author | wenzelm |
Thu, 29 Nov 2001 01:51:06 +0100 | |
changeset 12325 | 4966dae8fa62 |
parent 11701 | 3d51fbf81c17 |
child 12338 | de0f4a63baa5 |
permissions | -rw-r--r-- |
2608 | 1 |
(* Title: HOL/NatDef.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Cambridge University Computer Laboratory |
|
4 |
Copyright 1991 University of Cambridge |
|
5 |
||
6 |
Definition of types ind and nat. |
|
7 |
||
8 |
Type nat is defined as a set Nat over type ind. |
|
9 |
*) |
|
10 |
||
10212 | 11 |
NatDef = Wellfounded_Recursion + |
2608 | 12 |
|
13 |
(** type ind **) |
|
14 |
||
3947 | 15 |
global |
16 |
||
2608 | 17 |
types |
18 |
ind |
|
19 |
||
20 |
arities |
|
21 |
ind :: term |
|
22 |
||
23 |
consts |
|
24 |
Zero_Rep :: ind |
|
25 |
Suc_Rep :: ind => ind |
|
26 |
||
27 |
rules |
|
28 |
(*the axiom of infinity in 2 parts*) |
|
29 |
inj_Suc_Rep "inj(Suc_Rep)" |
|
30 |
Suc_Rep_not_Zero_Rep "Suc_Rep(x) ~= Zero_Rep" |
|
31 |
||
32 |
||
33 |
||
34 |
(** type nat **) |
|
35 |
||
36 |
(* type definition *) |
|
37 |
||
11326
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
38 |
consts |
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
39 |
Nat' :: "ind set" |
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
40 |
|
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
41 |
inductive Nat' |
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
42 |
intrs |
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
43 |
Zero_RepI "Zero_Rep : Nat'" |
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
44 |
Suc_RepI "i : Nat' ==> Suc_Rep i : Nat'" |
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
45 |
|
2608 | 46 |
typedef (Nat) |
11326
680ebd093cfe
Representing set for type nat is now defined via "inductive".
berghofe
parents:
10832
diff
changeset
|
47 |
nat = "Nat'" (Nat'.Zero_RepI) |
2608 | 48 |
|
49 |
instance |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11464
diff
changeset
|
50 |
nat :: {ord, zero, one} |
2608 | 51 |
|
52 |
||
53 |
(* abstract constants and syntax *) |
|
54 |
||
55 |
consts |
|
56 |
Suc :: nat => nat |
|
57 |
pred_nat :: "(nat * nat) set" |
|
58 |
||
3947 | 59 |
local |
60 |
||
2608 | 61 |
defs |
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11464
diff
changeset
|
62 |
Zero_nat_def "0 == Abs_Nat(Zero_Rep)" |
2608 | 63 |
Suc_def "Suc == (%n. Abs_Nat(Suc_Rep(Rep_Nat(n))))" |
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11464
diff
changeset
|
64 |
One_nat_def "1 == Suc 0" |
2608 | 65 |
|
7872 | 66 |
(*nat operations*) |
3236 | 67 |
pred_nat_def "pred_nat == {(m,n). n = Suc m}" |
2608 | 68 |
|
69 |
less_def "m<n == (m,n):trancl(pred_nat)" |
|
70 |
||
71 |
le_def "m<=(n::nat) == ~(n<m)" |
|
72 |
||
73 |
end |