| author | wenzelm | 
| Fri, 16 Mar 2012 20:33:33 +0100 | |
| changeset 46967 | 499d9bbd8de9 | 
| parent 44563 | 01b2732cf4ad | 
| child 47232 | e2f0176149d0 | 
| permissions | -rw-r--r-- | 
| 43146 | 1  | 
(* Author: Florian Haftmann, TU Muenchen *)  | 
2  | 
||
3  | 
header {* Canonical implementation of sets by distinct lists *}
 | 
|
4  | 
||
5  | 
theory Dlist_Cset  | 
|
| 44558 | 6  | 
imports Dlist Cset  | 
| 43146 | 7  | 
begin  | 
8  | 
||
9  | 
definition Set :: "'a dlist \<Rightarrow> 'a Cset.set" where  | 
|
| 
43971
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
10  | 
"Set dxs = Cset.set (list_of_dlist dxs)"  | 
| 43146 | 11  | 
|
12  | 
definition Coset :: "'a dlist \<Rightarrow> 'a Cset.set" where  | 
|
| 44558 | 13  | 
"Coset dxs = Cset.coset (list_of_dlist dxs)"  | 
| 43146 | 14  | 
|
15  | 
code_datatype Set Coset  | 
|
16  | 
||
17  | 
lemma Set_Dlist [simp]:  | 
|
| 44558 | 18  | 
"Set (Dlist xs) = Cset.set xs"  | 
| 43146 | 19  | 
by (rule Cset.set_eqI) (simp add: Set_def)  | 
20  | 
||
21  | 
lemma Coset_Dlist [simp]:  | 
|
| 44558 | 22  | 
"Coset (Dlist xs) = Cset.coset xs"  | 
| 43146 | 23  | 
by (rule Cset.set_eqI) (simp add: Coset_def)  | 
24  | 
||
25  | 
lemma member_Set [simp]:  | 
|
26  | 
"Cset.member (Set dxs) = List.member (list_of_dlist dxs)"  | 
|
| 44558 | 27  | 
by (simp add: Set_def fun_eq_iff List.member_def)  | 
| 43146 | 28  | 
|
29  | 
lemma member_Coset [simp]:  | 
|
30  | 
"Cset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)"  | 
|
| 44558 | 31  | 
by (simp add: Coset_def fun_eq_iff List.member_def)  | 
| 43146 | 32  | 
|
33  | 
lemma Set_dlist_of_list [code]:  | 
|
| 
43971
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
34  | 
"Cset.set xs = Set (dlist_of_list xs)"  | 
| 43146 | 35  | 
by (rule Cset.set_eqI) simp  | 
36  | 
||
37  | 
lemma Coset_dlist_of_list [code]:  | 
|
| 44558 | 38  | 
"Cset.coset xs = Coset (dlist_of_list xs)"  | 
| 43146 | 39  | 
by (rule Cset.set_eqI) simp  | 
40  | 
||
41  | 
lemma is_empty_Set [code]:  | 
|
42  | 
"Cset.is_empty (Set dxs) \<longleftrightarrow> Dlist.null dxs"  | 
|
| 44558 | 43  | 
by (simp add: Dlist.null_def List.null_def Set_def)  | 
| 43146 | 44  | 
|
45  | 
lemma bot_code [code]:  | 
|
46  | 
"bot = Set Dlist.empty"  | 
|
47  | 
by (simp add: empty_def)  | 
|
48  | 
||
49  | 
lemma top_code [code]:  | 
|
50  | 
"top = Coset Dlist.empty"  | 
|
| 44558 | 51  | 
by (simp add: empty_def Cset.coset_def)  | 
| 43146 | 52  | 
|
53  | 
lemma insert_code [code]:  | 
|
54  | 
"Cset.insert x (Set dxs) = Set (Dlist.insert x dxs)"  | 
|
55  | 
"Cset.insert x (Coset dxs) = Coset (Dlist.remove x dxs)"  | 
|
| 44558 | 56  | 
by (simp_all add: Dlist.insert_def Dlist.remove_def Cset.set_def Cset.coset_def Set_def Coset_def)  | 
| 43146 | 57  | 
|
58  | 
lemma remove_code [code]:  | 
|
59  | 
"Cset.remove x (Set dxs) = Set (Dlist.remove x dxs)"  | 
|
60  | 
"Cset.remove x (Coset dxs) = Coset (Dlist.insert x dxs)"  | 
|
| 44558 | 61  | 
by (simp_all add: Dlist.insert_def Dlist.remove_def Cset.set_def Cset.coset_def Set_def Coset_def Compl_insert)  | 
| 43146 | 62  | 
|
63  | 
lemma member_code [code]:  | 
|
64  | 
"Cset.member (Set dxs) = Dlist.member dxs"  | 
|
65  | 
"Cset.member (Coset dxs) = Not \<circ> Dlist.member dxs"  | 
|
| 44558 | 66  | 
by (simp_all add: List.member_def member_def fun_eq_iff Dlist.member_def)  | 
| 43146 | 67  | 
|
68  | 
lemma compl_code [code]:  | 
|
69  | 
"- Set dxs = Coset dxs"  | 
|
70  | 
"- Coset dxs = Set dxs"  | 
|
| 44558 | 71  | 
by (rule Cset.set_eqI, simp add: fun_eq_iff List.member_def Set_def Coset_def)+  | 
| 43146 | 72  | 
|
73  | 
lemma map_code [code]:  | 
|
74  | 
"Cset.map f (Set dxs) = Set (Dlist.map f dxs)"  | 
|
| 44558 | 75  | 
by (rule Cset.set_eqI) (simp add: fun_eq_iff List.member_def Set_def)  | 
| 43146 | 76  | 
|
77  | 
lemma filter_code [code]:  | 
|
78  | 
"Cset.filter f (Set dxs) = Set (Dlist.filter f dxs)"  | 
|
| 44558 | 79  | 
by (rule Cset.set_eqI) (simp add: fun_eq_iff List.member_def Set_def)  | 
| 43146 | 80  | 
|
81  | 
lemma forall_Set [code]:  | 
|
82  | 
"Cset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)"  | 
|
| 44558 | 83  | 
by (simp add: Set_def list_all_iff)  | 
| 43146 | 84  | 
|
85  | 
lemma exists_Set [code]:  | 
|
86  | 
"Cset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)"  | 
|
| 44558 | 87  | 
by (simp add: Set_def list_ex_iff)  | 
| 43146 | 88  | 
|
89  | 
lemma card_code [code]:  | 
|
90  | 
"Cset.card (Set dxs) = Dlist.length dxs"  | 
|
| 44558 | 91  | 
by (simp add: length_def Set_def distinct_card)  | 
| 43146 | 92  | 
|
93  | 
lemma inter_code [code]:  | 
|
94  | 
"inf A (Set xs) = Set (Dlist.filter (Cset.member A) xs)"  | 
|
95  | 
"inf A (Coset xs) = Dlist.foldr Cset.remove xs A"  | 
|
96  | 
by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter)  | 
|
97  | 
||
98  | 
lemma subtract_code [code]:  | 
|
99  | 
"A - Set xs = Dlist.foldr Cset.remove xs A"  | 
|
100  | 
"A - Coset xs = Set (Dlist.filter (Cset.member A) xs)"  | 
|
101  | 
by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter)  | 
|
102  | 
||
103  | 
lemma union_code [code]:  | 
|
104  | 
"sup (Set xs) A = Dlist.foldr Cset.insert xs A"  | 
|
105  | 
"sup (Coset xs) A = Coset (Dlist.filter (Not \<circ> Cset.member A) xs)"  | 
|
106  | 
by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter)  | 
|
107  | 
||
108  | 
context complete_lattice  | 
|
109  | 
begin  | 
|
110  | 
||
111  | 
lemma Infimum_code [code]:  | 
|
112  | 
"Infimum (Set As) = Dlist.foldr inf As top"  | 
|
113  | 
by (simp only: Set_def Infimum_inf foldr_def inf.commute)  | 
|
114  | 
||
115  | 
lemma Supremum_code [code]:  | 
|
116  | 
"Supremum (Set As) = Dlist.foldr sup As bot"  | 
|
117  | 
by (simp only: Set_def Supremum_sup foldr_def sup.commute)  | 
|
118  | 
||
119  | 
end  | 
|
120  | 
||
| 44563 | 121  | 
declare Cset.single_code [code]  | 
| 
43971
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
122  | 
|
| 
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
123  | 
lemma bind_set [code]:  | 
| 44558 | 124  | 
"Cset.bind (Dlist_Cset.Set xs) f = fold (sup \<circ> f) (list_of_dlist xs) Cset.empty"  | 
125  | 
by (simp add: Cset.bind_set Set_def)  | 
|
| 
43971
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
126  | 
hide_fact (open) bind_set  | 
| 
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
127  | 
|
| 
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
128  | 
lemma pred_of_cset_set [code]:  | 
| 
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
129  | 
"pred_of_cset (Dlist_Cset.Set xs) = foldr sup (map Predicate.single (list_of_dlist xs)) bot"  | 
| 44558 | 130  | 
by (simp add: Cset.pred_of_cset_set Dlist_Cset.Set_def)  | 
| 
43971
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
131  | 
hide_fact (open) pred_of_cset_set  | 
| 
 
892030194015
added operations to Cset with code equations in backing implementations
 
Andreas Lochbihler 
parents: 
43241 
diff
changeset
 | 
132  | 
|
| 43146 | 133  | 
end  |