| author | wenzelm | 
| Mon, 27 Nov 2017 10:36:43 +0100 | |
| changeset 67094 | 4a2563645635 | 
| parent 67093 | 835a2ab92c3d | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 13404 | 1  | 
(* Title: HOL/Tools/rewrite_hol_proof.ML  | 
2  | 
Author: Stefan Berghofer, TU Muenchen  | 
|
3  | 
||
4  | 
Rewrite rules for HOL proofs  | 
|
5  | 
*)  | 
|
6  | 
||
7  | 
signature REWRITE_HOL_PROOF =  | 
|
8  | 
sig  | 
|
9  | 
val rews: (Proofterm.proof * Proofterm.proof) list  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
10  | 
val elim_cong: typ list -> term option list -> Proofterm.proof -> (Proofterm.proof * Proofterm.proof) option  | 
| 13404 | 11  | 
end;  | 
12  | 
||
13  | 
structure RewriteHOLProof : REWRITE_HOL_PROOF =  | 
|
14  | 
struct  | 
|
15  | 
||
| 67093 | 16  | 
val rews =  | 
17  | 
  map (apply2 (Proof_Syntax.proof_of_term @{theory} true) o Logic.dest_equals o
 | 
|
18  | 
    Logic.varify_global o Proof_Syntax.read_term @{theory} true propT o Syntax.implode_input)
 | 
|
| 13404 | 19  | 
|
20  | 
(** eliminate meta-equality rules **)  | 
|
21  | 
||
| 67094 | 22  | 
[\<open>(equal_elim \<cdot> x1 \<cdot> x2 \<bullet>  | 
23  | 
      (combination \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> Trueprop \<cdot> x3 \<cdot> A \<cdot> B \<bullet>
 | 
|
24  | 
        (axm.reflexive \<cdot> TYPE('T3) \<cdot> x4) \<bullet> prf1)) \<equiv>
 | 
|
25  | 
(iffD1 \<cdot> A \<cdot> B \<bullet>  | 
|
26  | 
(meta_eq_to_obj_eq \<cdot> TYPE(bool) \<cdot> A \<cdot> B \<bullet> arity_type_bool \<bullet> prf1))\<close>,  | 
|
| 13404 | 27  | 
|
| 67094 | 28  | 
   \<open>(equal_elim \<cdot> x1 \<cdot> x2 \<bullet> (axm.symmetric \<cdot> TYPE('T1) \<cdot> x3 \<cdot> x4 \<bullet>
 | 
29  | 
      (combination \<cdot> TYPE('T2) \<cdot> TYPE('T3) \<cdot> Trueprop \<cdot> x5 \<cdot> A \<cdot> B \<bullet>
 | 
|
30  | 
        (axm.reflexive \<cdot> TYPE('T4) \<cdot> x6) \<bullet> prf1))) \<equiv>
 | 
|
31  | 
(iffD2 \<cdot> A \<cdot> B \<bullet>  | 
|
32  | 
(meta_eq_to_obj_eq \<cdot> TYPE(bool) \<cdot> A \<cdot> B \<bullet> arity_type_bool \<bullet> prf1))\<close>,  | 
|
| 13404 | 33  | 
|
| 67094 | 34  | 
   \<open>(meta_eq_to_obj_eq \<cdot> TYPE('U) \<cdot> x1 \<cdot> x2 \<bullet> prfU \<bullet>
 | 
35  | 
      (combination \<cdot> TYPE('T) \<cdot> TYPE('U) \<cdot> f \<cdot> g \<cdot> x \<cdot> y \<bullet> prf1 \<bullet> prf2)) \<equiv>
 | 
|
36  | 
    (cong \<cdot> TYPE('T) \<cdot> TYPE('U) \<cdot> f \<cdot> g \<cdot> x \<cdot> y \<bullet>
 | 
|
37  | 
      (OfClass type_class \<cdot> TYPE('T)) \<bullet> prfU \<bullet>
 | 
|
38  | 
      (meta_eq_to_obj_eq \<cdot> TYPE('T \<Rightarrow> 'U) \<cdot> f \<cdot> g \<bullet> (OfClass type_class \<cdot> TYPE('T \<Rightarrow> 'U)) \<bullet> prf1) \<bullet>
 | 
|
39  | 
      (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> x \<cdot> y \<bullet> (OfClass type_class \<cdot> TYPE('T)) \<bullet> prf2))\<close>,
 | 
|
| 13404 | 40  | 
|
| 67094 | 41  | 
   \<open>(meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> x1 \<cdot> x2 \<bullet> prfT \<bullet>
 | 
42  | 
      (axm.transitive \<cdot> TYPE('T) \<cdot> x \<cdot> y \<cdot> z \<bullet> prf1 \<bullet> prf2)) \<equiv>
 | 
|
43  | 
    (HOL.trans \<cdot> TYPE('T) \<cdot> x \<cdot> y \<cdot> z \<bullet> prfT \<bullet>
 | 
|
44  | 
      (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> x \<cdot> y \<bullet> prfT \<bullet> prf1) \<bullet>
 | 
|
45  | 
      (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> y \<cdot> z \<bullet> prfT \<bullet> prf2))\<close>,
 | 
|
| 13404 | 46  | 
|
| 67094 | 47  | 
   \<open>(meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> x \<cdot> x \<bullet> prfT \<bullet> (axm.reflexive \<cdot> TYPE('T) \<cdot> x)) \<equiv>
 | 
48  | 
    (HOL.refl \<cdot> TYPE('T) \<cdot> x \<bullet> prfT)\<close>,
 | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
49  | 
|
| 67094 | 50  | 
   \<open>(meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> x \<cdot> y \<bullet> prfT \<bullet>
 | 
51  | 
      (axm.symmetric \<cdot> TYPE('T) \<cdot> x \<cdot> y \<bullet> prf)) \<equiv>
 | 
|
52  | 
    (sym \<cdot> TYPE('T) \<cdot> x \<cdot> y \<bullet> prfT \<bullet> (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> x \<cdot> y \<bullet> prfT \<bullet> prf))\<close>,
 | 
|
| 13404 | 53  | 
|
| 67094 | 54  | 
   \<open>(meta_eq_to_obj_eq \<cdot> TYPE('T \<Rightarrow> 'U) \<cdot> x1 \<cdot> x2 \<bullet> prfTU \<bullet>
 | 
55  | 
      (abstract_rule \<cdot> TYPE('T) \<cdot> TYPE('U) \<cdot> f \<cdot> g \<bullet> prf)) \<equiv>
 | 
|
56  | 
    (ext \<cdot> TYPE('T) \<cdot> TYPE('U) \<cdot> f \<cdot> g \<bullet>
 | 
|
57  | 
      (OfClass type_class \<cdot> TYPE('T)) \<bullet> (OfClass type_class \<cdot> TYPE('U)) \<bullet>
 | 
|
58  | 
      (\<^bold>\<lambda>(x::'T). meta_eq_to_obj_eq \<cdot> TYPE('U) \<cdot> f x \<cdot> g x \<bullet>
 | 
|
59  | 
         (OfClass type_class \<cdot> TYPE('U)) \<bullet> (prf \<cdot> x)))\<close>,
 | 
|
| 13404 | 60  | 
|
| 67094 | 61  | 
   \<open>(meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> x \<cdot> y \<bullet> prfT \<bullet>
 | 
62  | 
      (eq_reflection \<cdot> TYPE('T) \<cdot> x \<cdot> y \<bullet> prfT \<bullet> prf)) \<equiv> prf\<close>,
 | 
|
| 13404 | 63  | 
|
| 67094 | 64  | 
   \<open>(meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> x1 \<cdot> x2 \<bullet> prfT \<bullet> (equal_elim \<cdot> x3 \<cdot> x4 \<bullet>
 | 
65  | 
      (combination \<cdot> TYPE('T) \<cdot> TYPE(prop) \<cdot> x7 \<cdot> x8 \<cdot> C \<cdot> D \<bullet>
 | 
|
66  | 
        (combination \<cdot> TYPE('T) \<cdot> TYPE('T3) \<cdot> op \<equiv> \<cdot> op \<equiv> \<cdot> A \<cdot> B \<bullet>
 | 
|
67  | 
          (axm.reflexive \<cdot> TYPE('T4) \<cdot> op \<equiv>) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3)) \<equiv>
 | 
|
68  | 
(iffD1 \<cdot> A = C \<cdot> B = D \<bullet>  | 
|
69  | 
      (cong \<cdot> TYPE('T) \<cdot> TYPE(bool) \<cdot> op = A \<cdot> op = B \<cdot> C \<cdot> D \<bullet>
 | 
|
70  | 
prfT \<bullet> arity_type_bool \<bullet>  | 
|
71  | 
        (cong \<cdot> TYPE('T) \<cdot> TYPE('T\<Rightarrow>bool) \<cdot>
 | 
|
72  | 
(op = :: 'T\<Rightarrow>'T\<Rightarrow>bool) \<cdot> (op = :: 'T\<Rightarrow>'T\<Rightarrow>bool) \<cdot> A \<cdot> B \<bullet>  | 
|
73  | 
          prfT \<bullet> (OfClass type_class \<cdot> TYPE('T\<Rightarrow>bool)) \<bullet>
 | 
|
74  | 
          (HOL.refl \<cdot> TYPE('T\<Rightarrow>'T\<Rightarrow>bool) \<cdot> (op = :: 'T\<Rightarrow>'T\<Rightarrow>bool) \<bullet>
 | 
|
75  | 
             (OfClass type_class \<cdot> TYPE('T\<Rightarrow>'T\<Rightarrow>bool))) \<bullet>
 | 
|
76  | 
          (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> A \<cdot> B \<bullet> prfT \<bullet> prf1)) \<bullet>
 | 
|
77  | 
        (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> C \<cdot> D \<bullet> prfT \<bullet> prf2)) \<bullet>
 | 
|
78  | 
      (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> A \<cdot> C \<bullet> prfT \<bullet> prf3))\<close>,
 | 
|
| 13404 | 79  | 
|
| 67094 | 80  | 
   \<open>(meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> x1 \<cdot> x2 \<bullet> prfT \<bullet> (equal_elim \<cdot> x3 \<cdot> x4 \<bullet>
 | 
81  | 
      (axm.symmetric \<cdot> TYPE('T2) \<cdot> x5 \<cdot> x6 \<bullet>
 | 
|
82  | 
        (combination \<cdot> TYPE('T) \<cdot> TYPE(prop) \<cdot> x7 \<cdot> x8 \<cdot> C \<cdot> D \<bullet>
 | 
|
83  | 
          (combination \<cdot> TYPE('T) \<cdot> TYPE('T3) \<cdot> op \<equiv> \<cdot> op \<equiv> \<cdot> A \<cdot> B \<bullet>
 | 
|
84  | 
            (axm.reflexive \<cdot> TYPE('T4) \<cdot> op \<equiv>) \<bullet> prf1) \<bullet> prf2)) \<bullet> prf3)) \<equiv>
 | 
|
85  | 
(iffD2 \<cdot> A = C \<cdot> B = D \<bullet>  | 
|
86  | 
      (cong \<cdot> TYPE('T) \<cdot> TYPE(bool) \<cdot> op = A \<cdot> op = B \<cdot> C \<cdot> D \<bullet>
 | 
|
87  | 
prfT \<bullet> arity_type_bool \<bullet>  | 
|
88  | 
        (cong \<cdot> TYPE('T) \<cdot> TYPE('T\<Rightarrow>bool) \<cdot>
 | 
|
89  | 
(op = :: 'T\<Rightarrow>'T\<Rightarrow>bool) \<cdot> (op = :: 'T\<Rightarrow>'T\<Rightarrow>bool) \<cdot> A \<cdot> B \<bullet>  | 
|
90  | 
          prfT \<bullet> (OfClass type_class \<cdot> TYPE('T\<Rightarrow>bool)) \<bullet>
 | 
|
91  | 
          (HOL.refl \<cdot> TYPE('T\<Rightarrow>'T\<Rightarrow>bool) \<cdot> (op = :: 'T\<Rightarrow>'T\<Rightarrow>bool) \<bullet>
 | 
|
92  | 
             (OfClass type_class \<cdot> TYPE('T\<Rightarrow>'T\<Rightarrow>bool))) \<bullet>
 | 
|
93  | 
          (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> A \<cdot> B \<bullet> prfT \<bullet> prf1)) \<bullet>
 | 
|
94  | 
        (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> C \<cdot> D \<bullet> prfT \<bullet> prf2)) \<bullet>
 | 
|
95  | 
      (meta_eq_to_obj_eq \<cdot> TYPE('T) \<cdot> B \<cdot> D \<bullet> prfT \<bullet> prf3))\<close>,
 | 
|
| 13404 | 96  | 
|
97  | 
(** rewriting on bool: insert proper congruence rules for logical connectives **)  | 
|
98  | 
||
99  | 
(* All *)  | 
|
100  | 
||
| 67094 | 101  | 
   \<open>(iffD1 \<cdot> All P \<cdot> All Q \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> All \<cdot> All \<cdot> P \<cdot> Q \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
102  | 
      (HOL.refl \<cdot> TYPE('T3) \<cdot> x1 \<bullet> prfT3) \<bullet>
 | 
|
103  | 
      (ext \<cdot> TYPE('a) \<cdot> TYPE(bool) \<cdot> x2 \<cdot> x3 \<bullet> prfa \<bullet> prfb \<bullet> prf)) \<bullet> prf') \<equiv>
 | 
|
104  | 
    (allI \<cdot> TYPE('a) \<cdot> Q \<bullet> prfa \<bullet>
 | 
|
105  | 
(\<^bold>\<lambda>x.  | 
|
106  | 
iffD1 \<cdot> P x \<cdot> Q x \<bullet> (prf \<cdot> x) \<bullet>  | 
|
107  | 
           (spec \<cdot> TYPE('a) \<cdot> P \<cdot> x \<bullet> prfa \<bullet> prf')))\<close>,
 | 
|
| 13404 | 108  | 
|
| 67094 | 109  | 
   \<open>(iffD2 \<cdot> All P \<cdot> All Q \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> All \<cdot> All \<cdot> P \<cdot> Q \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
110  | 
      (HOL.refl \<cdot> TYPE('T3) \<cdot> x1 \<bullet> prfT3) \<bullet>
 | 
|
111  | 
      (ext \<cdot> TYPE('a) \<cdot> TYPE(bool) \<cdot> x2 \<cdot> x3 \<bullet> prfa \<bullet> prfb \<bullet> prf)) \<bullet> prf') \<equiv>
 | 
|
112  | 
    (allI \<cdot> TYPE('a) \<cdot> P \<bullet> prfa \<bullet>
 | 
|
113  | 
(\<^bold>\<lambda>x.  | 
|
114  | 
iffD2 \<cdot> P x \<cdot> Q x \<bullet> (prf \<cdot> x) \<bullet>  | 
|
115  | 
           (spec \<cdot> TYPE('a) \<cdot> Q \<cdot> x \<bullet> prfa \<bullet> prf')))\<close>,
 | 
|
| 13404 | 116  | 
|
117  | 
(* Ex *)  | 
|
118  | 
||
| 67094 | 119  | 
   \<open>(iffD1 \<cdot> Ex P \<cdot> Ex Q \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> Ex \<cdot> Ex \<cdot> P \<cdot> Q \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
120  | 
      (HOL.refl \<cdot> TYPE('T3) \<cdot> x1 \<bullet> prfT3) \<bullet>
 | 
|
121  | 
      (ext \<cdot> TYPE('a) \<cdot> TYPE(bool) \<cdot> x2 \<cdot> x3 \<bullet> prfa \<bullet> prfb \<bullet> prf)) \<bullet> prf') \<equiv>
 | 
|
122  | 
    (exE \<cdot> TYPE('a) \<cdot> P \<cdot> \<exists>x. Q x \<bullet> prfa \<bullet> prf' \<bullet>
 | 
|
123  | 
(\<^bold>\<lambda>x H : P x.  | 
|
124  | 
          exI \<cdot> TYPE('a) \<cdot> Q \<cdot> x \<bullet> prfa \<bullet>
 | 
|
125  | 
(iffD1 \<cdot> P x \<cdot> Q x \<bullet> (prf \<cdot> x) \<bullet> H)))\<close>,  | 
|
| 13404 | 126  | 
|
| 67094 | 127  | 
   \<open>(iffD2 \<cdot> Ex P \<cdot> Ex Q \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> Ex \<cdot> Ex \<cdot> P \<cdot> Q \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
128  | 
      (HOL.refl \<cdot> TYPE('T3) \<cdot> x1 \<bullet> prfT3) \<bullet>
 | 
|
129  | 
      (ext \<cdot> TYPE('a) \<cdot> TYPE(bool) \<cdot> x2 \<cdot> x3 \<bullet> prfa \<bullet> prfb \<bullet> prf)) \<bullet> prf') \<equiv>
 | 
|
130  | 
    (exE \<cdot> TYPE('a) \<cdot> Q \<cdot> \<exists>x. P x \<bullet> prfa \<bullet> prf' \<bullet>
 | 
|
131  | 
(\<^bold>\<lambda>x H : Q x.  | 
|
132  | 
          exI \<cdot> TYPE('a) \<cdot> P \<cdot> x \<bullet> prfa \<bullet>
 | 
|
133  | 
(iffD2 \<cdot> P x \<cdot> Q x \<bullet> (prf \<cdot> x) \<bullet> H)))\<close>,  | 
|
| 13404 | 134  | 
|
| 67091 | 135  | 
(* \<and> *)  | 
| 13404 | 136  | 
|
| 67094 | 137  | 
   \<open>(iffD1 \<cdot> A \<and> C \<cdot> B \<and> D \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
138  | 
      (cong \<cdot> TYPE('T3) \<cdot> TYPE('T4) \<cdot> op \<and> \<cdot> op \<and> \<cdot> A \<cdot> B \<bullet> prfT3 \<bullet> prfT4 \<bullet>
 | 
|
139  | 
        (HOL.refl \<cdot> TYPE('T5) \<cdot> op \<and> \<bullet> prfT5) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<equiv>
 | 
|
140  | 
(conjI \<cdot> B \<cdot> D \<bullet>  | 
|
141  | 
(iffD1 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> (conjunct1 \<cdot> A \<cdot> C \<bullet> prf3)) \<bullet>  | 
|
142  | 
(iffD1 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet> (conjunct2 \<cdot> A \<cdot> C \<bullet> prf3)))\<close>,  | 
|
| 13404 | 143  | 
|
| 67094 | 144  | 
   \<open>(iffD2 \<cdot> A \<and> C \<cdot> B \<and> D \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
145  | 
      (cong \<cdot> TYPE('T3) \<cdot> TYPE('T4) \<cdot> op \<and> \<cdot> op \<and> \<cdot> A \<cdot> B \<bullet> prfT3 \<bullet> prfT4 \<bullet>
 | 
|
146  | 
        (HOL.refl \<cdot> TYPE('T5) \<cdot> op \<and> \<bullet> prfT5) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<equiv>
 | 
|
147  | 
(conjI \<cdot> A \<cdot> C \<bullet>  | 
|
148  | 
(iffD2 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> (conjunct1 \<cdot> B \<cdot> D \<bullet> prf3)) \<bullet>  | 
|
149  | 
(iffD2 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet> (conjunct2 \<cdot> B \<cdot> D \<bullet> prf3)))\<close>,  | 
|
| 13404 | 150  | 
|
| 67094 | 151  | 
\<open>(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool) \<cdot> op \<and> A \<cdot> op \<and> A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prfb \<bullet>  | 
152  | 
(HOL.refl \<cdot> TYPE(bool\<Rightarrow>bool) \<cdot> op \<and> A \<bullet> prfbb)) \<equiv>  | 
|
153  | 
(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool) \<cdot> op \<and> A \<cdot> op \<and> A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prfb \<bullet>  | 
|
154  | 
(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool\<Rightarrow>bool) \<cdot>  | 
|
155  | 
(op \<and> :: bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> (op \<and> :: bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> A \<cdot> A \<bullet>  | 
|
156  | 
prfb \<bullet> prfbb \<bullet>  | 
|
157  | 
(HOL.refl \<cdot> TYPE(bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> (op \<and> :: bool\<Rightarrow>bool\<Rightarrow>bool) \<bullet>  | 
|
158  | 
(OfClass type_class \<cdot> TYPE(bool\<Rightarrow>bool\<Rightarrow>bool))) \<bullet>  | 
|
159  | 
(HOL.refl \<cdot> TYPE(bool) \<cdot> A \<bullet> prfb)))\<close>,  | 
|
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
160  | 
|
| 67091 | 161  | 
(* \<or> *)  | 
| 13404 | 162  | 
|
| 67094 | 163  | 
   \<open>(iffD1 \<cdot> A \<or> C \<cdot> B \<or> D \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
164  | 
      (cong \<cdot> TYPE('T3) \<cdot> TYPE('T4) \<cdot> op \<or> \<cdot> op \<or> \<cdot> A \<cdot> B \<bullet> prfT3 \<bullet> prfT4 \<bullet>
 | 
|
165  | 
        (HOL.refl \<cdot> TYPE('T5) \<cdot> op \<or> \<bullet> prfT5) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<equiv>
 | 
|
166  | 
(disjE \<cdot> A \<cdot> C \<cdot> B \<or> D \<bullet> prf3 \<bullet>  | 
|
167  | 
(\<^bold>\<lambda>H : A. disjI1 \<cdot> B \<cdot> D \<bullet> (iffD1 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> H)) \<bullet>  | 
|
168  | 
(\<^bold>\<lambda>H : C. disjI2 \<cdot> D \<cdot> B \<bullet> (iffD1 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet> H)))\<close>,  | 
|
| 13404 | 169  | 
|
| 67094 | 170  | 
   \<open>(iffD2 \<cdot> A \<or> C \<cdot> B \<or> D \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
171  | 
      (cong \<cdot> TYPE('T3) \<cdot> TYPE('T4) \<cdot> op \<or> \<cdot> op \<or> \<cdot> A \<cdot> B \<bullet> prfT3 \<bullet> prfT4 \<bullet>
 | 
|
172  | 
        (HOL.refl \<cdot> TYPE('T5) \<cdot> op \<or> \<bullet> prfT5) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<equiv>
 | 
|
173  | 
(disjE \<cdot> B \<cdot> D \<cdot> A \<or> C \<bullet> prf3 \<bullet>  | 
|
174  | 
(\<^bold>\<lambda>H : B. disjI1 \<cdot> A \<cdot> C \<bullet> (iffD2 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> H)) \<bullet>  | 
|
175  | 
(\<^bold>\<lambda>H : D. disjI2 \<cdot> C \<cdot> A \<bullet> (iffD2 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet> H)))\<close>,  | 
|
| 13404 | 176  | 
|
| 67094 | 177  | 
\<open>(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool) \<cdot> op \<or> A \<cdot> op \<or> A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prfb \<bullet>  | 
178  | 
(HOL.refl \<cdot> TYPE(bool\<Rightarrow>bool) \<cdot> op \<or> A \<bullet> prfbb)) \<equiv>  | 
|
179  | 
(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool) \<cdot> op \<or> A \<cdot> op \<or> A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prfb \<bullet>  | 
|
180  | 
(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool\<Rightarrow>bool) \<cdot>  | 
|
181  | 
(op \<or> :: bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> (op \<or> :: bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> A \<cdot> A \<bullet>  | 
|
182  | 
prfb \<bullet> prfbb \<bullet>  | 
|
183  | 
(HOL.refl \<cdot> TYPE(bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> (op \<or> :: bool\<Rightarrow>bool\<Rightarrow>bool) \<bullet>  | 
|
184  | 
(OfClass type_class \<cdot> TYPE(bool\<Rightarrow>bool\<Rightarrow>bool))) \<bullet>  | 
|
185  | 
(HOL.refl \<cdot> TYPE(bool) \<cdot> A \<bullet> prfb)))\<close>,  | 
|
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
186  | 
|
| 67091 | 187  | 
(* \<longrightarrow> *)  | 
| 13404 | 188  | 
|
| 67094 | 189  | 
   \<open>(iffD1 \<cdot> A \<longrightarrow> C \<cdot> B \<longrightarrow> D \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
190  | 
      (cong \<cdot> TYPE('T3) \<cdot> TYPE('T4) \<cdot> op \<longrightarrow> \<cdot> op \<longrightarrow> \<cdot> A \<cdot> B \<bullet> prfT3 \<bullet> prfT4 \<bullet>
 | 
|
191  | 
        (HOL.refl \<cdot> TYPE('T5) \<cdot> op \<longrightarrow> \<bullet> prfT5) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<equiv>
 | 
|
192  | 
(impI \<cdot> B \<cdot> D \<bullet> (\<^bold>\<lambda>H: B. iffD1 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet>  | 
|
193  | 
(mp \<cdot> A \<cdot> C \<bullet> prf3 \<bullet> (iffD2 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> H))))\<close>,  | 
|
| 13404 | 194  | 
|
| 67094 | 195  | 
   \<open>(iffD2 \<cdot> A \<longrightarrow> C \<cdot> B \<longrightarrow> D \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
196  | 
      (cong \<cdot> TYPE('T3) \<cdot> TYPE('T4) \<cdot> op \<longrightarrow> \<cdot> op \<longrightarrow> \<cdot> A \<cdot> B \<bullet> prfT3 \<bullet> prfT4 \<bullet>
 | 
|
197  | 
        (HOL.refl \<cdot> TYPE('T5) \<cdot> op \<longrightarrow> \<bullet> prfT5) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<equiv>
 | 
|
198  | 
(impI \<cdot> A \<cdot> C \<bullet> (\<^bold>\<lambda>H: A. iffD2 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet>  | 
|
199  | 
(mp \<cdot> B \<cdot> D \<bullet> prf3 \<bullet> (iffD1 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> H))))\<close>,  | 
|
| 13404 | 200  | 
|
| 67094 | 201  | 
\<open>(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool) \<cdot> op \<longrightarrow> A \<cdot> op \<longrightarrow> A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prfb \<bullet>  | 
202  | 
(HOL.refl \<cdot> TYPE(bool\<Rightarrow>bool) \<cdot> op \<longrightarrow> A \<bullet> prfbb)) \<equiv>  | 
|
203  | 
(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool) \<cdot> op \<longrightarrow> A \<cdot> op \<longrightarrow> A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prfb \<bullet>  | 
|
204  | 
(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool\<Rightarrow>bool) \<cdot>  | 
|
205  | 
(op \<longrightarrow> :: bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> (op \<longrightarrow> :: bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> A \<cdot> A \<bullet>  | 
|
206  | 
prfb \<bullet> prfbb \<bullet>  | 
|
207  | 
(HOL.refl \<cdot> TYPE(bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> (op \<longrightarrow> :: bool\<Rightarrow>bool\<Rightarrow>bool) \<bullet>  | 
|
208  | 
(OfClass type_class \<cdot> TYPE(bool\<Rightarrow>bool\<Rightarrow>bool))) \<bullet>  | 
|
209  | 
(HOL.refl \<cdot> TYPE(bool) \<cdot> A \<bullet> prfb)))\<close>,  | 
|
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
210  | 
|
| 67091 | 211  | 
(* \<not> *)  | 
| 13404 | 212  | 
|
| 67094 | 213  | 
   \<open>(iffD1 \<cdot> \<not> P \<cdot> \<not> Q \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> Not \<cdot> Not \<cdot> P \<cdot> Q \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
214  | 
      (HOL.refl \<cdot> TYPE('T3) \<cdot> Not \<bullet> prfT3) \<bullet> prf1) \<bullet> prf2) \<equiv>
 | 
|
215  | 
(notI \<cdot> Q \<bullet> (\<^bold>\<lambda>H: Q.  | 
|
216  | 
notE \<cdot> P \<cdot> False \<bullet> prf2 \<bullet> (iffD2 \<cdot> P \<cdot> Q \<bullet> prf1 \<bullet> H)))\<close>,  | 
|
| 13404 | 217  | 
|
| 67094 | 218  | 
   \<open>(iffD2 \<cdot> \<not> P \<cdot> \<not> Q \<bullet> (cong \<cdot> TYPE('T1) \<cdot> TYPE('T2) \<cdot> Not \<cdot> Not \<cdot> P \<cdot> Q \<bullet> prfT1 \<bullet> prfT2 \<bullet>
 | 
219  | 
      (HOL.refl \<cdot> TYPE('T3) \<cdot> Not \<bullet> prfT3) \<bullet> prf1) \<bullet> prf2) \<equiv>
 | 
|
220  | 
(notI \<cdot> P \<bullet> (\<^bold>\<lambda>H: P.  | 
|
221  | 
notE \<cdot> Q \<cdot> False \<bullet> prf2 \<bullet> (iffD1 \<cdot> P \<cdot> Q \<bullet> prf1 \<bullet> H)))\<close>,  | 
|
| 13404 | 222  | 
|
223  | 
(* = *)  | 
|
224  | 
||
| 67094 | 225  | 
\<open>(iffD1 \<cdot> B \<cdot> D \<bullet>  | 
226  | 
      (iffD1 \<cdot> A = C \<cdot> B = D \<bullet> (cong \<cdot> TYPE(bool) \<cdot> TYPE('T1) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfb \<bullet> prfT1 \<bullet>
 | 
|
227  | 
        (cong \<cdot> TYPE(bool) \<cdot> TYPE('T2) \<cdot> op = \<cdot> op = \<cdot> A \<cdot> B \<bullet> prfb \<bullet> prfT2 \<bullet>
 | 
|
228  | 
          (HOL.refl \<cdot> TYPE('T3) \<cdot> op = \<bullet> prfT3) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<bullet> prf4) \<equiv>
 | 
|
229  | 
(iffD1 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet>  | 
|
230  | 
(iffD1 \<cdot> A \<cdot> C \<bullet> prf3 \<bullet> (iffD2 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> prf4)))\<close>,  | 
|
| 13404 | 231  | 
|
| 67094 | 232  | 
\<open>(iffD2 \<cdot> B \<cdot> D \<bullet>  | 
233  | 
      (iffD1 \<cdot> A = C \<cdot> B = D \<bullet> (cong \<cdot> TYPE(bool) \<cdot> TYPE('T1) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfb \<bullet> prfT1 \<bullet>
 | 
|
234  | 
        (cong \<cdot> TYPE(bool) \<cdot> TYPE('T2) \<cdot> op = \<cdot> op = \<cdot> A \<cdot> B \<bullet> prfb \<bullet> prfT2 \<bullet>
 | 
|
235  | 
          (HOL.refl \<cdot> TYPE('T3) \<cdot> op = \<bullet> prfT3) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<bullet> prf4) \<equiv>
 | 
|
236  | 
(iffD1 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet>  | 
|
237  | 
(iffD2 \<cdot> A \<cdot> C \<bullet> prf3 \<bullet> (iffD2 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet> prf4)))\<close>,  | 
|
| 13404 | 238  | 
|
| 67094 | 239  | 
\<open>(iffD1 \<cdot> A \<cdot> C \<bullet>  | 
240  | 
      (iffD2 \<cdot> A = C \<cdot> B = D \<bullet> (cong \<cdot> TYPE(bool) \<cdot> TYPE('T1) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfb \<bullet> prfT1 \<bullet>
 | 
|
241  | 
        (cong \<cdot> TYPE(bool) \<cdot> TYPE('T2) \<cdot> op = \<cdot> op = \<cdot> A \<cdot> B \<bullet> prfb \<bullet> prfT2 \<bullet>
 | 
|
242  | 
          (HOL.refl \<cdot> TYPE('T3) \<cdot> op = \<bullet> prfT3) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<bullet> prf4)\<equiv>
 | 
|
243  | 
(iffD2 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet>  | 
|
244  | 
(iffD1 \<cdot> B \<cdot> D \<bullet> prf3 \<bullet> (iffD1 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> prf4)))\<close>,  | 
|
| 13404 | 245  | 
|
| 67094 | 246  | 
\<open>(iffD2 \<cdot> A \<cdot> C \<bullet>  | 
247  | 
      (iffD2 \<cdot> A = C \<cdot> B = D \<bullet> (cong \<cdot> TYPE(bool) \<cdot> TYPE('T1) \<cdot> x1 \<cdot> x2 \<cdot> C \<cdot> D \<bullet> prfb \<bullet> prfT1 \<bullet>
 | 
|
248  | 
        (cong \<cdot> TYPE(bool) \<cdot> TYPE('T2) \<cdot> op = \<cdot> op = \<cdot> A \<cdot> B \<bullet> prfb \<bullet> prfT2 \<bullet>
 | 
|
249  | 
          (HOL.refl \<cdot> TYPE('T3) \<cdot> op = \<bullet> prfT3) \<bullet> prf1) \<bullet> prf2) \<bullet> prf3) \<bullet> prf4) \<equiv>
 | 
|
250  | 
(iffD2 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet>  | 
|
251  | 
(iffD2 \<cdot> B \<cdot> D \<bullet> prf3 \<bullet> (iffD1 \<cdot> C \<cdot> D \<bullet> prf2 \<bullet> prf4)))\<close>,  | 
|
| 13404 | 252  | 
|
| 67094 | 253  | 
\<open>(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool) \<cdot> op = A \<cdot> op = A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prfb \<bullet>  | 
254  | 
(HOL.refl \<cdot> TYPE(bool\<Rightarrow>bool) \<cdot> op = A \<bullet> prfbb)) \<equiv>  | 
|
255  | 
(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool) \<cdot> op = A \<cdot> op = A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prfb \<bullet>  | 
|
256  | 
(cong \<cdot> TYPE(bool) \<cdot> TYPE(bool\<Rightarrow>bool) \<cdot>  | 
|
257  | 
(op = :: bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> (op = :: bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> A \<cdot> A \<bullet>  | 
|
258  | 
prfb \<bullet> prfbb \<bullet>  | 
|
259  | 
(HOL.refl \<cdot> TYPE(bool\<Rightarrow>bool\<Rightarrow>bool) \<cdot> (op = :: bool\<Rightarrow>bool\<Rightarrow>bool) \<bullet>  | 
|
260  | 
(OfClass type_class \<cdot> TYPE(bool\<Rightarrow>bool\<Rightarrow>bool))) \<bullet>  | 
|
261  | 
(HOL.refl \<cdot> TYPE(bool) \<cdot> A \<bullet> prfb)))\<close>,  | 
|
| 13404 | 262  | 
|
| 
13916
 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 
berghofe 
parents: 
13602 
diff
changeset
 | 
263  | 
(** transitivity, reflexivity, and symmetry **)  | 
| 
 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 
berghofe 
parents: 
13602 
diff
changeset
 | 
264  | 
|
| 67094 | 265  | 
\<open>(iffD1 \<cdot> A \<cdot> C \<bullet> (HOL.trans \<cdot> TYPE(bool) \<cdot> A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prf1 \<bullet> prf2) \<bullet> prf3) \<equiv>  | 
266  | 
(iffD1 \<cdot> B \<cdot> C \<bullet> prf2 \<bullet> (iffD1 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> prf3))\<close>,  | 
|
| 13404 | 267  | 
|
| 67094 | 268  | 
\<open>(iffD2 \<cdot> A \<cdot> C \<bullet> (HOL.trans \<cdot> TYPE(bool) \<cdot> A \<cdot> B \<cdot> C \<bullet> prfb \<bullet> prf1 \<bullet> prf2) \<bullet> prf3) \<equiv>  | 
269  | 
(iffD2 \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> (iffD2 \<cdot> B \<cdot> C \<bullet> prf2 \<bullet> prf3))\<close>,  | 
|
| 13404 | 270  | 
|
| 67094 | 271  | 
\<open>(iffD1 \<cdot> A \<cdot> A \<bullet> (HOL.refl \<cdot> TYPE(bool) \<cdot> A \<bullet> prfb) \<bullet> prf) \<equiv> prf\<close>,  | 
| 13404 | 272  | 
|
| 67094 | 273  | 
\<open>(iffD2 \<cdot> A \<cdot> A \<bullet> (HOL.refl \<cdot> TYPE(bool) \<cdot> A \<bullet> prfb) \<bullet> prf) \<equiv> prf\<close>,  | 
| 13404 | 274  | 
|
| 67094 | 275  | 
\<open>(iffD1 \<cdot> A \<cdot> B \<bullet> (sym \<cdot> TYPE(bool) \<cdot> B \<cdot> A \<bullet> prfb \<bullet> prf)) \<equiv> (iffD2 \<cdot> B \<cdot> A \<bullet> prf)\<close>,  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
276  | 
|
| 67094 | 277  | 
\<open>(iffD2 \<cdot> A \<cdot> B \<bullet> (sym \<cdot> TYPE(bool) \<cdot> B \<cdot> A \<bullet> prfb \<bullet> prf)) \<equiv> (iffD1 \<cdot> B \<cdot> A \<bullet> prf)\<close>,  | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
278  | 
|
| 13404 | 279  | 
(** normalization of HOL proofs **)  | 
280  | 
||
| 67094 | 281  | 
\<open>(mp \<cdot> A \<cdot> B \<bullet> (impI \<cdot> A \<cdot> B \<bullet> prf)) \<equiv> prf\<close>,  | 
| 13404 | 282  | 
|
| 67094 | 283  | 
\<open>(impI \<cdot> A \<cdot> B \<bullet> (mp \<cdot> A \<cdot> B \<bullet> prf)) \<equiv> prf\<close>,  | 
| 13404 | 284  | 
|
| 67094 | 285  | 
   \<open>(spec \<cdot> TYPE('a) \<cdot> P \<cdot> x \<bullet> prfa \<bullet> (allI \<cdot> TYPE('a) \<cdot> P \<bullet> prfa \<bullet> prf)) \<equiv> prf \<cdot> x\<close>,
 | 
| 13404 | 286  | 
|
| 67094 | 287  | 
   \<open>(allI \<cdot> TYPE('a) \<cdot> P \<bullet> prfa \<bullet> (\<^bold>\<lambda>x::'a. spec \<cdot> TYPE('a) \<cdot> P \<cdot> x \<bullet> prfa \<bullet> prf)) \<equiv> prf\<close>,
 | 
| 13404 | 288  | 
|
| 67094 | 289  | 
   \<open>(exE \<cdot> TYPE('a) \<cdot> P \<cdot> Q \<bullet> prfa \<bullet> (exI \<cdot> TYPE('a) \<cdot> P \<cdot> x \<bullet> prfa \<bullet> prf1) \<bullet> prf2) \<equiv> (prf2 \<cdot> x \<bullet> prf1)\<close>,
 | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
290  | 
|
| 67094 | 291  | 
   \<open>(exE \<cdot> TYPE('a) \<cdot> P \<cdot> Q \<bullet> prfa \<bullet> prf \<bullet> (exI \<cdot> TYPE('a) \<cdot> P \<bullet> prfa)) \<equiv> prf\<close>,
 | 
| 
13602
 
4cecd1e0f4a9
- additional congruence rules for boolean operators
 
berghofe 
parents: 
13404 
diff
changeset
 | 
292  | 
|
| 67094 | 293  | 
\<open>(disjE \<cdot> P \<cdot> Q \<cdot> R \<bullet> (disjI1 \<cdot> P \<cdot> Q \<bullet> prf1) \<bullet> prf2 \<bullet> prf3) \<equiv> (prf2 \<bullet> prf1)\<close>,  | 
| 13404 | 294  | 
|
| 67094 | 295  | 
\<open>(disjE \<cdot> P \<cdot> Q \<cdot> R \<bullet> (disjI2 \<cdot> Q \<cdot> P \<bullet> prf1) \<bullet> prf2 \<bullet> prf3) \<equiv> (prf3 \<bullet> prf1)\<close>,  | 
| 13404 | 296  | 
|
| 67094 | 297  | 
\<open>(conjunct1 \<cdot> P \<cdot> Q \<bullet> (conjI \<cdot> P \<cdot> Q \<bullet> prf1 \<bullet> prf2)) \<equiv> prf1\<close>,  | 
| 13404 | 298  | 
|
| 67094 | 299  | 
\<open>(conjunct2 \<cdot> P \<cdot> Q \<bullet> (conjI \<cdot> P \<cdot> Q \<bullet> prf1 \<bullet> prf2)) \<equiv> prf2\<close>,  | 
| 13404 | 300  | 
|
| 67094 | 301  | 
\<open>(iffD1 \<cdot> A \<cdot> B \<bullet> (iffI \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> prf2)) \<equiv> prf1\<close>,  | 
| 13404 | 302  | 
|
| 67094 | 303  | 
\<open>(iffD2 \<cdot> A \<cdot> B \<bullet> (iffI \<cdot> A \<cdot> B \<bullet> prf1 \<bullet> prf2)) \<equiv> prf2\<close>];  | 
| 13404 | 304  | 
|
305  | 
||
306  | 
(** Replace congruence rules by substitution rules **)  | 
|
307  | 
||
| 
28801
 
fc45401bdf6f
ProofSyntax.proof_of_term: removed obsolete disambiguisation table;
 
wenzelm 
parents: 
28712 
diff
changeset
 | 
308  | 
fun strip_cong ps (PThm (_, (("HOL.cong", _, _), _)) % _ % _ % SOME x % SOME y %%
 | 
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
309  | 
prfa %% prfT %% prf1 %% prf2) = strip_cong (((x, y), (prf2, prfa)) :: ps) prf1  | 
| 
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
310  | 
  | strip_cong ps (PThm (_, (("HOL.refl", _, _), _)) % SOME f %% _) = SOME (f, ps)
 | 
| 15531 | 311  | 
| strip_cong _ _ = NONE;  | 
| 13404 | 312  | 
|
| 37310 | 313  | 
val subst_prf = fst (Proofterm.strip_combt (fst (Proofterm.strip_combP (Thm.proof_of subst))));  | 
314  | 
val sym_prf = fst (Proofterm.strip_combt (fst (Proofterm.strip_combP (Thm.proof_of sym))));  | 
|
| 13404 | 315  | 
|
316  | 
fun make_subst Ts prf xs (_, []) = prf  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
317  | 
| make_subst Ts prf xs (f, ((x, y), (prf', clprf)) :: ps) =  | 
| 13404 | 318  | 
let val T = fastype_of1 (Ts, x)  | 
319  | 
in if x aconv y then make_subst Ts prf (xs @ [x]) (f, ps)  | 
|
| 37310 | 320  | 
else Proofterm.change_type (SOME [T]) subst_prf %> x %> y %>  | 
| 13404 | 321  | 
          Abs ("z", T, list_comb (incr_boundvars 1 f,
 | 
322  | 
map (incr_boundvars 1) xs @ Bound 0 ::  | 
|
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
323  | 
map (incr_boundvars 1 o snd o fst) ps)) %% clprf %% prf' %%  | 
| 13404 | 324  | 
make_subst Ts prf (xs @ [x]) (f, ps)  | 
325  | 
end;  | 
|
326  | 
||
| 
37233
 
b78f31ca4675
Adapted to new format of proof terms containing explicit proofs of class membership.
 
berghofe 
parents: 
36042 
diff
changeset
 | 
327  | 
fun make_sym Ts ((x, y), (prf, clprf)) =  | 
| 37310 | 328  | 
((y, x),  | 
329  | 
(Proofterm.change_type (SOME [fastype_of1 (Ts, x)]) sym_prf %> x %> y %% clprf %% prf, clprf));  | 
|
| 13404 | 330  | 
|
| 22277 | 331  | 
fun mk_AbsP P t = AbsP ("H", Option.map HOLogic.mk_Trueprop P, t);
 | 
| 
13916
 
f078a758e5d8
elim_cong now eta-expands proofs on the fly if required.
 
berghofe 
parents: 
13602 
diff
changeset
 | 
332  | 
|
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
333  | 
fun elim_cong_aux Ts (PThm (_, (("HOL.iffD1", _, _), _)) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 334  | 
Option.map (make_subst Ts prf2 []) (strip_cong [] prf1)  | 
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
335  | 
  | elim_cong_aux Ts (PThm (_, (("HOL.iffD1", _, _), _)) % P % _ %% prf) =
 | 
| 15570 | 336  | 
Option.map (mk_AbsP P o make_subst Ts (PBound 0) [])  | 
| 37310 | 337  | 
(strip_cong [] (Proofterm.incr_pboundvars 1 0 prf))  | 
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
338  | 
  | elim_cong_aux Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % _ %% prf1 %% prf2) =
 | 
| 15570 | 339  | 
Option.map (make_subst Ts prf2 [] o  | 
| 13404 | 340  | 
apsnd (map (make_sym Ts))) (strip_cong [] prf1)  | 
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
341  | 
  | elim_cong_aux Ts (PThm (_, (("HOL.iffD2", _, _), _)) % _ % P %% prf) =
 | 
| 15570 | 342  | 
Option.map (mk_AbsP P o make_subst Ts (PBound 0) [] o  | 
| 37310 | 343  | 
apsnd (map (make_sym Ts))) (strip_cong [] (Proofterm.incr_pboundvars 1 0 prf))  | 
| 
33722
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
344  | 
| elim_cong_aux _ _ = NONE;  | 
| 
 
e588744f14da
generalized procs for rewrite_proof: allow skeleton;
 
wenzelm 
parents: 
33388 
diff
changeset
 | 
345  | 
|
| 37310 | 346  | 
fun elim_cong Ts hs prf = Option.map (rpair Proofterm.no_skel) (elim_cong_aux Ts prf);  | 
| 13404 | 347  | 
|
348  | 
end;  |