| author | huffman | 
| Sun, 22 Apr 2012 20:16:30 +0200 | |
| changeset 47680 | 49aa3686e566 | 
| parent 47487 | 54a2f155621b | 
| child 47819 | d402ac2288b8 | 
| permissions | -rw-r--r-- | 
| 47108 | 1 | theory Target_Numeral | 
| 2 | imports Main Code_Nat | |
| 3 | begin | |
| 4 | ||
| 5 | subsection {* Type of target language numerals *}
 | |
| 6 | ||
| 7 | typedef (open) int = "UNIV \<Colon> int set" | |
| 8 | morphisms int_of of_int .. | |
| 9 | ||
| 10 | hide_type (open) int | |
| 11 | hide_const (open) of_int | |
| 12 | ||
| 13 | lemma int_eq_iff: | |
| 14 | "k = l \<longleftrightarrow> int_of k = int_of l" | |
| 15 | using int_of_inject [of k l] .. | |
| 16 | ||
| 17 | lemma int_eqI: | |
| 18 | "int_of k = int_of l \<Longrightarrow> k = l" | |
| 19 | using int_eq_iff [of k l] by simp | |
| 20 | ||
| 21 | lemma int_of_int [simp]: | |
| 22 | "int_of (Target_Numeral.of_int k) = k" | |
| 23 | using of_int_inverse [of k] by simp | |
| 24 | ||
| 25 | lemma of_int_of [simp]: | |
| 26 | "Target_Numeral.of_int (int_of k) = k" | |
| 27 | using int_of_inverse [of k] by simp | |
| 28 | ||
| 29 | hide_fact (open) int_eq_iff int_eqI | |
| 30 | ||
| 31 | instantiation Target_Numeral.int :: ring_1 | |
| 32 | begin | |
| 33 | ||
| 34 | definition | |
| 35 | "0 = Target_Numeral.of_int 0" | |
| 36 | ||
| 37 | lemma int_of_zero [simp]: | |
| 38 | "int_of 0 = 0" | |
| 39 | by (simp add: zero_int_def) | |
| 40 | ||
| 41 | definition | |
| 42 | "1 = Target_Numeral.of_int 1" | |
| 43 | ||
| 44 | lemma int_of_one [simp]: | |
| 45 | "int_of 1 = 1" | |
| 46 | by (simp add: one_int_def) | |
| 47 | ||
| 48 | definition | |
| 49 | "k + l = Target_Numeral.of_int (int_of k + int_of l)" | |
| 50 | ||
| 51 | lemma int_of_plus [simp]: | |
| 52 | "int_of (k + l) = int_of k + int_of l" | |
| 53 | by (simp add: plus_int_def) | |
| 54 | ||
| 55 | definition | |
| 56 | "- k = Target_Numeral.of_int (- int_of k)" | |
| 57 | ||
| 58 | lemma int_of_uminus [simp]: | |
| 59 | "int_of (- k) = - int_of k" | |
| 60 | by (simp add: uminus_int_def) | |
| 61 | ||
| 62 | definition | |
| 63 | "k - l = Target_Numeral.of_int (int_of k - int_of l)" | |
| 64 | ||
| 65 | lemma int_of_minus [simp]: | |
| 66 | "int_of (k - l) = int_of k - int_of l" | |
| 67 | by (simp add: minus_int_def) | |
| 68 | ||
| 69 | definition | |
| 70 | "k * l = Target_Numeral.of_int (int_of k * int_of l)" | |
| 71 | ||
| 72 | lemma int_of_times [simp]: | |
| 73 | "int_of (k * l) = int_of k * int_of l" | |
| 74 | by (simp add: times_int_def) | |
| 75 | ||
| 76 | instance proof | |
| 77 | qed (auto simp add: Target_Numeral.int_eq_iff algebra_simps) | |
| 78 | ||
| 79 | end | |
| 80 | ||
| 81 | lemma int_of_of_nat [simp]: | |
| 82 | "int_of (of_nat n) = of_nat n" | |
| 83 | by (induct n) simp_all | |
| 84 | ||
| 85 | definition nat_of :: "Target_Numeral.int \<Rightarrow> nat" where | |
| 86 | "nat_of k = Int.nat (int_of k)" | |
| 87 | ||
| 88 | lemma nat_of_of_nat [simp]: | |
| 89 | "nat_of (of_nat n) = n" | |
| 90 | by (simp add: nat_of_def) | |
| 91 | ||
| 92 | lemma int_of_of_int [simp]: | |
| 93 | "int_of (of_int k) = k" | |
| 94 | by (induct k) (simp_all, simp only: neg_numeral_def numeral_One int_of_uminus int_of_one) | |
| 95 | ||
| 96 | lemma of_int_of_int [simp, code_abbrev]: | |
| 97 | "Target_Numeral.of_int = of_int" | |
| 98 | by rule (simp add: Target_Numeral.int_eq_iff) | |
| 99 | ||
| 100 | lemma int_of_numeral [simp]: | |
| 101 | "int_of (numeral k) = numeral k" | |
| 102 | using int_of_of_int [of "numeral k"] by simp | |
| 103 | ||
| 104 | lemma int_of_neg_numeral [simp]: | |
| 105 | "int_of (neg_numeral k) = neg_numeral k" | |
| 106 | by (simp only: neg_numeral_def int_of_uminus) simp | |
| 107 | ||
| 108 | lemma int_of_sub [simp]: | |
| 109 | "int_of (Num.sub k l) = Num.sub k l" | |
| 110 | by (simp only: Num.sub_def int_of_minus int_of_numeral) | |
| 111 | ||
| 112 | instantiation Target_Numeral.int :: "{ring_div, equal, linordered_idom}"
 | |
| 113 | begin | |
| 114 | ||
| 115 | definition | |
| 116 | "k div l = of_int (int_of k div int_of l)" | |
| 117 | ||
| 118 | lemma int_of_div [simp]: | |
| 119 | "int_of (k div l) = int_of k div int_of l" | |
| 120 | by (simp add: div_int_def) | |
| 121 | ||
| 122 | definition | |
| 123 | "k mod l = of_int (int_of k mod int_of l)" | |
| 124 | ||
| 125 | lemma int_of_mod [simp]: | |
| 126 | "int_of (k mod l) = int_of k mod int_of l" | |
| 127 | by (simp add: mod_int_def) | |
| 128 | ||
| 129 | definition | |
| 130 | "\<bar>k\<bar> = of_int \<bar>int_of k\<bar>" | |
| 131 | ||
| 132 | lemma int_of_abs [simp]: | |
| 133 | "int_of \<bar>k\<bar> = \<bar>int_of k\<bar>" | |
| 134 | by (simp add: abs_int_def) | |
| 135 | ||
| 136 | definition | |
| 137 | "sgn k = of_int (sgn (int_of k))" | |
| 138 | ||
| 139 | lemma int_of_sgn [simp]: | |
| 140 | "int_of (sgn k) = sgn (int_of k)" | |
| 141 | by (simp add: sgn_int_def) | |
| 142 | ||
| 143 | definition | |
| 144 | "k \<le> l \<longleftrightarrow> int_of k \<le> int_of l" | |
| 145 | ||
| 146 | definition | |
| 147 | "k < l \<longleftrightarrow> int_of k < int_of l" | |
| 148 | ||
| 149 | definition | |
| 150 | "HOL.equal k l \<longleftrightarrow> HOL.equal (int_of k) (int_of l)" | |
| 151 | ||
| 152 | instance proof | |
| 153 | qed (auto simp add: Target_Numeral.int_eq_iff algebra_simps | |
| 154 | less_eq_int_def less_int_def equal_int_def equal) | |
| 155 | ||
| 156 | end | |
| 157 | ||
| 158 | lemma int_of_min [simp]: | |
| 159 | "int_of (min k l) = min (int_of k) (int_of l)" | |
| 160 | by (simp add: min_def less_eq_int_def) | |
| 161 | ||
| 162 | lemma int_of_max [simp]: | |
| 163 | "int_of (max k l) = max (int_of k) (int_of l)" | |
| 164 | by (simp add: max_def less_eq_int_def) | |
| 165 | ||
| 47400 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 166 | lemma of_nat_nat_of [simp]: | 
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 167 | "of_nat (nat_of k) = max 0 k" | 
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 168 | by (simp add: nat_of_def Target_Numeral.int_eq_iff less_eq_int_def max_def) | 
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 169 | |
| 47108 | 170 | |
| 171 | subsection {* Code theorems for target language numerals *}
 | |
| 172 | ||
| 173 | text {* Constructors *}
 | |
| 174 | ||
| 175 | definition Pos :: "num \<Rightarrow> Target_Numeral.int" where | |
| 176 | [simp, code_abbrev]: "Pos = numeral" | |
| 177 | ||
| 178 | definition Neg :: "num \<Rightarrow> Target_Numeral.int" where | |
| 179 | [simp, code_abbrev]: "Neg = neg_numeral" | |
| 180 | ||
| 181 | code_datatype "0::Target_Numeral.int" Pos Neg | |
| 182 | ||
| 183 | ||
| 184 | text {* Auxiliary operations *}
 | |
| 185 | ||
| 186 | definition dup :: "Target_Numeral.int \<Rightarrow> Target_Numeral.int" where | |
| 187 | [simp]: "dup k = k + k" | |
| 188 | ||
| 189 | lemma dup_code [code]: | |
| 190 | "dup 0 = 0" | |
| 191 | "dup (Pos n) = Pos (Num.Bit0 n)" | |
| 192 | "dup (Neg n) = Neg (Num.Bit0 n)" | |
| 193 | unfolding Pos_def Neg_def neg_numeral_def | |
| 194 | by (simp_all add: numeral_Bit0) | |
| 195 | ||
| 196 | definition sub :: "num \<Rightarrow> num \<Rightarrow> Target_Numeral.int" where | |
| 197 | [simp]: "sub m n = numeral m - numeral n" | |
| 198 | ||
| 199 | lemma sub_code [code]: | |
| 200 | "sub Num.One Num.One = 0" | |
| 201 | "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)" | |
| 202 | "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)" | |
| 203 | "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)" | |
| 204 | "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)" | |
| 205 | "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)" | |
| 206 | "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)" | |
| 207 | "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1" | |
| 208 | "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1" | |
| 209 | unfolding sub_def dup_def numeral.simps Pos_def Neg_def | |
| 210 | neg_numeral_def numeral_BitM | |
| 211 | by (simp_all only: algebra_simps add.comm_neutral) | |
| 212 | ||
| 213 | ||
| 214 | text {* Implementations *}
 | |
| 215 | ||
| 216 | lemma one_int_code [code, code_unfold]: | |
| 217 | "1 = Pos Num.One" | |
| 218 | by simp | |
| 219 | ||
| 220 | lemma plus_int_code [code]: | |
| 221 | "k + 0 = (k::Target_Numeral.int)" | |
| 222 | "0 + l = (l::Target_Numeral.int)" | |
| 223 | "Pos m + Pos n = Pos (m + n)" | |
| 224 | "Pos m + Neg n = sub m n" | |
| 225 | "Neg m + Pos n = sub n m" | |
| 226 | "Neg m + Neg n = Neg (m + n)" | |
| 227 | by simp_all | |
| 228 | ||
| 229 | lemma uminus_int_code [code]: | |
| 230 | "uminus 0 = (0::Target_Numeral.int)" | |
| 231 | "uminus (Pos m) = Neg m" | |
| 232 | "uminus (Neg m) = Pos m" | |
| 233 | by simp_all | |
| 234 | ||
| 235 | lemma minus_int_code [code]: | |
| 236 | "k - 0 = (k::Target_Numeral.int)" | |
| 237 | "0 - l = uminus (l::Target_Numeral.int)" | |
| 238 | "Pos m - Pos n = sub m n" | |
| 239 | "Pos m - Neg n = Pos (m + n)" | |
| 240 | "Neg m - Pos n = Neg (m + n)" | |
| 241 | "Neg m - Neg n = sub n m" | |
| 242 | by simp_all | |
| 243 | ||
| 244 | lemma times_int_code [code]: | |
| 245 | "k * 0 = (0::Target_Numeral.int)" | |
| 246 | "0 * l = (0::Target_Numeral.int)" | |
| 247 | "Pos m * Pos n = Pos (m * n)" | |
| 248 | "Pos m * Neg n = Neg (m * n)" | |
| 249 | "Neg m * Pos n = Neg (m * n)" | |
| 250 | "Neg m * Neg n = Pos (m * n)" | |
| 251 | by simp_all | |
| 252 | ||
| 253 | definition divmod :: "Target_Numeral.int \<Rightarrow> Target_Numeral.int \<Rightarrow> Target_Numeral.int \<times> Target_Numeral.int" where | |
| 254 | "divmod k l = (k div l, k mod l)" | |
| 255 | ||
| 256 | lemma fst_divmod [simp]: | |
| 257 | "fst (divmod k l) = k div l" | |
| 258 | by (simp add: divmod_def) | |
| 259 | ||
| 260 | lemma snd_divmod [simp]: | |
| 261 | "snd (divmod k l) = k mod l" | |
| 262 | by (simp add: divmod_def) | |
| 263 | ||
| 264 | definition divmod_abs :: "Target_Numeral.int \<Rightarrow> Target_Numeral.int \<Rightarrow> Target_Numeral.int \<times> Target_Numeral.int" where | |
| 265 | "divmod_abs k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)" | |
| 266 | ||
| 267 | lemma fst_divmod_abs [simp]: | |
| 268 | "fst (divmod_abs k l) = \<bar>k\<bar> div \<bar>l\<bar>" | |
| 269 | by (simp add: divmod_abs_def) | |
| 270 | ||
| 271 | lemma snd_divmod_abs [simp]: | |
| 272 | "snd (divmod_abs k l) = \<bar>k\<bar> mod \<bar>l\<bar>" | |
| 273 | by (simp add: divmod_abs_def) | |
| 274 | ||
| 275 | lemma divmod_abs_terminate_code [code]: | |
| 276 | "divmod_abs (Neg k) (Neg l) = divmod_abs (Pos k) (Pos l)" | |
| 277 | "divmod_abs (Neg k) (Pos l) = divmod_abs (Pos k) (Pos l)" | |
| 278 | "divmod_abs (Pos k) (Neg l) = divmod_abs (Pos k) (Pos l)" | |
| 279 | "divmod_abs j 0 = (0, \<bar>j\<bar>)" | |
| 280 | "divmod_abs 0 j = (0, 0)" | |
| 281 | by (simp_all add: prod_eq_iff) | |
| 282 | ||
| 283 | lemma divmod_abs_rec_code [code]: | |
| 284 | "divmod_abs (Pos k) (Pos l) = | |
| 285 | (let j = sub k l in | |
| 286 | if j < 0 then (0, Pos k) | |
| 287 | else let (q, r) = divmod_abs j (Pos l) in (q + 1, r))" | |
| 288 | by (auto simp add: prod_eq_iff Target_Numeral.int_eq_iff Let_def prod_case_beta | |
| 289 | sub_non_negative sub_negative div_pos_pos_trivial mod_pos_pos_trivial div_pos_geq mod_pos_geq) | |
| 290 | ||
| 291 | lemma divmod_code [code]: "divmod k l = | |
| 292 | (if k = 0 then (0, 0) else if l = 0 then (0, k) else | |
| 293 | (apsnd \<circ> times \<circ> sgn) l (if sgn k = sgn l | |
| 294 | then divmod_abs k l | |
| 295 | else (let (r, s) = divmod_abs k l in | |
| 296 | if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))" | |
| 297 | proof - | |
| 298 | have aux1: "\<And>k l::int. sgn k = sgn l \<longleftrightarrow> k = 0 \<and> l = 0 \<or> 0 < l \<and> 0 < k \<or> l < 0 \<and> k < 0" | |
| 299 | by (auto simp add: sgn_if) | |
| 300 | have aux2: "\<And>q::int. - int_of k = int_of l * q \<longleftrightarrow> int_of k = int_of l * - q" by auto | |
| 301 | show ?thesis | |
| 302 | by (simp add: prod_eq_iff Target_Numeral.int_eq_iff prod_case_beta aux1) | |
| 47159 | 303 | (auto simp add: zdiv_zminus1_eq_if zmod_zminus1_eq_if div_minus_right mod_minus_right aux2) | 
| 47108 | 304 | qed | 
| 305 | ||
| 306 | lemma div_int_code [code]: | |
| 307 | "k div l = fst (divmod k l)" | |
| 308 | by simp | |
| 309 | ||
| 310 | lemma div_mod_code [code]: | |
| 311 | "k mod l = snd (divmod k l)" | |
| 312 | by simp | |
| 313 | ||
| 314 | lemma equal_int_code [code]: | |
| 315 | "HOL.equal 0 (0::Target_Numeral.int) \<longleftrightarrow> True" | |
| 316 | "HOL.equal 0 (Pos l) \<longleftrightarrow> False" | |
| 317 | "HOL.equal 0 (Neg l) \<longleftrightarrow> False" | |
| 318 | "HOL.equal (Pos k) 0 \<longleftrightarrow> False" | |
| 319 | "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l" | |
| 320 | "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False" | |
| 321 | "HOL.equal (Neg k) 0 \<longleftrightarrow> False" | |
| 322 | "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False" | |
| 323 | "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l" | |
| 324 | by (simp_all add: equal Target_Numeral.int_eq_iff) | |
| 325 | ||
| 326 | lemma equal_int_refl [code nbe]: | |
| 327 | "HOL.equal (k::Target_Numeral.int) k \<longleftrightarrow> True" | |
| 328 | by (fact equal_refl) | |
| 329 | ||
| 330 | lemma less_eq_int_code [code]: | |
| 331 | "0 \<le> (0::Target_Numeral.int) \<longleftrightarrow> True" | |
| 332 | "0 \<le> Pos l \<longleftrightarrow> True" | |
| 333 | "0 \<le> Neg l \<longleftrightarrow> False" | |
| 334 | "Pos k \<le> 0 \<longleftrightarrow> False" | |
| 335 | "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l" | |
| 336 | "Pos k \<le> Neg l \<longleftrightarrow> False" | |
| 337 | "Neg k \<le> 0 \<longleftrightarrow> True" | |
| 338 | "Neg k \<le> Pos l \<longleftrightarrow> True" | |
| 339 | "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k" | |
| 340 | by (simp_all add: less_eq_int_def) | |
| 341 | ||
| 342 | lemma less_int_code [code]: | |
| 343 | "0 < (0::Target_Numeral.int) \<longleftrightarrow> False" | |
| 344 | "0 < Pos l \<longleftrightarrow> True" | |
| 345 | "0 < Neg l \<longleftrightarrow> False" | |
| 346 | "Pos k < 0 \<longleftrightarrow> False" | |
| 347 | "Pos k < Pos l \<longleftrightarrow> k < l" | |
| 348 | "Pos k < Neg l \<longleftrightarrow> False" | |
| 349 | "Neg k < 0 \<longleftrightarrow> True" | |
| 350 | "Neg k < Pos l \<longleftrightarrow> True" | |
| 351 | "Neg k < Neg l \<longleftrightarrow> l < k" | |
| 352 | by (simp_all add: less_int_def) | |
| 353 | ||
| 354 | lemma nat_of_code [code]: | |
| 355 | "nat_of (Neg k) = 0" | |
| 356 | "nat_of 0 = 0" | |
| 357 | "nat_of (Pos k) = nat_of_num k" | |
| 358 | by (simp_all add: nat_of_def nat_of_num_numeral) | |
| 359 | ||
| 360 | lemma int_of_code [code]: | |
| 361 | "int_of (Neg k) = neg_numeral k" | |
| 362 | "int_of 0 = 0" | |
| 363 | "int_of (Pos k) = numeral k" | |
| 364 | by simp_all | |
| 365 | ||
| 366 | lemma of_int_code [code]: | |
| 367 | "Target_Numeral.of_int (Int.Neg k) = neg_numeral k" | |
| 368 | "Target_Numeral.of_int 0 = 0" | |
| 369 | "Target_Numeral.of_int (Int.Pos k) = numeral k" | |
| 370 | by simp_all | |
| 371 | ||
| 372 | definition num_of_int :: "Target_Numeral.int \<Rightarrow> num" where | |
| 373 | "num_of_int = num_of_nat \<circ> nat_of" | |
| 374 | ||
| 375 | lemma num_of_int_code [code]: | |
| 376 | "num_of_int k = (if k \<le> 1 then Num.One | |
| 377 | else let | |
| 378 | (l, j) = divmod k 2; | |
| 379 | l' = num_of_int l + num_of_int l | |
| 380 | in if j = 0 then l' else l' + Num.One)" | |
| 381 | proof - | |
| 382 |   {
 | |
| 383 | assume "int_of k mod 2 = 1" | |
| 384 | then have "nat (int_of k mod 2) = nat 1" by simp | |
| 385 | moreover assume *: "1 < int_of k" | |
| 386 | ultimately have **: "nat (int_of k) mod 2 = 1" by (simp add: nat_mod_distrib) | |
| 387 | have "num_of_nat (nat (int_of k)) = | |
| 388 | num_of_nat (2 * (nat (int_of k) div 2) + nat (int_of k) mod 2)" | |
| 389 | by simp | |
| 390 | then have "num_of_nat (nat (int_of k)) = | |
| 391 | num_of_nat (nat (int_of k) div 2 + nat (int_of k) div 2 + nat (int_of k) mod 2)" | |
| 47217 
501b9bbd0d6e
removed redundant nat-specific copies of theorems
 huffman parents: 
47159diff
changeset | 392 | by (simp add: mult_2) | 
| 47108 | 393 | with ** have "num_of_nat (nat (int_of k)) = | 
| 394 | num_of_nat (nat (int_of k) div 2 + nat (int_of k) div 2 + 1)" | |
| 395 | by simp | |
| 396 | } | |
| 397 | note aux = this | |
| 398 | show ?thesis | |
| 399 | by (auto simp add: num_of_int_def nat_of_def Let_def prod_case_beta | |
| 400 | not_le Target_Numeral.int_eq_iff less_eq_int_def | |
| 401 | nat_mult_distrib nat_div_distrib num_of_nat_One num_of_nat_plus_distrib | |
| 47217 
501b9bbd0d6e
removed redundant nat-specific copies of theorems
 huffman parents: 
47159diff
changeset | 402 | mult_2 [where 'a=nat] aux add_One) | 
| 47108 | 403 | qed | 
| 404 | ||
| 405 | hide_const (open) int_of nat_of Pos Neg sub dup divmod_abs num_of_int | |
| 406 | ||
| 407 | ||
| 408 | subsection {* Serializer setup for target language numerals *}
 | |
| 409 | ||
| 410 | code_type Target_Numeral.int | |
| 411 | (SML "IntInf.int") | |
| 412 | (OCaml "Big'_int.big'_int") | |
| 413 | (Haskell "Integer") | |
| 414 | (Scala "BigInt") | |
| 415 | (Eval "int") | |
| 416 | ||
| 417 | code_instance Target_Numeral.int :: equal | |
| 418 | (Haskell -) | |
| 419 | ||
| 420 | code_const "0::Target_Numeral.int" | |
| 421 | (SML "0") | |
| 422 | (OCaml "Big'_int.zero'_big'_int") | |
| 423 | (Haskell "0") | |
| 424 | (Scala "BigInt(0)") | |
| 425 | ||
| 426 | setup {*
 | |
| 427 |   fold (Numeral.add_code @{const_name Target_Numeral.Pos}
 | |
| 428 | false Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"] | |
| 429 | *} | |
| 430 | ||
| 431 | setup {*
 | |
| 432 |   fold (Numeral.add_code @{const_name Target_Numeral.Neg}
 | |
| 433 | true Code_Printer.literal_numeral) ["SML", "OCaml", "Haskell", "Scala"] | |
| 434 | *} | |
| 435 | ||
| 436 | code_const "plus :: Target_Numeral.int \<Rightarrow> _ \<Rightarrow> _" | |
| 437 | (SML "IntInf.+ ((_), (_))") | |
| 438 | (OCaml "Big'_int.add'_big'_int") | |
| 439 | (Haskell infixl 6 "+") | |
| 440 | (Scala infixl 7 "+") | |
| 441 | (Eval infixl 8 "+") | |
| 442 | ||
| 443 | code_const "uminus :: Target_Numeral.int \<Rightarrow> _" | |
| 444 | (SML "IntInf.~") | |
| 445 | (OCaml "Big'_int.minus'_big'_int") | |
| 446 | (Haskell "negate") | |
| 447 | (Scala "!(- _)") | |
| 448 | (Eval "~/ _") | |
| 449 | ||
| 450 | code_const "minus :: Target_Numeral.int \<Rightarrow> _" | |
| 451 | (SML "IntInf.- ((_), (_))") | |
| 452 | (OCaml "Big'_int.sub'_big'_int") | |
| 453 | (Haskell infixl 6 "-") | |
| 454 | (Scala infixl 7 "-") | |
| 455 | (Eval infixl 8 "-") | |
| 456 | ||
| 457 | code_const Target_Numeral.dup | |
| 458 | (SML "IntInf.*/ (2,/ (_))") | |
| 459 | (OCaml "Big'_int.mult'_big'_int/ 2") | |
| 460 | (Haskell "!(2 * _)") | |
| 461 | (Scala "!(2 * _)") | |
| 462 | (Eval "!(2 * _)") | |
| 463 | ||
| 464 | code_const Target_Numeral.sub | |
| 465 | (SML "!(raise/ Fail/ \"sub\")") | |
| 466 | (OCaml "failwith/ \"sub\"") | |
| 467 | (Haskell "error/ \"sub\"") | |
| 468 | (Scala "!error(\"sub\")") | |
| 469 | ||
| 470 | code_const "times :: Target_Numeral.int \<Rightarrow> _ \<Rightarrow> _" | |
| 471 | (SML "IntInf.* ((_), (_))") | |
| 472 | (OCaml "Big'_int.mult'_big'_int") | |
| 473 | (Haskell infixl 7 "*") | |
| 474 | (Scala infixl 8 "*") | |
| 475 | (Eval infixl 9 "*") | |
| 476 | ||
| 477 | code_const Target_Numeral.divmod_abs | |
| 478 | (SML "IntInf.divMod/ (IntInf.abs _,/ IntInf.abs _)") | |
| 479 | (OCaml "Big'_int.quomod'_big'_int/ (Big'_int.abs'_big'_int _)/ (Big'_int.abs'_big'_int _)") | |
| 480 | (Haskell "divMod/ (abs _)/ (abs _)") | |
| 481 | (Scala "!((k: BigInt) => (l: BigInt) =>/ if (l == 0)/ (BigInt(0), k) else/ (k.abs '/% l.abs))") | |
| 482 | (Eval "Integer.div'_mod/ (abs _)/ (abs _)") | |
| 483 | ||
| 484 | code_const "HOL.equal :: Target_Numeral.int \<Rightarrow> _ \<Rightarrow> bool" | |
| 485 | (SML "!((_ : IntInf.int) = _)") | |
| 486 | (OCaml "Big'_int.eq'_big'_int") | |
| 487 | (Haskell infix 4 "==") | |
| 488 | (Scala infixl 5 "==") | |
| 489 | (Eval infixl 6 "=") | |
| 490 | ||
| 491 | code_const "less_eq :: Target_Numeral.int \<Rightarrow> _ \<Rightarrow> bool" | |
| 492 | (SML "IntInf.<= ((_), (_))") | |
| 493 | (OCaml "Big'_int.le'_big'_int") | |
| 494 | (Haskell infix 4 "<=") | |
| 495 | (Scala infixl 4 "<=") | |
| 496 | (Eval infixl 6 "<=") | |
| 497 | ||
| 498 | code_const "less :: Target_Numeral.int \<Rightarrow> _ \<Rightarrow> bool" | |
| 499 | (SML "IntInf.< ((_), (_))") | |
| 500 | (OCaml "Big'_int.lt'_big'_int") | |
| 501 | (Haskell infix 4 "<") | |
| 502 | (Scala infixl 4 "<") | |
| 503 | (Eval infixl 6 "<") | |
| 504 | ||
| 505 | ML {*
 | |
| 506 | structure Target_Numeral = | |
| 507 | struct | |
| 508 | ||
| 509 | val T = @{typ "Target_Numeral.int"};
 | |
| 510 | ||
| 511 | end; | |
| 512 | *} | |
| 513 | ||
| 514 | code_reserved Eval Target_Numeral | |
| 515 | ||
| 516 | code_const "Code_Evaluation.term_of \<Colon> Target_Numeral.int \<Rightarrow> term" | |
| 517 | (Eval "HOLogic.mk'_number/ Target'_Numeral.T") | |
| 518 | ||
| 519 | code_modulename SML | |
| 520 | Target_Numeral Arith | |
| 521 | ||
| 522 | code_modulename OCaml | |
| 523 | Target_Numeral Arith | |
| 524 | ||
| 525 | code_modulename Haskell | |
| 526 | Target_Numeral Arith | |
| 527 | ||
| 528 | ||
| 529 | subsection {* Implementation for @{typ int} *}
 | |
| 530 | ||
| 531 | code_datatype Target_Numeral.int_of | |
| 532 | ||
| 533 | lemma [code, code del]: | |
| 534 | "Target_Numeral.of_int = Target_Numeral.of_int" .. | |
| 535 | ||
| 536 | lemma [code]: | |
| 537 | "Target_Numeral.of_int (Target_Numeral.int_of k) = k" | |
| 538 | by (simp add: Target_Numeral.int_eq_iff) | |
| 539 | ||
| 540 | declare Int.Pos_def [code] | |
| 541 | ||
| 542 | lemma [code_abbrev]: | |
| 543 | "Target_Numeral.int_of (Target_Numeral.Pos k) = Int.Pos k" | |
| 544 | by simp | |
| 545 | ||
| 546 | declare Int.Neg_def [code] | |
| 547 | ||
| 548 | lemma [code_abbrev]: | |
| 549 | "Target_Numeral.int_of (Target_Numeral.Neg k) = Int.Neg k" | |
| 550 | by simp | |
| 551 | ||
| 552 | lemma [code]: | |
| 553 | "0 = Target_Numeral.int_of 0" | |
| 554 | by simp | |
| 555 | ||
| 556 | lemma [code]: | |
| 557 | "1 = Target_Numeral.int_of 1" | |
| 558 | by simp | |
| 559 | ||
| 560 | lemma [code]: | |
| 561 | "k + l = Target_Numeral.int_of (of_int k + of_int l)" | |
| 562 | by simp | |
| 563 | ||
| 564 | lemma [code]: | |
| 565 | "- k = Target_Numeral.int_of (- of_int k)" | |
| 566 | by simp | |
| 567 | ||
| 568 | lemma [code]: | |
| 569 | "k - l = Target_Numeral.int_of (of_int k - of_int l)" | |
| 570 | by simp | |
| 571 | ||
| 572 | lemma [code]: | |
| 573 | "Int.dup k = Target_Numeral.int_of (Target_Numeral.dup (of_int k))" | |
| 574 | by simp | |
| 575 | ||
| 576 | lemma [code, code del]: | |
| 577 | "Int.sub = Int.sub" .. | |
| 578 | ||
| 579 | lemma [code]: | |
| 580 | "k * l = Target_Numeral.int_of (of_int k * of_int l)" | |
| 581 | by simp | |
| 582 | ||
| 583 | lemma [code]: | |
| 584 | "pdivmod k l = map_pair Target_Numeral.int_of Target_Numeral.int_of | |
| 585 | (Target_Numeral.divmod_abs (of_int k) (of_int l))" | |
| 586 | by (simp add: prod_eq_iff pdivmod_def) | |
| 587 | ||
| 588 | lemma [code]: | |
| 589 | "k div l = Target_Numeral.int_of (of_int k div of_int l)" | |
| 590 | by simp | |
| 591 | ||
| 592 | lemma [code]: | |
| 593 | "k mod l = Target_Numeral.int_of (of_int k mod of_int l)" | |
| 594 | by simp | |
| 595 | ||
| 596 | lemma [code]: | |
| 597 | "HOL.equal k l = HOL.equal (of_int k :: Target_Numeral.int) (of_int l)" | |
| 598 | by (simp add: equal Target_Numeral.int_eq_iff) | |
| 599 | ||
| 600 | lemma [code]: | |
| 601 | "k \<le> l \<longleftrightarrow> (of_int k :: Target_Numeral.int) \<le> of_int l" | |
| 602 | by (simp add: less_eq_int_def) | |
| 603 | ||
| 604 | lemma [code]: | |
| 605 | "k < l \<longleftrightarrow> (of_int k :: Target_Numeral.int) < of_int l" | |
| 606 | by (simp add: less_int_def) | |
| 607 | ||
| 608 | lemma (in ring_1) of_int_code: | |
| 609 | "of_int k = (if k = 0 then 0 | |
| 610 | else if k < 0 then - of_int (- k) | |
| 611 | else let | |
| 612 | (l, j) = divmod_int k 2; | |
| 613 | l' = 2 * of_int l | |
| 614 | in if j = 0 then l' else l' + 1)" | |
| 615 | proof - | |
| 616 | from mod_div_equality have *: "of_int k = of_int (k div 2 * 2 + k mod 2)" by simp | |
| 617 | show ?thesis | |
| 618 | by (simp add: Let_def divmod_int_mod_div mod_2_not_eq_zero_eq_one_int | |
| 619 | of_int_add [symmetric]) (simp add: * mult_commute) | |
| 620 | qed | |
| 621 | ||
| 622 | declare of_int_code [code] | |
| 623 | ||
| 624 | ||
| 625 | subsection {* Implementation for @{typ nat} *}
 | |
| 626 | ||
| 47400 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 627 | definition Nat :: "Target_Numeral.int \<Rightarrow> nat" where | 
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 628 | "Nat = Target_Numeral.nat_of" | 
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 629 | |
| 47108 | 630 | definition of_nat :: "nat \<Rightarrow> Target_Numeral.int" where | 
| 631 | [code_abbrev]: "of_nat = Nat.of_nat" | |
| 632 | ||
| 47400 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 633 | hide_const (open) of_nat Nat | 
| 47108 | 634 | |
| 635 | lemma int_of_nat [simp]: | |
| 636 | "Target_Numeral.int_of (Target_Numeral.of_nat n) = of_nat n" | |
| 637 | by (simp add: of_nat_def) | |
| 638 | ||
| 639 | lemma [code abstype]: | |
| 47400 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 640 | "Target_Numeral.Nat (Target_Numeral.of_nat n) = n" | 
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 641 | by (simp add: Nat_def nat_of_def) | 
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 642 | |
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 643 | lemma [code abstract]: | 
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 644 | "Target_Numeral.of_nat (Target_Numeral.nat_of k) = max 0 k" | 
| 
b7625245a846
explicit constructor Nat leaves nat_of as conversion
 haftmann parents: 
47217diff
changeset | 645 | by (simp add: of_nat_def) | 
| 47108 | 646 | |
| 647 | lemma [code_abbrev]: | |
| 648 | "nat (Int.Pos k) = nat_of_num k" | |
| 649 | by (simp add: nat_of_num_numeral) | |
| 650 | ||
| 651 | lemma [code abstract]: | |
| 652 | "Target_Numeral.of_nat 0 = 0" | |
| 653 | by (simp add: Target_Numeral.int_eq_iff) | |
| 654 | ||
| 655 | lemma [code abstract]: | |
| 656 | "Target_Numeral.of_nat 1 = 1" | |
| 657 | by (simp add: Target_Numeral.int_eq_iff) | |
| 658 | ||
| 659 | lemma [code abstract]: | |
| 660 | "Target_Numeral.of_nat (m + n) = of_nat m + of_nat n" | |
| 661 | by (simp add: Target_Numeral.int_eq_iff) | |
| 662 | ||
| 663 | lemma [code abstract]: | |
| 664 | "Target_Numeral.of_nat (Code_Nat.dup n) = Target_Numeral.dup (of_nat n)" | |
| 665 | by (simp add: Target_Numeral.int_eq_iff Code_Nat.dup_def) | |
| 666 | ||
| 667 | lemma [code, code del]: | |
| 668 | "Code_Nat.sub = Code_Nat.sub" .. | |
| 669 | ||
| 670 | lemma [code abstract]: | |
| 671 | "Target_Numeral.of_nat (m - n) = max 0 (of_nat m - of_nat n)" | |
| 672 | by (simp add: Target_Numeral.int_eq_iff) | |
| 673 | ||
| 674 | lemma [code abstract]: | |
| 675 | "Target_Numeral.of_nat (m * n) = of_nat m * of_nat n" | |
| 676 | by (simp add: Target_Numeral.int_eq_iff of_nat_mult) | |
| 677 | ||
| 678 | lemma [code abstract]: | |
| 679 | "Target_Numeral.of_nat (m div n) = of_nat m div of_nat n" | |
| 680 | by (simp add: Target_Numeral.int_eq_iff zdiv_int) | |
| 681 | ||
| 682 | lemma [code abstract]: | |
| 683 | "Target_Numeral.of_nat (m mod n) = of_nat m mod of_nat n" | |
| 684 | by (simp add: Target_Numeral.int_eq_iff zmod_int) | |
| 685 | ||
| 686 | lemma [code]: | |
| 687 | "Divides.divmod_nat m n = (m div n, m mod n)" | |
| 688 | by (simp add: prod_eq_iff) | |
| 689 | ||
| 690 | lemma [code]: | |
| 691 | "HOL.equal m n = HOL.equal (of_nat m :: Target_Numeral.int) (of_nat n)" | |
| 692 | by (simp add: equal Target_Numeral.int_eq_iff) | |
| 693 | ||
| 694 | lemma [code]: | |
| 695 | "m \<le> n \<longleftrightarrow> (of_nat m :: Target_Numeral.int) \<le> of_nat n" | |
| 696 | by (simp add: less_eq_int_def) | |
| 697 | ||
| 698 | lemma [code]: | |
| 699 | "m < n \<longleftrightarrow> (of_nat m :: Target_Numeral.int) < of_nat n" | |
| 700 | by (simp add: less_int_def) | |
| 701 | ||
| 702 | lemma num_of_nat_code [code]: | |
| 703 | "num_of_nat = Target_Numeral.num_of_int \<circ> Target_Numeral.of_nat" | |
| 704 | by (simp add: fun_eq_iff num_of_int_def of_nat_def) | |
| 705 | ||
| 706 | lemma (in semiring_1) of_nat_code: | |
| 707 | "of_nat n = (if n = 0 then 0 | |
| 708 | else let | |
| 709 | (m, q) = divmod_nat n 2; | |
| 710 | m' = 2 * of_nat m | |
| 711 | in if q = 0 then m' else m' + 1)" | |
| 712 | proof - | |
| 713 | from mod_div_equality have *: "of_nat n = of_nat (n div 2 * 2 + n mod 2)" by simp | |
| 714 | show ?thesis | |
| 715 | by (simp add: Let_def divmod_nat_div_mod mod_2_not_eq_zero_eq_one_nat | |
| 716 | of_nat_add [symmetric]) | |
| 717 | (simp add: * mult_commute of_nat_mult add_commute) | |
| 718 | qed | |
| 719 | ||
| 720 | declare of_nat_code [code] | |
| 721 | ||
| 722 | text {* Conversions between @{typ nat} and @{typ int} *}
 | |
| 723 | ||
| 724 | definition int :: "nat \<Rightarrow> int" where | |
| 725 | [code_abbrev]: "int = of_nat" | |
| 726 | ||
| 727 | hide_const (open) int | |
| 728 | ||
| 729 | lemma [code]: | |
| 730 | "Target_Numeral.int n = Target_Numeral.int_of (of_nat n)" | |
| 731 | by (simp add: int_def) | |
| 732 | ||
| 733 | lemma [code abstract]: | |
| 734 | "Target_Numeral.of_nat (nat k) = max 0 (Target_Numeral.of_int k)" | |
| 735 | by (simp add: of_nat_def of_int_of_nat max_def) | |
| 736 | ||
| 737 | end |