author | wenzelm |
Mon, 03 Oct 2016 21:36:10 +0200 | |
changeset 64027 | 4a33d740c9dc |
parent 62343 | 24106dc44def |
child 66453 | cc19f7ca2ed6 |
permissions | -rw-r--r-- |
26241 | 1 |
(* Title: HOL/Library/Option_ord.thy |
2 |
Author: Florian Haftmann, TU Muenchen |
|
3 |
*) |
|
4 |
||
60500 | 5 |
section \<open>Canonical order on option type\<close> |
26241 | 6 |
|
7 |
theory Option_ord |
|
30662 | 8 |
imports Option Main |
26241 | 9 |
begin |
10 |
||
49190 | 11 |
notation |
12 |
bot ("\<bottom>") and |
|
13 |
top ("\<top>") and |
|
14 |
inf (infixl "\<sqinter>" 70) and |
|
15 |
sup (infixl "\<squnion>" 65) and |
|
16 |
Inf ("\<Sqinter>_" [900] 900) and |
|
17 |
Sup ("\<Squnion>_" [900] 900) |
|
18 |
||
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
60679
diff
changeset
|
19 |
syntax |
49190 | 20 |
"_INF1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_./ _)" [0, 10] 10) |
21 |
"_INF" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10) |
|
22 |
"_SUP1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_./ _)" [0, 10] 10) |
|
23 |
"_SUP" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10) |
|
24 |
||
25 |
||
30662 | 26 |
instantiation option :: (preorder) preorder |
26241 | 27 |
begin |
28 |
||
29 |
definition less_eq_option where |
|
37765 | 30 |
"x \<le> y \<longleftrightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> x \<le> y))" |
26241 | 31 |
|
32 |
definition less_option where |
|
37765 | 33 |
"x < y \<longleftrightarrow> (case y of None \<Rightarrow> False | Some y \<Rightarrow> (case x of None \<Rightarrow> True | Some x \<Rightarrow> x < y))" |
26241 | 34 |
|
26258 | 35 |
lemma less_eq_option_None [simp]: "None \<le> x" |
26241 | 36 |
by (simp add: less_eq_option_def) |
37 |
||
26258 | 38 |
lemma less_eq_option_None_code [code]: "None \<le> x \<longleftrightarrow> True" |
26241 | 39 |
by simp |
40 |
||
26258 | 41 |
lemma less_eq_option_None_is_None: "x \<le> None \<Longrightarrow> x = None" |
26241 | 42 |
by (cases x) (simp_all add: less_eq_option_def) |
43 |
||
26258 | 44 |
lemma less_eq_option_Some_None [simp, code]: "Some x \<le> None \<longleftrightarrow> False" |
26241 | 45 |
by (simp add: less_eq_option_def) |
46 |
||
26258 | 47 |
lemma less_eq_option_Some [simp, code]: "Some x \<le> Some y \<longleftrightarrow> x \<le> y" |
26241 | 48 |
by (simp add: less_eq_option_def) |
49 |
||
26258 | 50 |
lemma less_option_None [simp, code]: "x < None \<longleftrightarrow> False" |
26241 | 51 |
by (simp add: less_option_def) |
52 |
||
26258 | 53 |
lemma less_option_None_is_Some: "None < x \<Longrightarrow> \<exists>z. x = Some z" |
26241 | 54 |
by (cases x) (simp_all add: less_option_def) |
55 |
||
26258 | 56 |
lemma less_option_None_Some [simp]: "None < Some x" |
26241 | 57 |
by (simp add: less_option_def) |
58 |
||
26258 | 59 |
lemma less_option_None_Some_code [code]: "None < Some x \<longleftrightarrow> True" |
26241 | 60 |
by simp |
61 |
||
26258 | 62 |
lemma less_option_Some [simp, code]: "Some x < Some y \<longleftrightarrow> x < y" |
26241 | 63 |
by (simp add: less_option_def) |
64 |
||
60679 | 65 |
instance |
66 |
by standard |
|
67 |
(auto simp add: less_eq_option_def less_option_def less_le_not_le |
|
68 |
elim: order_trans split: option.splits) |
|
26241 | 69 |
|
60679 | 70 |
end |
30662 | 71 |
|
60679 | 72 |
instance option :: (order) order |
73 |
by standard (auto simp add: less_eq_option_def less_option_def split: option.splits) |
|
74 |
||
75 |
instance option :: (linorder) linorder |
|
76 |
by standard (auto simp add: less_eq_option_def less_option_def split: option.splits) |
|
30662 | 77 |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
49190
diff
changeset
|
78 |
instantiation option :: (order) order_bot |
30662 | 79 |
begin |
80 |
||
60679 | 81 |
definition bot_option where "\<bottom> = None" |
30662 | 82 |
|
60679 | 83 |
instance |
84 |
by standard (simp add: bot_option_def) |
|
30662 | 85 |
|
86 |
end |
|
87 |
||
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
49190
diff
changeset
|
88 |
instantiation option :: (order_top) order_top |
30662 | 89 |
begin |
90 |
||
60679 | 91 |
definition top_option where "\<top> = Some \<top>" |
30662 | 92 |
|
60679 | 93 |
instance |
94 |
by standard (simp add: top_option_def less_eq_option_def split: option.split) |
|
26241 | 95 |
|
96 |
end |
|
30662 | 97 |
|
60679 | 98 |
instance option :: (wellorder) wellorder |
99 |
proof |
|
100 |
fix P :: "'a option \<Rightarrow> bool" |
|
101 |
fix z :: "'a option" |
|
30662 | 102 |
assume H: "\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x" |
103 |
have "P None" by (rule H) simp |
|
60679 | 104 |
then have P_Some [case_names Some]: "P z" if "\<And>x. z = Some x \<Longrightarrow> (P o Some) x" for z |
105 |
using \<open>P None\<close> that by (cases z) simp_all |
|
106 |
show "P z" |
|
107 |
proof (cases z rule: P_Some) |
|
30662 | 108 |
case (Some w) |
60679 | 109 |
show "(P o Some) w" |
110 |
proof (induct rule: less_induct) |
|
30662 | 111 |
case (less x) |
60679 | 112 |
have "P (Some x)" |
113 |
proof (rule H) |
|
30662 | 114 |
fix y :: "'a option" |
115 |
assume "y < Some x" |
|
60679 | 116 |
show "P y" |
117 |
proof (cases y rule: P_Some) |
|
118 |
case (Some v) |
|
119 |
with \<open>y < Some x\<close> have "v < x" by simp |
|
30662 | 120 |
with less show "(P o Some) v" . |
121 |
qed |
|
122 |
qed |
|
123 |
then show ?case by simp |
|
124 |
qed |
|
125 |
qed |
|
126 |
qed |
|
127 |
||
49190 | 128 |
instantiation option :: (inf) inf |
129 |
begin |
|
130 |
||
131 |
definition inf_option where |
|
132 |
"x \<sqinter> y = (case x of None \<Rightarrow> None | Some x \<Rightarrow> (case y of None \<Rightarrow> None | Some y \<Rightarrow> Some (x \<sqinter> y)))" |
|
133 |
||
60679 | 134 |
lemma inf_None_1 [simp, code]: "None \<sqinter> y = None" |
49190 | 135 |
by (simp add: inf_option_def) |
136 |
||
60679 | 137 |
lemma inf_None_2 [simp, code]: "x \<sqinter> None = None" |
49190 | 138 |
by (cases x) (simp_all add: inf_option_def) |
139 |
||
60679 | 140 |
lemma inf_Some [simp, code]: "Some x \<sqinter> Some y = Some (x \<sqinter> y)" |
49190 | 141 |
by (simp add: inf_option_def) |
142 |
||
143 |
instance .. |
|
144 |
||
30662 | 145 |
end |
49190 | 146 |
|
147 |
instantiation option :: (sup) sup |
|
148 |
begin |
|
149 |
||
150 |
definition sup_option where |
|
151 |
"x \<squnion> y = (case x of None \<Rightarrow> y | Some x' \<Rightarrow> (case y of None \<Rightarrow> x | Some y \<Rightarrow> Some (x' \<squnion> y)))" |
|
152 |
||
60679 | 153 |
lemma sup_None_1 [simp, code]: "None \<squnion> y = y" |
49190 | 154 |
by (simp add: sup_option_def) |
155 |
||
60679 | 156 |
lemma sup_None_2 [simp, code]: "x \<squnion> None = x" |
49190 | 157 |
by (cases x) (simp_all add: sup_option_def) |
158 |
||
60679 | 159 |
lemma sup_Some [simp, code]: "Some x \<squnion> Some y = Some (x \<squnion> y)" |
49190 | 160 |
by (simp add: sup_option_def) |
161 |
||
162 |
instance .. |
|
163 |
||
164 |
end |
|
165 |
||
60679 | 166 |
instance option :: (semilattice_inf) semilattice_inf |
167 |
proof |
|
49190 | 168 |
fix x y z :: "'a option" |
169 |
show "x \<sqinter> y \<le> x" |
|
60679 | 170 |
by (cases x, simp_all, cases y, simp_all) |
49190 | 171 |
show "x \<sqinter> y \<le> y" |
60679 | 172 |
by (cases x, simp_all, cases y, simp_all) |
49190 | 173 |
show "x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<sqinter> z" |
60679 | 174 |
by (cases x, simp_all, cases y, simp_all, cases z, simp_all) |
49190 | 175 |
qed |
176 |
||
60679 | 177 |
instance option :: (semilattice_sup) semilattice_sup |
178 |
proof |
|
49190 | 179 |
fix x y z :: "'a option" |
180 |
show "x \<le> x \<squnion> y" |
|
60679 | 181 |
by (cases x, simp_all, cases y, simp_all) |
49190 | 182 |
show "y \<le> x \<squnion> y" |
60679 | 183 |
by (cases x, simp_all, cases y, simp_all) |
49190 | 184 |
fix x y z :: "'a option" |
185 |
show "y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<squnion> z \<le> x" |
|
60679 | 186 |
by (cases y, simp_all, cases z, simp_all, cases x, simp_all) |
49190 | 187 |
qed |
188 |
||
189 |
instance option :: (lattice) lattice .. |
|
190 |
||
191 |
instance option :: (lattice) bounded_lattice_bot .. |
|
192 |
||
193 |
instance option :: (bounded_lattice_top) bounded_lattice_top .. |
|
194 |
||
195 |
instance option :: (bounded_lattice_top) bounded_lattice .. |
|
196 |
||
197 |
instance option :: (distrib_lattice) distrib_lattice |
|
198 |
proof |
|
199 |
fix x y z :: "'a option" |
|
200 |
show "x \<squnion> y \<sqinter> z = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
|
60679 | 201 |
by (cases x, simp_all, cases y, simp_all, cases z, simp_all add: sup_inf_distrib1 inf_commute) |
202 |
qed |
|
49190 | 203 |
|
204 |
instantiation option :: (complete_lattice) complete_lattice |
|
205 |
begin |
|
206 |
||
207 |
definition Inf_option :: "'a option set \<Rightarrow> 'a option" where |
|
208 |
"\<Sqinter>A = (if None \<in> A then None else Some (\<Sqinter>Option.these A))" |
|
209 |
||
60679 | 210 |
lemma None_in_Inf [simp]: "None \<in> A \<Longrightarrow> \<Sqinter>A = None" |
49190 | 211 |
by (simp add: Inf_option_def) |
212 |
||
213 |
definition Sup_option :: "'a option set \<Rightarrow> 'a option" where |
|
214 |
"\<Squnion>A = (if A = {} \<or> A = {None} then None else Some (\<Squnion>Option.these A))" |
|
215 |
||
60679 | 216 |
lemma empty_Sup [simp]: "\<Squnion>{} = None" |
49190 | 217 |
by (simp add: Sup_option_def) |
218 |
||
60679 | 219 |
lemma singleton_None_Sup [simp]: "\<Squnion>{None} = None" |
49190 | 220 |
by (simp add: Sup_option_def) |
221 |
||
60679 | 222 |
instance |
223 |
proof |
|
49190 | 224 |
fix x :: "'a option" and A |
225 |
assume "x \<in> A" |
|
226 |
then show "\<Sqinter>A \<le> x" |
|
227 |
by (cases x) (auto simp add: Inf_option_def in_these_eq intro: Inf_lower) |
|
228 |
next |
|
229 |
fix z :: "'a option" and A |
|
230 |
assume *: "\<And>x. x \<in> A \<Longrightarrow> z \<le> x" |
|
231 |
show "z \<le> \<Sqinter>A" |
|
232 |
proof (cases z) |
|
233 |
case None then show ?thesis by simp |
|
234 |
next |
|
235 |
case (Some y) |
|
236 |
show ?thesis |
|
237 |
by (auto simp add: Inf_option_def in_these_eq Some intro!: Inf_greatest dest!: *) |
|
238 |
qed |
|
239 |
next |
|
240 |
fix x :: "'a option" and A |
|
241 |
assume "x \<in> A" |
|
242 |
then show "x \<le> \<Squnion>A" |
|
243 |
by (cases x) (auto simp add: Sup_option_def in_these_eq intro: Sup_upper) |
|
244 |
next |
|
245 |
fix z :: "'a option" and A |
|
246 |
assume *: "\<And>x. x \<in> A \<Longrightarrow> x \<le> z" |
|
247 |
show "\<Squnion>A \<le> z " |
|
248 |
proof (cases z) |
|
249 |
case None |
|
250 |
with * have "\<And>x. x \<in> A \<Longrightarrow> x = None" by (auto dest: less_eq_option_None_is_None) |
|
251 |
then have "A = {} \<or> A = {None}" by blast |
|
252 |
then show ?thesis by (simp add: Sup_option_def) |
|
253 |
next |
|
254 |
case (Some y) |
|
255 |
from * have "\<And>w. Some w \<in> A \<Longrightarrow> Some w \<le> z" . |
|
256 |
with Some have "\<And>w. w \<in> Option.these A \<Longrightarrow> w \<le> y" |
|
257 |
by (simp add: in_these_eq) |
|
258 |
then have "\<Squnion>Option.these A \<le> y" by (rule Sup_least) |
|
259 |
with Some show ?thesis by (simp add: Sup_option_def) |
|
260 |
qed |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
49190
diff
changeset
|
261 |
next |
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
49190
diff
changeset
|
262 |
show "\<Squnion>{} = (\<bottom>::'a option)" |
60679 | 263 |
by (auto simp: bot_option_def) |
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
49190
diff
changeset
|
264 |
show "\<Sqinter>{} = (\<top>::'a option)" |
60679 | 265 |
by (auto simp: top_option_def Inf_option_def) |
49190 | 266 |
qed |
267 |
||
268 |
end |
|
269 |
||
270 |
lemma Some_Inf: |
|
271 |
"Some (\<Sqinter>A) = \<Sqinter>(Some ` A)" |
|
272 |
by (auto simp add: Inf_option_def) |
|
273 |
||
274 |
lemma Some_Sup: |
|
275 |
"A \<noteq> {} \<Longrightarrow> Some (\<Squnion>A) = \<Squnion>(Some ` A)" |
|
276 |
by (auto simp add: Sup_option_def) |
|
277 |
||
278 |
lemma Some_INF: |
|
279 |
"Some (\<Sqinter>x\<in>A. f x) = (\<Sqinter>x\<in>A. Some (f x))" |
|
56166 | 280 |
using Some_Inf [of "f ` A"] by (simp add: comp_def) |
49190 | 281 |
|
282 |
lemma Some_SUP: |
|
283 |
"A \<noteq> {} \<Longrightarrow> Some (\<Squnion>x\<in>A. f x) = (\<Squnion>x\<in>A. Some (f x))" |
|
56166 | 284 |
using Some_Sup [of "f ` A"] by (simp add: comp_def) |
49190 | 285 |
|
60679 | 286 |
instance option :: (complete_distrib_lattice) complete_distrib_lattice |
287 |
proof |
|
49190 | 288 |
fix a :: "'a option" and B |
289 |
show "a \<squnion> \<Sqinter>B = (\<Sqinter>b\<in>B. a \<squnion> b)" |
|
290 |
proof (cases a) |
|
291 |
case None |
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61955
diff
changeset
|
292 |
then show ?thesis by simp |
49190 | 293 |
next |
294 |
case (Some c) |
|
295 |
show ?thesis |
|
296 |
proof (cases "None \<in> B") |
|
297 |
case True |
|
298 |
then have "Some c = (\<Sqinter>b\<in>B. Some c \<squnion> b)" |
|
299 |
by (auto intro!: antisym INF_lower2 INF_greatest) |
|
300 |
with True Some show ?thesis by simp |
|
301 |
next |
|
302 |
case False then have B: "{x \<in> B. \<exists>y. x = Some y} = B" by auto (metis not_Some_eq) |
|
303 |
from sup_Inf have "Some c \<squnion> Some (\<Sqinter>Option.these B) = Some (\<Sqinter>b\<in>Option.these B. c \<squnion> b)" by simp |
|
304 |
then have "Some c \<squnion> \<Sqinter>(Some ` Option.these B) = (\<Sqinter>x\<in>Some ` Option.these B. Some c \<squnion> x)" |
|
56166 | 305 |
by (simp add: Some_INF Some_Inf comp_def) |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61955
diff
changeset
|
306 |
with Some B show ?thesis by (simp add: Some_image_these_eq cong del: strong_INF_cong) |
49190 | 307 |
qed |
308 |
qed |
|
309 |
show "a \<sqinter> \<Squnion>B = (\<Squnion>b\<in>B. a \<sqinter> b)" |
|
310 |
proof (cases a) |
|
311 |
case None |
|
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61955
diff
changeset
|
312 |
then show ?thesis by (simp add: image_constant_conv bot_option_def cong del: strong_SUP_cong) |
49190 | 313 |
next |
314 |
case (Some c) |
|
315 |
show ?thesis |
|
316 |
proof (cases "B = {} \<or> B = {None}") |
|
317 |
case True |
|
56166 | 318 |
then show ?thesis by auto |
49190 | 319 |
next |
320 |
have B: "B = {x \<in> B. \<exists>y. x = Some y} \<union> {x \<in> B. x = None}" |
|
321 |
by auto |
|
322 |
then have Sup_B: "\<Squnion>B = \<Squnion>({x \<in> B. \<exists>y. x = Some y} \<union> {x \<in> B. x = None})" |
|
323 |
and SUP_B: "\<And>f. (\<Squnion>x \<in> B. f x) = (\<Squnion>x \<in> {x \<in> B. \<exists>y. x = Some y} \<union> {x \<in> B. x = None}. f x)" |
|
324 |
by simp_all |
|
325 |
have Sup_None: "\<Squnion>{x. x = None \<and> x \<in> B} = None" |
|
326 |
by (simp add: bot_option_def [symmetric]) |
|
327 |
have SUP_None: "(\<Squnion>x\<in>{x. x = None \<and> x \<in> B}. Some c \<sqinter> x) = None" |
|
328 |
by (simp add: bot_option_def [symmetric]) |
|
329 |
case False then have "Option.these B \<noteq> {}" by (simp add: these_not_empty_eq) |
|
330 |
moreover from inf_Sup have "Some c \<sqinter> Some (\<Squnion>Option.these B) = Some (\<Squnion>b\<in>Option.these B. c \<sqinter> b)" |
|
331 |
by simp |
|
332 |
ultimately have "Some c \<sqinter> \<Squnion>(Some ` Option.these B) = (\<Squnion>x\<in>Some ` Option.these B. Some c \<sqinter> x)" |
|
56166 | 333 |
by (simp add: Some_SUP Some_Sup comp_def) |
49190 | 334 |
with Some show ?thesis |
62343
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
haftmann
parents:
61955
diff
changeset
|
335 |
by (simp add: Some_image_these_eq Sup_B SUP_B Sup_None SUP_None SUP_union Sup_union_distrib cong del: strong_SUP_cong) |
49190 | 336 |
qed |
337 |
qed |
|
338 |
qed |
|
339 |
||
60679 | 340 |
instance option :: (complete_linorder) complete_linorder .. |
49190 | 341 |
|
342 |
||
343 |
no_notation |
|
344 |
bot ("\<bottom>") and |
|
345 |
top ("\<top>") and |
|
346 |
inf (infixl "\<sqinter>" 70) and |
|
347 |
sup (infixl "\<squnion>" 65) and |
|
348 |
Inf ("\<Sqinter>_" [900] 900) and |
|
349 |
Sup ("\<Squnion>_" [900] 900) |
|
350 |
||
61955
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
wenzelm
parents:
60679
diff
changeset
|
351 |
no_syntax |
49190 | 352 |
"_INF1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_./ _)" [0, 10] 10) |
353 |
"_INF" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10) |
|
354 |
"_SUP1" :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_./ _)" [0, 10] 10) |
|
355 |
"_SUP" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10) |
|
356 |
||
357 |
end |