| author | wenzelm | 
| Fri, 12 Jan 2018 15:27:46 +0100 | |
| changeset 67408 | 4a4c14b24800 | 
| parent 63233 | e53830948c4f | 
| permissions | -rw-r--r-- | 
| 24608 | 1  | 
(* Title: HOL/Induct/Common_Patterns.thy  | 
2  | 
Author: Makarius  | 
|
3  | 
*)  | 
|
4  | 
||
| 60530 | 5  | 
section \<open>Common patterns of induction\<close>  | 
| 24608 | 6  | 
|
7  | 
theory Common_Patterns  | 
|
8  | 
imports Main  | 
|
9  | 
begin  | 
|
10  | 
||
| 60530 | 11  | 
text \<open>  | 
| 24608 | 12  | 
The subsequent Isar proof schemes illustrate common proof patterns  | 
| 63167 | 13  | 
supported by the generic \<open>induct\<close> method.  | 
| 24608 | 14  | 
|
15  | 
To demonstrate variations on statement (goal) structure we refer to  | 
|
16  | 
  the induction rule of Peano natural numbers: @{thm nat.induct
 | 
|
17  | 
[no_vars]}, which is the simplest case of datatype induction. We  | 
|
18  | 
shall also see more complex (mutual) datatype inductions involving  | 
|
19  | 
several rules. Working with inductive predicates is similar, but  | 
|
20  | 
involves explicit facts about membership, instead of implicit  | 
|
21  | 
syntactic typing.  | 
|
| 60530 | 22  | 
\<close>  | 
| 24608 | 23  | 
|
24  | 
||
| 60530 | 25  | 
subsection \<open>Variations on statement structure\<close>  | 
| 24608 | 26  | 
|
| 60530 | 27  | 
subsubsection \<open>Local facts and parameters\<close>  | 
| 24608 | 28  | 
|
| 60530 | 29  | 
text \<open>  | 
| 24608 | 30  | 
Augmenting a problem by additional facts and locally fixed variables  | 
31  | 
is a bread-and-butter method in many applications. This is where  | 
|
| 63167 | 32  | 
unwieldy object-level \<open>\<forall>\<close> and \<open>\<longrightarrow>\<close> used to occur in  | 
33  | 
the past. The \<open>induct\<close> method works with primary means of  | 
|
| 24608 | 34  | 
the proof language instead.  | 
| 60530 | 35  | 
\<close>  | 
| 24608 | 36  | 
|
37  | 
lemma  | 
|
38  | 
fixes n :: nat  | 
|
39  | 
and x :: 'a  | 
|
40  | 
assumes "A n x"  | 
|
| 60530 | 41  | 
shows "P n x" using \<open>A n x\<close>  | 
| 24608 | 42  | 
proof (induct n arbitrary: x)  | 
43  | 
case 0  | 
|
| 60530 | 44  | 
note prem = \<open>A 0 x\<close>  | 
| 62315 | 45  | 
show "P 0 x" \<proof>  | 
| 24608 | 46  | 
next  | 
47  | 
case (Suc n)  | 
|
| 60530 | 48  | 
note hyp = \<open>\<And>x. A n x \<Longrightarrow> P n x\<close>  | 
49  | 
and prem = \<open>A (Suc n) x\<close>  | 
|
| 62315 | 50  | 
show "P (Suc n) x" \<proof>  | 
| 24608 | 51  | 
qed  | 
52  | 
||
53  | 
||
| 60530 | 54  | 
subsubsection \<open>Local definitions\<close>  | 
| 24608 | 55  | 
|
| 60530 | 56  | 
text \<open>  | 
| 24608 | 57  | 
Here the idea is to turn sub-expressions of the problem into a  | 
58  | 
defined induction variable. This is often accompanied with fixing  | 
|
59  | 
of auxiliary parameters in the original expression, otherwise the  | 
|
60  | 
induction step would refer invariably to particular entities. This  | 
|
61  | 
combination essentially expresses a partially abstracted  | 
|
62  | 
representation of inductive expressions.  | 
|
| 60530 | 63  | 
\<close>  | 
| 24608 | 64  | 
|
65  | 
lemma  | 
|
66  | 
fixes a :: "'a \<Rightarrow> nat"  | 
|
67  | 
assumes "A (a x)"  | 
|
| 60530 | 68  | 
shows "P (a x)" using \<open>A (a x)\<close>  | 
| 24608 | 69  | 
proof (induct n \<equiv> "a x" arbitrary: x)  | 
70  | 
case 0  | 
|
| 60530 | 71  | 
note prem = \<open>A (a x)\<close>  | 
72  | 
and defn = \<open>0 = a x\<close>  | 
|
| 62315 | 73  | 
show "P (a x)" \<proof>  | 
| 24608 | 74  | 
next  | 
75  | 
case (Suc n)  | 
|
| 60530 | 76  | 
note hyp = \<open>\<And>x. n = a x \<Longrightarrow> A (a x) \<Longrightarrow> P (a x)\<close>  | 
77  | 
and prem = \<open>A (a x)\<close>  | 
|
78  | 
and defn = \<open>Suc n = a x\<close>  | 
|
| 62315 | 79  | 
show "P (a x)" \<proof>  | 
| 24608 | 80  | 
qed  | 
81  | 
||
| 60530 | 82  | 
text \<open>  | 
| 63167 | 83  | 
Observe how the local definition \<open>n = a x\<close> recurs in the  | 
84  | 
inductive cases as \<open>0 = a x\<close> and \<open>Suc n = a x\<close>,  | 
|
| 24608 | 85  | 
according to underlying induction rule.  | 
| 60530 | 86  | 
\<close>  | 
| 24608 | 87  | 
|
88  | 
||
| 60530 | 89  | 
subsubsection \<open>Simple simultaneous goals\<close>  | 
| 24608 | 90  | 
|
| 60530 | 91  | 
text \<open>  | 
| 24608 | 92  | 
The most basic simultaneous induction operates on several goals  | 
93  | 
one-by-one, where each case refers to induction hypotheses that are  | 
|
94  | 
duplicated according to the number of conclusions.  | 
|
| 60530 | 95  | 
\<close>  | 
| 24608 | 96  | 
|
97  | 
lemma  | 
|
98  | 
fixes n :: nat  | 
|
99  | 
shows "P n" and "Q n"  | 
|
100  | 
proof (induct n)  | 
|
101  | 
case 0 case 1  | 
|
| 62315 | 102  | 
show "P 0" \<proof>  | 
| 24608 | 103  | 
next  | 
104  | 
case 0 case 2  | 
|
| 62315 | 105  | 
show "Q 0" \<proof>  | 
| 24608 | 106  | 
next  | 
107  | 
case (Suc n) case 1  | 
|
| 60530 | 108  | 
note hyps = \<open>P n\<close> \<open>Q n\<close>  | 
| 62315 | 109  | 
show "P (Suc n)" \<proof>  | 
| 24608 | 110  | 
next  | 
111  | 
case (Suc n) case 2  | 
|
| 60530 | 112  | 
note hyps = \<open>P n\<close> \<open>Q n\<close>  | 
| 62315 | 113  | 
show "Q (Suc n)" \<proof>  | 
| 24608 | 114  | 
qed  | 
115  | 
||
| 60530 | 116  | 
text \<open>  | 
| 24608 | 117  | 
The split into subcases may be deferred as follows -- this is  | 
118  | 
particularly relevant for goal statements with local premises.  | 
|
| 60530 | 119  | 
\<close>  | 
| 24608 | 120  | 
|
121  | 
lemma  | 
|
122  | 
fixes n :: nat  | 
|
123  | 
shows "A n \<Longrightarrow> P n"  | 
|
124  | 
and "B n \<Longrightarrow> Q n"  | 
|
125  | 
proof (induct n)  | 
|
126  | 
case 0  | 
|
127  | 
  {
 | 
|
128  | 
case 1  | 
|
| 60530 | 129  | 
note \<open>A 0\<close>  | 
| 62315 | 130  | 
show "P 0" \<proof>  | 
| 24608 | 131  | 
next  | 
132  | 
case 2  | 
|
| 60530 | 133  | 
note \<open>B 0\<close>  | 
| 62315 | 134  | 
show "Q 0" \<proof>  | 
| 24608 | 135  | 
}  | 
136  | 
next  | 
|
137  | 
case (Suc n)  | 
|
| 60530 | 138  | 
note \<open>A n \<Longrightarrow> P n\<close>  | 
139  | 
and \<open>B n \<Longrightarrow> Q n\<close>  | 
|
| 24608 | 140  | 
  {
 | 
141  | 
case 1  | 
|
| 60530 | 142  | 
note \<open>A (Suc n)\<close>  | 
| 62315 | 143  | 
show "P (Suc n)" \<proof>  | 
| 24608 | 144  | 
next  | 
145  | 
case 2  | 
|
| 60530 | 146  | 
note \<open>B (Suc n)\<close>  | 
| 62315 | 147  | 
show "Q (Suc n)" \<proof>  | 
| 24608 | 148  | 
}  | 
149  | 
qed  | 
|
150  | 
||
151  | 
||
| 60530 | 152  | 
subsubsection \<open>Compound simultaneous goals\<close>  | 
| 24608 | 153  | 
|
| 60530 | 154  | 
text \<open>  | 
| 24608 | 155  | 
The following pattern illustrates the slightly more complex  | 
156  | 
situation of simultaneous goals with individual local assumptions.  | 
|
157  | 
In compound simultaneous statements like this, local assumptions  | 
|
| 63167 | 158  | 
need to be included into each goal, using \<open>\<Longrightarrow>\<close> of the Pure  | 
| 24608 | 159  | 
framework. In contrast, local parameters do not require separate  | 
| 63167 | 160  | 
\<open>\<And>\<close> prefixes here, but may be moved into the common context  | 
| 24608 | 161  | 
of the whole statement.  | 
| 60530 | 162  | 
\<close>  | 
| 24608 | 163  | 
|
164  | 
lemma  | 
|
165  | 
fixes n :: nat  | 
|
166  | 
and x :: 'a  | 
|
167  | 
and y :: 'b  | 
|
168  | 
shows "A n x \<Longrightarrow> P n x"  | 
|
169  | 
and "B n y \<Longrightarrow> Q n y"  | 
|
170  | 
proof (induct n arbitrary: x y)  | 
|
171  | 
case 0  | 
|
172  | 
  {
 | 
|
173  | 
case 1  | 
|
| 60530 | 174  | 
note prem = \<open>A 0 x\<close>  | 
| 62315 | 175  | 
show "P 0 x" \<proof>  | 
| 24608 | 176  | 
}  | 
177  | 
  {
 | 
|
178  | 
case 2  | 
|
| 60530 | 179  | 
note prem = \<open>B 0 y\<close>  | 
| 62315 | 180  | 
show "Q 0 y" \<proof>  | 
| 24608 | 181  | 
}  | 
182  | 
next  | 
|
183  | 
case (Suc n)  | 
|
| 60530 | 184  | 
note hyps = \<open>\<And>x. A n x \<Longrightarrow> P n x\<close> \<open>\<And>y. B n y \<Longrightarrow> Q n y\<close>  | 
| 62315 | 185  | 
then have some_intermediate_result \<proof>  | 
| 24608 | 186  | 
  {
 | 
187  | 
case 1  | 
|
| 60530 | 188  | 
note prem = \<open>A (Suc n) x\<close>  | 
| 62315 | 189  | 
show "P (Suc n) x" \<proof>  | 
| 24608 | 190  | 
}  | 
191  | 
  {
 | 
|
192  | 
case 2  | 
|
| 60530 | 193  | 
note prem = \<open>B (Suc n) y\<close>  | 
| 62315 | 194  | 
show "Q (Suc n) y" \<proof>  | 
| 24608 | 195  | 
}  | 
196  | 
qed  | 
|
197  | 
||
| 60530 | 198  | 
text \<open>  | 
| 63167 | 199  | 
Here \<open>induct\<close> provides again nested cases with numbered  | 
| 24608 | 200  | 
sub-cases, which allows to share common parts of the body context.  | 
201  | 
In typical applications, there could be a long intermediate proof of  | 
|
202  | 
general consequences of the induction hypotheses, before finishing  | 
|
203  | 
each conclusion separately.  | 
|
| 60530 | 204  | 
\<close>  | 
| 24608 | 205  | 
|
206  | 
||
| 60530 | 207  | 
subsection \<open>Multiple rules\<close>  | 
| 24608 | 208  | 
|
| 60530 | 209  | 
text \<open>  | 
| 24608 | 210  | 
Multiple induction rules emerge from mutual definitions of  | 
| 63167 | 211  | 
datatypes, inductive predicates, functions etc. The \<open>induct\<close> method accepts replicated arguments (with \<open>and\<close>  | 
| 24608 | 212  | 
separator), corresponding to each projection of the induction  | 
213  | 
principle.  | 
|
214  | 
||
215  | 
The goal statement essentially follows the same arrangement,  | 
|
216  | 
although it might be subdivided into simultaneous sub-problems as  | 
|
217  | 
before!  | 
|
| 60530 | 218  | 
\<close>  | 
| 24608 | 219  | 
|
| 58310 | 220  | 
datatype foo = Foo1 nat | Foo2 bar  | 
| 24608 | 221  | 
and bar = Bar1 bool | Bar2 bazar  | 
222  | 
and bazar = Bazar foo  | 
|
223  | 
||
| 60530 | 224  | 
text \<open>  | 
| 24608 | 225  | 
  The pack of induction rules for this datatype is: @{thm [display]
 | 
| 58270 | 226  | 
foo.induct [no_vars] bar.induct [no_vars] bazar.induct [no_vars]}  | 
| 24608 | 227  | 
|
228  | 
This corresponds to the following basic proof pattern:  | 
|
| 60530 | 229  | 
\<close>  | 
| 24608 | 230  | 
|
231  | 
lemma  | 
|
232  | 
fixes foo :: foo  | 
|
233  | 
and bar :: bar  | 
|
234  | 
and bazar :: bazar  | 
|
235  | 
shows "P foo"  | 
|
236  | 
and "Q bar"  | 
|
237  | 
and "R bazar"  | 
|
238  | 
proof (induct foo and bar and bazar)  | 
|
239  | 
case (Foo1 n)  | 
|
| 62315 | 240  | 
show "P (Foo1 n)" \<proof>  | 
| 24608 | 241  | 
next  | 
242  | 
case (Foo2 bar)  | 
|
| 60530 | 243  | 
note \<open>Q bar\<close>  | 
| 62315 | 244  | 
show "P (Foo2 bar)" \<proof>  | 
| 24608 | 245  | 
next  | 
246  | 
case (Bar1 b)  | 
|
| 62315 | 247  | 
show "Q (Bar1 b)" \<proof>  | 
| 24608 | 248  | 
next  | 
249  | 
case (Bar2 bazar)  | 
|
| 60530 | 250  | 
note \<open>R bazar\<close>  | 
| 62315 | 251  | 
show "Q (Bar2 bazar)" \<proof>  | 
| 24608 | 252  | 
next  | 
253  | 
case (Bazar foo)  | 
|
| 60530 | 254  | 
note \<open>P foo\<close>  | 
| 62315 | 255  | 
show "R (Bazar foo)" \<proof>  | 
| 24608 | 256  | 
qed  | 
257  | 
||
| 60530 | 258  | 
text \<open>  | 
| 24608 | 259  | 
This can be combined with the previous techniques for compound  | 
260  | 
statements, e.g.\ like this.  | 
|
| 60530 | 261  | 
\<close>  | 
| 24608 | 262  | 
|
263  | 
lemma  | 
|
264  | 
fixes x :: 'a and y :: 'b and z :: 'c  | 
|
265  | 
and foo :: foo  | 
|
266  | 
and bar :: bar  | 
|
267  | 
and bazar :: bazar  | 
|
268  | 
shows  | 
|
269  | 
"A x foo \<Longrightarrow> P x foo"  | 
|
270  | 
and  | 
|
271  | 
"B1 y bar \<Longrightarrow> Q1 y bar"  | 
|
272  | 
"B2 y bar \<Longrightarrow> Q2 y bar"  | 
|
273  | 
and  | 
|
274  | 
"C1 z bazar \<Longrightarrow> R1 z bazar"  | 
|
275  | 
"C2 z bazar \<Longrightarrow> R2 z bazar"  | 
|
276  | 
"C3 z bazar \<Longrightarrow> R3 z bazar"  | 
|
277  | 
proof (induct foo and bar and bazar arbitrary: x and y and z)  | 
|
278  | 
oops  | 
|
279  | 
||
280  | 
||
| 60530 | 281  | 
subsection \<open>Inductive predicates\<close>  | 
| 24608 | 282  | 
|
| 60530 | 283  | 
text \<open>  | 
| 24608 | 284  | 
The most basic form of induction involving predicates (or sets)  | 
285  | 
essentially eliminates a given membership fact.  | 
|
| 60530 | 286  | 
\<close>  | 
| 24608 | 287  | 
|
288  | 
inductive Even :: "nat \<Rightarrow> bool" where  | 
|
289  | 
zero: "Even 0"  | 
|
| 63233 | 290  | 
| double: "Even (2 * n)" if "Even n" for n  | 
| 24608 | 291  | 
|
292  | 
lemma  | 
|
293  | 
assumes "Even n"  | 
|
294  | 
shows "P n"  | 
|
295  | 
using assms  | 
|
296  | 
proof induct  | 
|
297  | 
case zero  | 
|
| 62315 | 298  | 
show "P 0" \<proof>  | 
| 24608 | 299  | 
next  | 
300  | 
case (double n)  | 
|
| 60530 | 301  | 
note \<open>Even n\<close> and \<open>P n\<close>  | 
| 62315 | 302  | 
show "P (2 * n)" \<proof>  | 
| 24608 | 303  | 
qed  | 
304  | 
||
| 60530 | 305  | 
text \<open>  | 
| 24608 | 306  | 
Alternatively, an initial rule statement may be proven as follows,  | 
307  | 
performing ``in-situ'' elimination with explicit rule specification.  | 
|
| 60530 | 308  | 
\<close>  | 
| 24608 | 309  | 
|
310  | 
lemma "Even n \<Longrightarrow> P n"  | 
|
311  | 
proof (induct rule: Even.induct)  | 
|
312  | 
oops  | 
|
313  | 
||
| 60530 | 314  | 
text \<open>  | 
| 24608 | 315  | 
Simultaneous goals do not introduce anything new.  | 
| 60530 | 316  | 
\<close>  | 
| 24608 | 317  | 
|
318  | 
lemma  | 
|
319  | 
assumes "Even n"  | 
|
320  | 
shows "P1 n" and "P2 n"  | 
|
321  | 
using assms  | 
|
322  | 
proof induct  | 
|
323  | 
case zero  | 
|
324  | 
  {
 | 
|
325  | 
case 1  | 
|
| 62315 | 326  | 
show "P1 0" \<proof>  | 
| 24608 | 327  | 
next  | 
328  | 
case 2  | 
|
| 62315 | 329  | 
show "P2 0" \<proof>  | 
| 24608 | 330  | 
}  | 
331  | 
next  | 
|
332  | 
case (double n)  | 
|
| 60530 | 333  | 
note \<open>Even n\<close> and \<open>P1 n\<close> and \<open>P2 n\<close>  | 
| 24608 | 334  | 
  {
 | 
335  | 
case 1  | 
|
| 62315 | 336  | 
show "P1 (2 * n)" \<proof>  | 
| 24608 | 337  | 
next  | 
338  | 
case 2  | 
|
| 62315 | 339  | 
show "P2 (2 * n)" \<proof>  | 
| 24608 | 340  | 
}  | 
341  | 
qed  | 
|
342  | 
||
| 60530 | 343  | 
text \<open>  | 
| 24608 | 344  | 
Working with mutual rules requires special care in composing the  | 
345  | 
statement as a two-level conjunction, using lists of propositions  | 
|
| 63167 | 346  | 
separated by \<open>and\<close>. For example:  | 
| 60530 | 347  | 
\<close>  | 
| 24608 | 348  | 
|
349  | 
inductive Evn :: "nat \<Rightarrow> bool" and Odd :: "nat \<Rightarrow> bool"  | 
|
350  | 
where  | 
|
351  | 
zero: "Evn 0"  | 
|
| 63233 | 352  | 
| succ_Evn: "Odd (Suc n)" if "Evn n" for n  | 
353  | 
| succ_Odd: "Evn (Suc n)" if "Odd n" for n  | 
|
| 24608 | 354  | 
|
| 24609 | 355  | 
lemma  | 
356  | 
"Evn n \<Longrightarrow> P1 n"  | 
|
357  | 
"Evn n \<Longrightarrow> P2 n"  | 
|
358  | 
"Evn n \<Longrightarrow> P3 n"  | 
|
359  | 
and  | 
|
360  | 
"Odd n \<Longrightarrow> Q1 n"  | 
|
361  | 
"Odd n \<Longrightarrow> Q2 n"  | 
|
| 24608 | 362  | 
proof (induct rule: Evn_Odd.inducts)  | 
363  | 
case zero  | 
|
| 62315 | 364  | 
  { case 1 show "P1 0" \<proof> }
 | 
365  | 
  { case 2 show "P2 0" \<proof> }
 | 
|
366  | 
  { case 3 show "P3 0" \<proof> }
 | 
|
| 24608 | 367  | 
next  | 
368  | 
case (succ_Evn n)  | 
|
| 60530 | 369  | 
note \<open>Evn n\<close> and \<open>P1 n\<close> \<open>P2 n\<close> \<open>P3 n\<close>  | 
| 62315 | 370  | 
  { case 1 show "Q1 (Suc n)" \<proof> }
 | 
371  | 
  { case 2 show "Q2 (Suc n)" \<proof> }
 | 
|
| 24608 | 372  | 
next  | 
373  | 
case (succ_Odd n)  | 
|
| 60530 | 374  | 
note \<open>Odd n\<close> and \<open>Q1 n\<close> \<open>Q2 n\<close>  | 
| 62315 | 375  | 
  { case 1 show "P1 (Suc n)" \<proof> }
 | 
376  | 
  { case 2 show "P2 (Suc n)" \<proof> }
 | 
|
377  | 
  { case 3 show "P3 (Suc n)" \<proof> }
 | 
|
| 24608 | 378  | 
qed  | 
379  | 
||
| 
44164
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
380  | 
|
| 60530 | 381  | 
text \<open>  | 
| 
44164
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
382  | 
Cases and hypotheses in each case can be named explicitly.  | 
| 60530 | 383  | 
\<close>  | 
| 
44164
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
384  | 
|
| 
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
385  | 
inductive star :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" for r
 | 
| 
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
386  | 
where  | 
| 63233 | 387  | 
refl: "star r x x" for x  | 
388  | 
| step: "star r x z" if "r x y" and "star r y z" for x y z  | 
|
| 
44164
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
389  | 
|
| 60530 | 390  | 
text \<open>Underscores are replaced by the default name hyps:\<close>  | 
| 
44164
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
391  | 
|
| 53379 | 392  | 
lemmas star_induct = star.induct [case_names base step[r _ IH]]  | 
| 
44164
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
393  | 
|
| 
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
394  | 
lemma "star r x y \<Longrightarrow> star r y z \<Longrightarrow> star r x z"  | 
| 53379 | 395  | 
proof (induct rule: star_induct) print_cases  | 
396  | 
case base  | 
|
397  | 
then show ?case .  | 
|
| 
44164
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
398  | 
next  | 
| 53379 | 399  | 
case (step a b c) print_facts  | 
400  | 
from step.prems have "star r b z" by (rule step.IH)  | 
|
401  | 
with step.r show ?case by (rule star.step)  | 
|
| 
44164
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
402  | 
qed  | 
| 
 
238c5ea1e2ce
documented extended version of case_names attribute
 
nipkow 
parents: 
34915 
diff
changeset
 | 
403  | 
|
| 62390 | 404  | 
end  |