<in> space A"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1727
   unfolding measurable_def by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1728
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1729
lemma measurable_sets:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1730
  "f \<in> measurable M A \<Longrightarrow> S \<in> sets A \<Longrightarrow> f -` S \<inter> space M \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1731
   unfolding measurable_def by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1732
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1733
lemma measurable_sets_Collect:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1734
  assumes f: "f \<in> measurable M N" and P: "{x\<in>space N. P x} \<in> sets N" shows "{x\<in>space M. P (f x)} \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1735
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1736
  have "f -` {x \<in> space N. P x} \<inter> space M = {x\<in>space M. P (f x)}"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1737
    using measurable_space[OF f] by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1738
  with measurable_sets[OF f P] show ?thesis
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1739
    by simp
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1740
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1741
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1742
lemma measurable_sigma_sets:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1743
  assumes B: "sets N = sigma_sets \<Omega> A" "A \<subseteq> Pow \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1744
      and f: "f \<in> space M \<rightarrow> \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1745
      and ba: "\<And>y. y \<in> A \<Longrightarrow> (f -` y) \<inter> space M \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1746
  shows "f \<in> measurable M N"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1747
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1748
  interpret A: sigma_algebra \<Omega> "sigma_sets \<Omega> A" using B(2) by (rule sigma_algebra_sigma_sets)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1749
  from B sets.top[of N] A.top sets.space_closed[of N] A.space_closed have \<Omega>: "\<Omega> = space N" by force
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  1750
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1751
  { fix X assume "X \<in> sigma_sets \<Omega> A"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1752
    then have "f -` X \<inter> space M \<in> sets M \<and> X \<subseteq> \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1753
      proof induct
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1754
        case (Basic a) then show ?case
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1755
          by (auto simp add: ba) (metis B(2) subsetD PowD)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1756
      next
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1757
        case (Compl a)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1758
        have [simp]: "f -` \<Omega> \<inter> space M = space M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1759
          by (auto simp add: funcset_mem [OF f])
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1760
        then show ?case
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1761
          by (auto simp add: vimage_Diff Diff_Int_distrib2 sets.compl_sets Compl)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1762
      next
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1763
        case (Union a)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1764
        then show ?case
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1765
          by (simp add: vimage_UN, simp only: UN_extend_simps(4)) blast
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1766
      qed auto }
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1767
  with f show ?thesis
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1768
    by (auto simp add: measurable_def B \<Omega>)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1769
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1770
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1771
lemma measurable_measure_of:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1772
  assumes B: "N \<subseteq> Pow \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1773
      and f: "f \<in> space M \<rightarrow> \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1774
      and ba: "\<And>y. y \<in> N \<Longrightarrow> (f -` y) \<inter> space M \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1775
  shows "f \<in> measurable M (measure_of \<Omega> N \<mu>)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1776
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1777
  have "sets (measure_of \<Omega> N \<mu>) = sigma_sets \<Omega> N"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1778
    using B by (rule sets_measure_of)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1779
  from this assms show ?thesis by (rule measurable_sigma_sets)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1780
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1781
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1782
lemma measurable_iff_measure_of:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1783
  assumes "N \<subseteq> Pow \<Omega>" "f \<in> space M \<rightarrow> \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1784
  shows "f \<in> measurable M (measure_of \<Omega> N \<mu>) \<longleftrightarrow> (\<forall>A\<in>N. f -` A \<inter> space M \<in> sets M)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1785
  by (metis assms in_measure_of measurable_measure_of assms measurable_sets)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1786
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1787
lemma measurable_cong_sets:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1788
  assumes sets: "sets M = sets M'" "sets N = sets N'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1789
  shows "measurable M N = measurable M' N'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1790
  using sets[THEN sets_eq_imp_space_eq] sets by (simp add: measurable_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1791
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1792
lemma measurable_cong:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1793
  assumes "\<And>w. w \<in> space M \<Longrightarrow> f w = g w"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1794
  shows "f \<in> measurable M M' \<longleftrightarrow> g \<in> measurable M M'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1795
  unfolding measurable_def using assms
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1796
  by (simp cong: vimage_inter_cong Pi_cong)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1797
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1798
lemma measurable_cong':
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1799
  assumes "\<And>w. w \<in> space M =simp=> f w = g w"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1800
  shows "f \<in> measurable M M' \<longleftrightarrow> g \<in> measurable M M'"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1801
  unfolding measurable_def using assms
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1802
  by (simp cong: vimage_inter_cong Pi_cong add: simp_implies_def)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1803
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1804
lemma measurable_cong_strong:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1805
  "M = N \<Longrightarrow> M' = N' \<Longrightarrow> (\<And>w. w \<in> space M \<Longrightarrow> f w = g w) \<Longrightarrow>
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1806
    f \<in> measurable M M' \<longleftrightarrow> g \<in> measurable N N'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1807
  by (metis measurable_cong)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1808
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1809
lemma measurable_compose:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1810
  assumes f: "f \<in> measurable M N" and g: "g \<in> measurable N L"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1811
  shows "(\<lambda>x. g (f x)) \<in> measurable M L"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1812
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1813
  have "\<And>A. (\<lambda>x. g (f x)) -` A \<inter> space M = f -` (g -` A \<inter> space N) \<inter> space M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1814
    using measurable_space[OF f] by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1815
  with measurable_space[OF f] measurable_space[OF g] show ?thesis
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1816
    by (auto intro: measurable_sets[OF f] measurable_sets[OF g]
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1817
             simp del: vimage_Int simp add: measurable_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1818
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1819
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1820
lemma measurable_comp:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1821
  "f \<in> measurable M N \<Longrightarrow> g \<in> measurable N L \<Longrightarrow> g \<circ> f \<in> measurable M L"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1822
  using measurable_compose[of f M N g L] by (simp add: comp_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1823
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1824
lemma measurable_const:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1825
  "c \<in> space M' \<Longrightarrow> (\<lambda>x. c) \<in> measurable M M'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1826
  by (auto simp add: measurable_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1827
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1828
lemma measurable_ident: "id \<in> measurable M M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1829
  by (auto simp add: measurable_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1830
59048
7dc8ac6f0895 add congruence solver to measurability prover
hoelzl
parents: 59000
diff changeset
  1831
lemma measurable_id: "(\<lambda>x. x) \<in> measurable M M"
7dc8ac6f0895 add congruence solver to measurability prover
hoelzl
parents: 59000
diff changeset
  1832
  by (simp add: measurable_def)
7dc8ac6f0895 add congruence solver to measurability prover
hoelzl
parents: 59000
diff changeset
  1833
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1834
lemma measurable_ident_sets:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1835
  assumes eq: "sets M = sets M'" shows "(\<lambda>x. x) \<in> measurable M M'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1836
  using measurable_ident[of M]
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1837
  unfolding id_def measurable_def eq sets_eq_imp_space_eq[OF eq] .
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1838
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1839
lemma sets_Least:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1840
  assumes meas: "\<And>i::nat. {x\<in>space M. P i x} \<in> M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1841
  shows "(\<lambda>x. LEAST j. P j x) -` A \<inter> space M \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1842
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1843
  { fix i have "(\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1844
    proof cases
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1845
      assume i: "(LEAST j. False) = i"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1846
      have "(\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M =
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1847
        {x\<in>space M. P i x} \<inter> (space M - (\<Union>j<i. {x\<in>space M. P j x})) \<union> (space M - (\<Union>i. {x\<in>space M. P i x}))"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1848
        by (simp add: set_eq_iff, safe)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1849
           (insert i, auto dest: Least_le intro: LeastI intro!: Least_equality)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1850
      with meas show ?thesis
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1851
        by (auto intro!: sets.Int)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1852
    next
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1853
      assume i: "(LEAST j. False) \<noteq> i"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1854
      then have "(\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M =
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1855
        {x\<in>space M. P i x} \<inter> (space M - (\<Union>j<i. {x\<in>space M. P j x}))"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1856
      proof (simp add: set_eq_iff, safe)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1857
        fix x assume neq: "(LEAST j. False) \<noteq> (LEAST j. P j x)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1858
        have "\<exists>j. P j x"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1859
          by (rule ccontr) (insert neq, auto)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1860
        then show "P (LEAST j. P j x) x" by (rule LeastI_ex)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1861
      qed (auto dest: Least_le intro!: Least_equality)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1862
      with meas show ?thesis
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1863
        by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1864
    qed }
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1865
  then have "(\<Union>i\<in>A. (\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M) \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1866
    by (intro sets.countable_UN) auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1867
  moreover have "(\<Union>i\<in>A. (\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M) =
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1868
    (\<lambda>x. LEAST j. P j x) -` A \<inter> space M" by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1869
  ultimately show ?thesis by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1870
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1871
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1872
lemma measurable_mono1:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1873
  "M' \<subseteq> Pow \<Omega> \<Longrightarrow> M \<subseteq> M' \<Longrightarrow>
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1874
    measurable (measure_of \<Omega> M \<mu>) N \<subseteq> measurable (measure_of \<Omega> M' \<mu>') N"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1875
  using measure_of_subset[of M' \<Omega> M] by (auto simp add: measurable_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1876
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1877
subsubsection \<open>Counting space\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1878
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1879
definition%important count_space :: "'a set \<Rightarrow> 'a measure" where
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  1880
  "count_space \<Omega> = measure_of \<Omega> (Pow \<Omega>) (\<lambda>A. if finite A then of_nat (card A) else \<infinity>)"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1881
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  1882
lemma
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1883
  shows space_count_space[simp]: "space (count_space \<Omega>) = \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1884
    and sets_count_space[simp]: "sets (count_space \<Omega>) = Pow \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1885
  using sigma_sets_into_sp[of "Pow \<Omega>" \<Omega>]
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1886
  by (auto simp: count_space_def)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1887
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1888
lemma measurable_count_space_eq1[simp]:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1889
  "f \<in> measurable (count_space A) M \<longleftrightarrow> f \<in> A \<rightarrow> space M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1890
 unfolding measurable_def by simp
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1891
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1892
lemma measurable_compose_countable':
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1893
  assumes f: "\<And>i. i \<in> I \<Longrightarrow> (\<lambda>x. f i x) \<in> measurable M N"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1894
  and g: "g \<in> measurable M (count_space I)" and I: "countable I"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1895
  shows "(\<lambda>x. f (g x) x) \<in> measurable M N"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1896
  unfolding measurable_def
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1897
proof safe
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1898
  fix x assume "x \<in> space M" then show "f (g x) x \<in> space N"
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1899
    using measurable_space[OF f] g[THEN measurable_space] by auto
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1900
next
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1901
  fix A assume A: "A \<in> sets N"
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1902
  have "(\<lambda>x. f (g x) x) -` A \<inter> space M = (\<Union>i\<in>I. (g -` {i} \<inter> space M) \<inter> (f i -` A \<inter> space M))"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  1903
    using measurable_space[OF g] by auto
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1904
  also have "\<dots> \<in> sets M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1905
    using f[THEN measurable_sets, OF _ A] g[THEN measurable_sets]
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1906
    by (auto intro!: sets.countable_UN' I intro: sets.Int[OF measurable_sets measurable_sets])
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1907
  finally show "(\<lambda>x. f (g x) x) -` A \<inter> space M \<in> sets M" .
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1908
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1909
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1910
lemma measurable_count_space_eq_countable:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1911
  assumes "countable A"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1912
  shows "f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1913
proof -
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1914
  { fix X assume "X \<subseteq> A" "f \<in> space M \<rightarrow> A"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1915
    with \<open>countable A\<close> have "f -` X \<inter> space M = (\<Union>a\<in>X. f -` {a} \<inter> space M)" "countable X"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1916
      by (auto dest: countable_subset)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1917
    moreover assume "\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1918
    ultimately have "f -` X \<inter> space M \<in> sets M"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1919
      using \<open>X \<subseteq> A\<close> by (auto intro!: sets.countable_UN' simp del: UN_simps) }
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1920
  then show ?thesis
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1921
    unfolding measurable_def by auto
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1922
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1923
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1924
lemma measurable_count_space_eq2:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1925
  "finite A \<Longrightarrow> f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1926
  by (intro measurable_count_space_eq_countable countable_finite)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1927
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1928
lemma measurable_count_space_eq2_countable:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1929
  fixes f :: "'a => 'c::countable"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1930
  shows "f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1931
  by (intro measurable_count_space_eq_countable countableI_type)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1932
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1933
lemma measurable_compose_countable:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1934
  assumes f: "\<And>i::'i::countable. (\<lambda>x. f i x) \<in> measurable M N" and g: "g \<in> measurable M (count_space UNIV)"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1935
  shows "(\<lambda>x. f (g x) x) \<in> measurable M N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1936
  by (rule measurable_compose_countable'[OF assms]) auto
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1937
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1938
lemma measurable_count_space_const:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1939
  "(\<lambda>x. c) \<in> measurable M (count_space UNIV)"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1940
  by (simp add: measurable_const)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1941
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1942
lemma measurable_count_space:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1943
  "f \<in> measurable (count_space A) (count_space UNIV)"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1944
  by simp
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1945
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1946
lemma measurable_compose_rev:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1947
  assumes f: "f \<in> measurable L N" and g: "g \<in> measurable M L"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1948
  shows "(\<lambda>x. f (g x)) \<in> measurable M N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1949
  using measurable_compose[OF g f] .
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1950
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  1951
lemma measurable_empty_iff:
58606
9c66f7c541fb add Giry monad
hoelzl
parents: 58588
diff changeset
  1952
  "space N = {} \<Longrightarrow> f \<in> measurable M N \<longleftrightarrow> space M = {}"
9c66f7c541fb add Giry monad
hoelzl
parents: 58588
diff changeset
  1953
  by (auto simp add: measurable_def Pi_iff)
9c66f7c541fb add Giry monad
hoelzl
parents: 58588
diff changeset
  1954
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  1955
subsubsection%unimportant \<open>Extend measure\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1956
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1957
definition "extend_measure \<Omega> I G \<mu> =
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1958
  (if (\<exists>\<mu>'. (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>') \<and> \<not> (\<forall>i\<in>I. \<mu> i = 0)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1959
      then measure_of \<Omega> (G`I) (SOME \<mu>'. (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>')
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1960
      else measure_of \<Omega> (G`I) (\<lambda>_. 0))"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1961
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1962
lemma space_extend_measure: "G ` I \<subseteq> Pow \<Omega> \<Longrightarrow> space (extend_measure \<Omega> I G \<mu>) = \<Omega>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1963
  unfolding extend_measure_def by simp
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1964
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1965
lemma sets_extend_measure: "G ` I \<subseteq> Pow \<Omega> \<Longrightarrow> sets (extend_measure \<Omega> I G \<mu>) = sigma_sets \<Omega> (G`I)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1966
  unfolding extend_measure_def by simp
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1967
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1968
lemma emeasure_extend_measure:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1969
  assumes M: "M = extend_measure \<Omega> I G \<mu>"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1970
    and eq: "\<And>i. i \<in> I \<Longrightarrow> \<mu>' (G i) = \<mu> i"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1971
    and ms: "G ` I \<subseteq> Pow \<Omega>" "positive (sets M) \<mu>'" "countably_additive (sets M) \<mu>'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1972
    and "i \<in> I"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1973
  shows "emeasure M (G i) = \<mu> i"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1974
proof cases
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1975
  assume *: "(\<forall>i\<in>I. \<mu> i = 0)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1976
  with M have M_eq: "M = measure_of \<Omega> (G`I) (\<lambda>_. 0)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1977
   by (simp add: extend_measure_def)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1978
  from measure_space_0[OF ms(1)] ms \<open>i\<in>I\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1979
  have "emeasure M (G i) = 0"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1980
    by (intro emeasure_measure_of[OF M_eq]) (auto simp add: M measure_space_def sets_extend_measure)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1981
  with \<open>i\<in>I\<close> * show ?thesis
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1982
    by simp
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1983
next
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
  1984
  define P where "P \<mu>' \<longleftrightarrow> (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>'" for \<mu>'
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1985
  assume "\<not> (\<forall>i\<in>I. \<mu> i = 0)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1986
  moreover
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1987
  have "measure_space (space M) (sets M) \<mu>'"
61169
4de9ff3ea29a tuned proofs -- less legacy;
wenzelm
parents: 60772
diff changeset
  1988
    using ms unfolding measure_space_def by auto standard
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1989
  with ms eq have "\<exists>\<mu>'. P \<mu>'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1990
    unfolding P_def
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1991
    by (intro exI[of _ \<mu>']) (auto simp add: M space_extend_measure sets_extend_measure)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1992
  ultimately have M_eq: "M = measure_of \<Omega> (G`I) (Eps P)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1993
    by (simp add: M extend_measure_def P_def[symmetric])
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1994
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  1995
  from \<open>\<exists>\<mu>'. P \<mu>'\<close> have P: "P (Eps P)" by (rule someI_ex)
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1996
  show "emeasure M (G i) = \<mu> i"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1997
  proof (subst emeasure_measure_of[OF M_eq])
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1998
    have sets_M: "sets M = sigma_sets \<Omega> (G`I)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  1999
      using M_eq ms by (auto simp: sets_extend_measure)
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  2000
    then show "G i \<in> sets M" using \<open>i \<in> I\<close> by auto
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2001
    show "positive (sets M) (Eps P)" "countably_additive (sets M) (Eps P)" "Eps P (G i) = \<mu> i"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  2002
      using P \<open>i\<in>I\<close> by (auto simp add: sets_M measure_space_def P_def)
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2003
  qed fact
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2004
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2005
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2006
lemma emeasure_extend_measure_Pair:
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2007
  assumes M: "M = extend_measure \<Omega> {(i, j). I i j} (\<lambda>(i, j). G i j) (\<lambda>(i, j). \<mu> i j)"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2008
    and eq: "\<And>i j. I i j \<Longrightarrow> \<mu>' (G i j) = \<mu> i j"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2009
    and ms: "\<And>i j. I i j \<Longrightarrow> G i j \<in> Pow \<Omega>" "positive (sets M) \<mu>'" "countably_additive (sets M) \<mu>'"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2010
    and "I i j"
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2011
  shows "emeasure M (G i j) = \<mu> i j"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  2012
  using emeasure_extend_measure[OF M _ _ ms(2,3), of "(i,j)"] eq ms(1) \<open>I i j\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2013
  by (auto simp: subset_eq)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2014
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  2015
subsection \<open>The smallest $\sigma$-algebra regarding a function\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2016
67962
0acdcd8f4ba1 a first shot at tagging for HOL-Analysis manual
immler
parents: 67399
diff changeset
  2017
definition%important
58588
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2018
  "vimage_algebra X f M = sigma X {f -` A \<inter> X | A. A \<in> sets M}"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2019
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2020
lemma space_vimage_algebra[simp]: "space (vimage_algebra X f M) = X"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2021
  unfolding vimage_algebra_def by (rule space_measure_of) auto
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2022
58588
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2023
lemma sets_vimage_algebra: "sets (vimage_algebra X f M) = sigma_sets X {f -` A \<inter> X | A. A \<in> sets M}"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2024
  unfolding vimage_algebra_def by (rule sets_measure_of) auto
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2025
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2026
lemma sets_vimage_algebra2:
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2027
  "f \<in> X \<rightarrow> space M \<Longrightarrow> sets (vimage_algebra X f M) = {f -` A \<inter> X | A. A \<in> sets M}"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2028
  using sigma_sets_vimage_commute[of f X "space M" "sets M"]
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2029
  unfolding sets_vimage_algebra sets.sigma_sets_eq by simp
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2030
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents: 59088
diff changeset
  2031
lemma sets_vimage_algebra_cong: "sets M = sets N \<Longrightarrow> sets (vimage_algebra X f M) = sets (vimage_algebra X f N)"
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2032
  by (simp add: sets_vimage_algebra)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2033
59092
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents: 59088
diff changeset
  2034
lemma vimage_algebra_cong:
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents: 59088
diff changeset
  2035
  assumes "X = Y"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents: 59088
diff changeset
  2036
  assumes "\<And>x. x \<in> Y \<Longrightarrow> f x = g x"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents: 59088
diff changeset
  2037
  assumes "sets M = sets N"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents: 59088
diff changeset
  2038
  shows "vimage_algebra X f M = vimage_algebra Y g N"
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents: 59088
diff changeset
  2039
  by (auto simp: vimage_algebra_def assms intro!: arg_cong2[where f=sigma])
d469103c0737 add integral substitution theorems from Manuel Eberl, Jeremy Avigad, Luke Serafin, and Sudeep Kanav
hoelzl
parents: 59088
diff changeset
  2040
58588
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2041
lemma in_vimage_algebra: "A \<in> sets M \<Longrightarrow> f -` A \<inter> X \<in> sets (vimage_algebra X f M)"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2042
  by (auto simp: vimage_algebra_def)
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2043
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2044
lemma sets_image_in_sets:
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2045
  assumes N: "space N = X"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2046
  assumes f: "f \<in> measurable N M"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2047
  shows "sets (vimage_algebra X f M) \<subseteq> sets N"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2048
  unfolding sets_vimage_algebra N[symmetric]
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2049
  by (rule sets.sigma_sets_subset) (auto intro!: measurable_sets f)
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2050
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2051
lemma measurable_vimage_algebra1: "f \<in> X \<rightarrow> space M \<Longrightarrow> f \<in> measurable (vimage_algebra X f M) M"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2052
  unfolding measurable_def by (auto intro: in_vimage_algebra)
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2053
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2054
lemma measurable_vimage_algebra2:
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2055
  assumes g: "g \<in> space N \<rightarrow> X" and f: "(\<lambda>x. f (g x)) \<in> measurable N M"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2056
  shows "g \<in> measurable N (vimage_algebra X f M)"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2057
  unfolding vimage_algebra_def
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2058
proof (rule measurable_measure_of)
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2059
  fix A assume "A \<in> {f -` A \<inter> X | A. A \<in> sets M}"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2060
  then obtain Y where Y: "Y \<in> sets M" and A: "A = f -` Y \<inter> X"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2061
    by auto
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2062
  then have "g -` A \<inter> space N = (\<lambda>x. f (g x)) -` Y \<inter> space N"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2063
    using g by auto
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2064
  also have "\<dots> \<in> sets N"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2065
    using f Y by (rule measurable_sets)
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2066
  finally show "g -` A \<inter> space N \<in> sets N" .
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2067
qed (insert g, auto)
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2068
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2069
lemma vimage_algebra_sigma:
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2070
  assumes X: "X \<subseteq> Pow \<Omega>'" and f: "f \<in> \<Omega> \<rightarrow> \<Omega>'"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2071
  shows "vimage_algebra \<Omega> f (sigma \<Omega>' X) = sigma \<Omega> {f -` A \<inter> \<Omega> | A. A \<in> X }" (is "?V = ?S")
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2072
proof (rule measure_eqI)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2073
  have \<Omega>: "{f -` A \<inter> \<Omega> |A. A \<in> X} \<subseteq> Pow \<Omega>" by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2074
  show "sets ?V = sets ?S"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2075
    using sigma_sets_vimage_commute[OF f, of X]
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2076
    by (simp add: space_measure_of_conv f sets_vimage_algebra2 \<Omega> X)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2077
qed (simp add: vimage_algebra_def emeasure_sigma)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2078
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2079
lemma vimage_algebra_vimage_algebra_eq:
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2080
  assumes *: "f \<in> X \<rightarrow> Y" "g \<in> Y \<rightarrow> space M"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2081
  shows "vimage_algebra X f (vimage_algebra Y g M) = vimage_algebra X (\<lambda>x. g (f x)) M"
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59048
diff changeset
  2082
    (is "?VV = ?V")
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2083
proof (rule measure_eqI)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2084
  have "(\<lambda>x. g (f x)) \<in> X \<rightarrow> space M" "\<And>A. A \<inter> f -` Y \<inter> X = A \<inter> X"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2085
    using * by auto
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2086
  with * show "sets ?VV = sets ?V"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2087
    by (simp add: sets_vimage_algebra2 ex_simps[symmetric] vimage_comp comp_def del: ex_simps)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2088
qed (simp add: vimage_algebra_def emeasure_sigma)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2089
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  2090
subsubsection \<open>Restricted Space Sigma Algebra\<close>
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2091
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2092
definition restrict_space where
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
  2093
  "restrict_space M \<Omega> = measure_of (\<Omega> \<inter> space M) (((\<inter>) \<Omega>) ` sets M) (emeasure M)"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2094
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2095
lemma space_restrict_space: "space (restrict_space M \<Omega>) = \<Omega> \<inter> space M"
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2096
  using sets.sets_into_space unfolding restrict_space_def by (subst space_measure_of) auto
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2097
67982
7643b005b29a various new results on measures, integrals, etc., and some simplified proofs
paulson <lp15@cam.ac.uk>
parents: 67962
diff changeset
  2098
lemma space_restrict_space2 [simp]: "\<Omega> \<in> sets M \<Longrightarrow> space (restrict_space M \<Omega>) = \<Omega>"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2099
  by (simp add: space_restrict_space sets.sets_into_space)
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2100
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
  2101
lemma sets_restrict_space: "sets (restrict_space M \<Omega>) = ((\<inter>) \<Omega>) ` sets M"
58588
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2102
  unfolding restrict_space_def
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2103
proof (subst sets_measure_of)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
  2104
  show "(\<inter>) \<Omega> ` sets M \<subseteq> Pow (\<Omega> \<inter> space M)"
58588
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2105
    by (auto dest: sets.sets_into_space)
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2106
  have "sigma_sets (\<Omega> \<inter> space M) {((\<lambda>x. x) -` X) \<inter> (\<Omega> \<inter> space M) | X. X \<in> sets M} =
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2107
    (\<lambda>X. X \<inter> (\<Omega> \<inter> space M)) ` sets M"
58588
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2108
    by (subst sigma_sets_vimage_commute[symmetric, where \<Omega>' = "space M"])
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2109
       (auto simp add: sets.sigma_sets_eq)
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2110
  moreover have "{((\<lambda>x. x) -` X) \<inter> (\<Omega> \<inter> space M) | X. X \<in> sets M} = (\<lambda>X. X \<inter> (\<Omega> \<inter> space M)) `  sets M"
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2111
    by auto
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
  2112
  moreover have "(\<lambda>X. X \<inter> (\<Omega> \<inter> space M)) `  sets M = ((\<inter>) \<Omega>) ` sets M"
58588
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2113
    by (intro image_cong) (auto dest: sets.sets_into_space)
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 66453
diff changeset
  2114
  ultimately show "sigma_sets (\<Omega> \<inter> space M) ((\<inter>) \<Omega> ` sets M) = (\<inter>) \<Omega> ` sets M"
58588
93d87fd1583d add measure space for (coinductive) streams
hoelzl
parents: 57512
diff changeset
  2115
    by simp
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2116
qed
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2117
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61952
diff changeset
  2118
lemma restrict_space_sets_cong:
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61952
diff changeset
  2119
  "A = B \<Longrightarrow> sets M = sets N \<Longrightarrow> sets (restrict_space M A) = sets (restrict_space N B)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61952
diff changeset
  2120
  by (auto simp: sets_restrict_space)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61952
diff changeset
  2121
60063
81835db730e8 add lemmas about restrict_space
Andreas Lochbihler
parents: 59415
diff changeset
  2122
lemma sets_restrict_space_count_space :
81835db730e8 add lemmas about restrict_space
Andreas Lochbihler
parents: 59415
diff changeset
  2123
  "sets (restrict_space (count_space A) B) = sets (count_space (A \<inter> B))"
81835db730e8 add lemmas about restrict_space
Andreas Lochbihler
parents: 59415
diff changeset
  2124
by(auto simp add: sets_restrict_space)
81835db730e8 add lemmas about restrict_space
Andreas Lochbihler
parents: 59415
diff changeset
  2125
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59092
diff changeset
  2126
lemma sets_restrict_UNIV[simp]: "sets (restrict_space M UNIV) = sets M"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59092
diff changeset
  2127
  by (auto simp add: sets_restrict_space)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59092
diff changeset
  2128
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2129
lemma sets_restrict_restrict_space:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2130
  "sets (restrict_space (restrict_space M A) B) = sets (restrict_space M (A \<inter> B))"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2131
  unfolding sets_restrict_space image_comp by (intro image_cong) auto
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2132
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2133
lemma sets_restrict_space_iff:
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2134
  "\<Omega> \<inter> space M \<in> sets M \<Longrightarrow> A \<in> sets (restrict_space M \<Omega>) \<longleftrightarrow> (A \<subseteq> \<Omega> \<and> A \<in> sets M)"
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2135
proof (subst sets_restrict_space, safe)
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2136
  fix A assume "\<Omega> \<inter> space M \<in> sets M" and A: "A \<in> sets M"
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2137
  then have "(\<Omega> \<inter> space M) \<inter> A \<in> sets M"
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2138
    by rule
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2139
  also have "(\<Omega> \<inter> space M) \<inter> A = \<Omega> \<inter> A"
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2140
    using sets.sets_into_space[OF A] by auto
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2141
  finally show "\<Omega> \<inter> A \<in> sets M"
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2142
    by auto
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2143
qed auto
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2144
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2145
lemma sets_restrict_space_cong: "sets M = sets N \<Longrightarrow> sets (restrict_space M \<Omega>) = sets (restrict_space N \<Omega>)"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2146
  by (simp add: sets_restrict_space)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2147
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2148
lemma restrict_space_eq_vimage_algebra:
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2149
  "\<Omega> \<subseteq> space M \<Longrightarrow> sets (restrict_space M \<Omega>) = sets (vimage_algebra \<Omega> (\<lambda>x. x) M)"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2150
  unfolding restrict_space_def
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2151
  apply (subst sets_measure_of)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2152
  apply (auto simp add: image_subset_iff dest: sets.sets_into_space) []
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2153
  apply (auto simp add: sets_vimage_algebra intro!: arg_cong2[where f=sigma_sets])
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2154
  done
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2155
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62390
diff changeset
  2156
lemma sets_Collect_restrict_space_iff:
59000
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2157
  assumes "S \<in> sets M"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2158
  shows "{x\<in>space (restrict_space M S). P x} \<in> sets (restrict_space M S) \<longleftrightarrow> {x\<in>space M. x \<in> S \<and> P x} \<in> sets M"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2159
proof -
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2160
  have "{x\<in>S. P x} = {x\<in>space M. x \<in> S \<and> P x}"
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2161
    using sets.sets_into_space[OF assms] by auto
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2162
  then show ?thesis
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2163
    by (subst sets_restrict_space_iff) (auto simp add: space_restrict_space assms)
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2164
qed
6eb0725503fc import general theorems from AFP/Markov_Models
hoelzl
parents: 58876
diff changeset
  2165
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2166
lemma measurable_restrict_space1:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2167
  assumes f: "f \<in> measurable M N"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2168
  shows "f \<in> measurable (restrict_space M \<Omega>) N"
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2169
  unfolding measurable_def
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2170
proof (intro CollectI conjI ballI)
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2171
  show sp: "f \<in> space (restrict_space M \<Omega>) \<rightarrow> space N"
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2172
    using measurable_space[OF f] by (auto simp: space_restrict_space)
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2173
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2174
  fix A assume "A \<in> sets N"
57025
e7fd64f82876 add various lemmas
hoelzl
parents: 56994
diff changeset
  2175
  have "f -` A \<inter> space (restrict_space M \<Omega>) = (f -` A \<inter> space M) \<inter> (\<Omega> \<inter> space M)"
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2176
    by (auto simp: space_restrict_space)
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2177
  also have "\<dots> \<in> sets (restrict_space M \<Omega>)"
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2178
    unfolding sets_restrict_space
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  2179
    using measurable_sets[OF f \<open>A \<in> sets N\<close>] by blast
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2180
  finally show "f -` A \<inter> space (restrict_space M \<Omega>) \<in> sets (restrict_space M \<Omega>)" .
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2181
qed
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2182
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2183
lemma measurable_restrict_space2_iff:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2184
  "f \<in> measurable M (restrict_space N \<Omega>) \<longleftrightarrow> (f \<in> measurable M N \<and> f \<in> space M \<rightarrow> \<Omega>)"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2185
proof -
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2186
  have "\<And>A. f \<in> space M \<rightarrow> \<Omega> \<Longrightarrow> f -` \<Omega> \<inter> f -` A \<inter> space M = f -` A \<inter> space M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2187
    by auto
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2188
  then show ?thesis
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2189
    by (auto simp: measurable_def space_restrict_space Pi_Int[symmetric] sets_restrict_space)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2190
qed
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2191
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2192
lemma measurable_restrict_space2:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2193
  "f \<in> space M \<rightarrow> \<Omega> \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> f \<in> measurable M (restrict_space N \<Omega>)"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2194
  by (simp add: measurable_restrict_space2_iff)
56994
8d5e5ec1cac3 fixed document generation for HOL-Probability
hoelzl
parents: 56993
diff changeset
  2195
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2196
lemma measurable_piecewise_restrict:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2197
  assumes I: "countable C"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2198
    and X: "\<And>\<Omega>. \<Omega> \<in> C \<Longrightarrow> \<Omega> \<inter> space M \<in> sets M" "space M \<subseteq> \<Union>C"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2199
    and f: "\<And>\<Omega>. \<Omega> \<in> C \<Longrightarrow> f \<in> measurable (restrict_space M \<Omega>) N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2200
  shows "f \<in> measurable M N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2201
proof (rule measurableI)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2202
  fix x assume "x \<in> space M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2203
  with X obtain \<Omega> where "\<Omega> \<in> C" "x \<in> \<Omega>" "x \<in> space M" by auto
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2204
  then show "f x \<in> space N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2205
    by (auto simp: space_restrict_space intro: f measurable_space)
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
  2206
next
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2207
  fix A assume A: "A \<in> sets N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2208
  have "f -` A \<inter> space M = (\<Union>\<Omega>\<in>C. (f -` A \<inter> (\<Omega> \<inter> space M)))"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2209
    using X by (auto simp: subset_eq)
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
  2210
  also have "\<dots> \<in> sets M"
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2211
    using measurable_sets[OF f A] X I
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2212
    by (intro sets.countable_UN') (auto simp: sets_restrict_space_iff space_restrict_space)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2213
  finally show "f -` A \<inter> space M \<in> sets M" .
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
  2214
qed
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
  2215
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2216
lemma measurable_piecewise_restrict_iff:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2217
  "countable C \<Longrightarrow> (\<And>\<Omega>. \<Omega> \<in> C \<Longrightarrow> \<Omega> \<inter> space M \<in> sets M) \<Longrightarrow> space M \<subseteq> (\<Union>C) \<Longrightarrow>
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2218
    f \<in> measurable M N \<longleftrightarrow> (\<forall>\<Omega>\<in>C. f \<in> measurable (restrict_space M \<Omega>) N)"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2219
  by (auto intro: measurable_piecewise_restrict measurable_restrict_space1)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2220
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2221
lemma measurable_If_restrict_space_iff:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2222
  "{x\<in>space M. P x} \<in> sets M \<Longrightarrow>
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2223
    (\<lambda>x. if P x then f x else g x) \<in> measurable M N \<longleftrightarrow>
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2224
    (f \<in> measurable (restrict_space M {x. P x}) N \<and> g \<in> measurable (restrict_space M {x. \<not> P x}) N)"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2225
  by (subst measurable_piecewise_restrict_iff[where C="{{x. P x}, {x. \<not> P x}}"])
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2226
     (auto simp: Int_def sets.sets_Collect_neg space_restrict_space conj_commute[of _ "x \<in> space M" for x]
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2227
           cong: measurable_cong')
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2228
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2229
lemma measurable_If:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2230
  "f \<in> measurable M M' \<Longrightarrow> g \<in> measurable M M' \<Longrightarrow> {x\<in>space M. P x} \<in> sets M \<Longrightarrow>
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2231
    (\<lambda>x. if P x then f x else g x) \<in> measurable M M'"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2232
  unfolding measurable_If_restrict_space_iff by (auto intro: measurable_restrict_space1)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2233
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2234
lemma measurable_If_set:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2235
  assumes measure: "f \<in> measurable M M'" "g \<in> measurable M M'"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2236
  assumes P: "A \<inter> space M \<in> sets M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2237
  shows "(\<lambda>x. if x \<in> A then f x else g x) \<in> measurable M M'"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2238
proof (rule measurable_If[OF measure])
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2239
  have "{x \<in> space M. x \<in> A} = A \<inter> space M" by auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61633
diff changeset
  2240
  thus "{x \<in> space M. x \<in> A} \<in> sets M" using \<open>A \<inter> space M \<in> sets M\<close> by auto
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2241
qed
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59092
diff changeset
  2242
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2243
lemma measurable_restrict_space_iff:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2244
  "\<Omega> \<inter> space M \<in> sets M \<Longrightarrow> c \<in> space N \<Longrightarrow>
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2245
    f \<in> measurable (restrict_space M \<Omega>) N \<longleftrightarrow> (\<lambda>x. if x \<in> \<Omega> then f x else c) \<in> measurable M N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2246
  by (subst measurable_If_restrict_space_iff)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2247
     (simp_all add: Int_def conj_commute measurable_const)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2248
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2249
lemma restrict_space_singleton: "{x} \<in> sets M \<Longrightarrow> sets (restrict_space M {x}) = sets (count_space {x})"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2250
  using sets_restrict_space_iff[of "{x}" M]
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2251
  by (auto simp add: sets_restrict_space_iff dest!: subset_singletonD)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2252
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2253
lemma measurable_restrict_countable:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2254
  assumes X[intro]: "countable X"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2255
  assumes sets[simp]: "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2256
  assumes space[simp]: "\<And>x. x \<in> X \<Longrightarrow> f x \<in> space N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2257
  assumes f: "f \<in> measurable (restrict_space M (- X)) N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2258
  shows "f \<in> measurable M N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2259
  using f sets.countable[OF sets X]
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2260
  by (intro measurable_piecewise_restrict[where M=M and C="{- X} \<union> ((\<lambda>x. {x}) ` X)"])
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2261
     (auto simp: Diff_Int_distrib2 Compl_eq_Diff_UNIV Int_insert_left sets.Diff restrict_space_singleton
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2262
           simp del: sets_count_space  cong: measurable_cong_sets)
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2263
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2264
lemma measurable_discrete_difference:
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2265
  assumes f: "f \<in> measurable M N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2266
  assumes X: "countable X" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M" "\<And>x. x \<in> X \<Longrightarrow> g x \<in> space N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2267
  assumes eq: "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2268
  shows "g \<in> measurable M N"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2269
  by (rule measurable_restrict_countable[OF X])
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  2270
     (auto simp: eq[symmetric] space_restrict_space cong: measurable_cong' intro: f measurable_restrict_space1)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59092
diff changeset
  2271
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  2272
lemma measurable_count_space_extend: "A \<subseteq> B \<Longrightarrow> f \<in> space M \<rightarrow> A \<Longrightarrow> f \<in> M \<rightarrow>\<^sub>M count_space B \<Longrightarrow> f \<in> M \<rightarrow>\<^sub>M count_space A"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  2273
  by (auto simp: measurable_def)
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63627
diff changeset
  2274
33271
7be66dee1a5a New theory Probability, which contains a development of measure theory
paulson
parents:
diff changeset
  2275
end