| author | wenzelm | 
| Thu, 08 Nov 2001 23:52:56 +0100 | |
| changeset 12106 | 4a8558dbb6a0 | 
| parent 11386 | cf8d81cf8034 | 
| child 12536 | e9a729259385 | 
| permissions | -rw-r--r-- | 
| 1461 | 1 | (* Title: ZF/Cardinal.ML | 
| 435 | 2 | ID: $Id$ | 
| 1461 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 435 | 4 | Copyright 1994 University of Cambridge | 
| 5 | ||
| 6 | Cardinals in Zermelo-Fraenkel Set Theory | |
| 7 | ||
| 8 | This theory does NOT assume the Axiom of Choice | |
| 9 | *) | |
| 10 | ||
| 11 | (*** The Schroeder-Bernstein Theorem -- see Davey & Priestly, page 106 ***) | |
| 12 | ||
| 13 | (** Lemma: Banach's Decomposition Theorem **) | |
| 14 | ||
| 5067 | 15 | Goal "bnd_mono(X, %W. X - g``(Y - f``W))"; | 
| 435 | 16 | by (rtac bnd_monoI 1); | 
| 17 | by (REPEAT (ares_tac [Diff_subset, subset_refl, Diff_mono, image_mono] 1)); | |
| 760 | 18 | qed "decomp_bnd_mono"; | 
| 435 | 19 | |
| 9907 | 20 | val [gfun] = goal (the_context ()) | 
| 1461 | 21 | "g: Y->X ==> \ | 
| 22 | \ g``(Y - f`` lfp(X, %W. X - g``(Y - f``W))) = \ | |
| 435 | 23 | \ X - lfp(X, %W. X - g``(Y - f``W)) "; | 
| 24 | by (res_inst_tac [("P", "%u. ?v = X-u")] 
 | |
| 10216 | 25 | (decomp_bnd_mono RS lfp_unfold RS ssubst) 1); | 
| 4091 | 26 | by (simp_tac (simpset() addsimps [subset_refl, double_complement, | 
| 1461 | 27 | gfun RS fun_is_rel RS image_subset]) 1); | 
| 760 | 28 | qed "Banach_last_equation"; | 
| 435 | 29 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5284diff
changeset | 30 | Goal "[| f: X->Y; g: Y->X |] ==> \ | 
| 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5284diff
changeset | 31 | \ EX XA XB YA YB. (XA Int XB = 0) & (XA Un XB = X) & \ | 
| 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5284diff
changeset | 32 | \ (YA Int YB = 0) & (YA Un YB = Y) & \ | 
| 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5284diff
changeset | 33 | \ f``XA=YA & g``YB=XB"; | 
| 435 | 34 | by (REPEAT | 
| 35 | (FIRSTGOAL | |
| 36 | (resolve_tac [refl, exI, conjI, Diff_disjoint, Diff_partition]))); | |
| 37 | by (rtac Banach_last_equation 3); | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5284diff
changeset | 38 | by (REPEAT (ares_tac [fun_is_rel, image_subset, lfp_subset] 1)); | 
| 760 | 39 | qed "decomposition"; | 
| 435 | 40 | |
| 9907 | 41 | val prems = goal (the_context ()) | 
| 435 | 42 | "[| f: inj(X,Y); g: inj(Y,X) |] ==> EX h. h: bij(X,Y)"; | 
| 43 | by (cut_facts_tac prems 1); | |
| 44 | by (cut_facts_tac [(prems RL [inj_is_fun]) MRS decomposition] 1); | |
| 4091 | 45 | by (blast_tac (claset() addSIs [restrict_bij,bij_disjoint_Un] | 
| 435 | 46 | addIs [bij_converse_bij]) 1); | 
| 47 | (* The instantiation of exI to "restrict(f,XA) Un converse(restrict(g,YB))" | |
| 48 | is forced by the context!! *) | |
| 760 | 49 | qed "schroeder_bernstein"; | 
| 435 | 50 | |
| 51 | ||
| 52 | (** Equipollence is an equivalence relation **) | |
| 53 | ||
| 5137 | 54 | Goalw [eqpoll_def] "f: bij(A,B) ==> A eqpoll B"; | 
| 845 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 55 | by (etac exI 1); | 
| 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 56 | qed "bij_imp_eqpoll"; | 
| 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 57 | |
| 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 58 | (*A eqpoll A*) | 
| 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 59 | bind_thm ("eqpoll_refl", id_bij RS bij_imp_eqpoll);
 | 
| 435 | 60 | |
| 5137 | 61 | Goalw [eqpoll_def] "X eqpoll Y ==> Y eqpoll X"; | 
| 4091 | 62 | by (blast_tac (claset() addIs [bij_converse_bij]) 1); | 
| 760 | 63 | qed "eqpoll_sym"; | 
| 435 | 64 | |
| 5067 | 65 | Goalw [eqpoll_def] | 
| 5137 | 66 | "[| X eqpoll Y; Y eqpoll Z |] ==> X eqpoll Z"; | 
| 4091 | 67 | by (blast_tac (claset() addIs [comp_bij]) 1); | 
| 760 | 68 | qed "eqpoll_trans"; | 
| 435 | 69 | |
| 70 | (** Le-pollence is a partial ordering **) | |
| 71 | ||
| 5137 | 72 | Goalw [lepoll_def] "X<=Y ==> X lepoll Y"; | 
| 437 | 73 | by (rtac exI 1); | 
| 74 | by (etac id_subset_inj 1); | |
| 760 | 75 | qed "subset_imp_lepoll"; | 
| 435 | 76 | |
| 1609 | 77 | bind_thm ("lepoll_refl", subset_refl RS subset_imp_lepoll);
 | 
| 78 | ||
| 79 | bind_thm ("le_imp_lepoll", le_imp_subset RS subset_imp_lepoll);
 | |
| 435 | 80 | |
| 5067 | 81 | Goalw [eqpoll_def, bij_def, lepoll_def] | 
| 5137 | 82 | "X eqpoll Y ==> X lepoll Y"; | 
| 2875 | 83 | by (Blast_tac 1); | 
| 760 | 84 | qed "eqpoll_imp_lepoll"; | 
| 435 | 85 | |
| 5067 | 86 | Goalw [lepoll_def] | 
| 5137 | 87 | "[| X lepoll Y; Y lepoll Z |] ==> X lepoll Z"; | 
| 4091 | 88 | by (blast_tac (claset() addIs [comp_inj]) 1); | 
| 760 | 89 | qed "lepoll_trans"; | 
| 435 | 90 | |
| 91 | (*Asymmetry law*) | |
| 5067 | 92 | Goalw [lepoll_def,eqpoll_def] | 
| 5137 | 93 | "[| X lepoll Y; Y lepoll X |] ==> X eqpoll Y"; | 
| 435 | 94 | by (REPEAT (etac exE 1)); | 
| 95 | by (rtac schroeder_bernstein 1); | |
| 96 | by (REPEAT (assume_tac 1)); | |
| 760 | 97 | qed "eqpollI"; | 
| 435 | 98 | |
| 5268 | 99 | val [major,minor] = Goal | 
| 435 | 100 | "[| X eqpoll Y; [| X lepoll Y; Y lepoll X |] ==> P |] ==> P"; | 
| 437 | 101 | by (rtac minor 1); | 
| 435 | 102 | by (REPEAT (resolve_tac [major, eqpoll_imp_lepoll, eqpoll_sym] 1)); | 
| 760 | 103 | qed "eqpollE"; | 
| 435 | 104 | |
| 5067 | 105 | Goal "X eqpoll Y <-> X lepoll Y & Y lepoll X"; | 
| 4091 | 106 | by (blast_tac (claset() addIs [eqpollI] addSEs [eqpollE]) 1); | 
| 760 | 107 | qed "eqpoll_iff"; | 
| 435 | 108 | |
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5143diff
changeset | 109 | Goalw [lepoll_def, inj_def] "A lepoll 0 ==> A = 0"; | 
| 4091 | 110 | by (blast_tac (claset() addDs [apply_type]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 111 | qed "lepoll_0_is_0"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 112 | |
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 113 | (*0 lepoll Y*) | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 114 | bind_thm ("empty_lepollI", empty_subsetI RS subset_imp_lepoll);
 | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 115 | |
| 5067 | 116 | Goal "A lepoll 0 <-> A=0"; | 
| 4091 | 117 | by (blast_tac (claset() addIs [lepoll_0_is_0, lepoll_refl]) 1); | 
| 1609 | 118 | qed "lepoll_0_iff"; | 
| 119 | ||
| 5067 | 120 | Goalw [lepoll_def] | 
| 5137 | 121 | "[| A lepoll B; C lepoll D; B Int D = 0 |] ==> A Un C lepoll B Un D"; | 
| 4091 | 122 | by (blast_tac (claset() addIs [inj_disjoint_Un]) 1); | 
| 1709 | 123 | qed "Un_lepoll_Un"; | 
| 124 | ||
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 125 | (*A eqpoll 0 ==> A=0*) | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 126 | bind_thm ("eqpoll_0_is_0",  eqpoll_imp_lepoll RS lepoll_0_is_0);
 | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 127 | |
| 5067 | 128 | Goal "A eqpoll 0 <-> A=0"; | 
| 4091 | 129 | by (blast_tac (claset() addIs [eqpoll_0_is_0, eqpoll_refl]) 1); | 
| 1609 | 130 | qed "eqpoll_0_iff"; | 
| 131 | ||
| 5067 | 132 | Goalw [eqpoll_def] | 
| 9099 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 133 | "[| A eqpoll B; C eqpoll D; A Int C = 0; B Int D = 0 |] \ | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 134 | \ ==> A Un C eqpoll B Un D"; | 
| 4091 | 135 | by (blast_tac (claset() addIs [bij_disjoint_Un]) 1); | 
| 1609 | 136 | qed "eqpoll_disjoint_Un"; | 
| 137 | ||
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 138 | |
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 139 | (*** lesspoll: contributions by Krzysztof Grabczewski ***) | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 140 | |
| 5137 | 141 | Goalw [lesspoll_def] "A lesspoll B ==> A lepoll B"; | 
| 2875 | 142 | by (Blast_tac 1); | 
| 1609 | 143 | qed "lesspoll_imp_lepoll"; | 
| 144 | ||
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 145 | Goalw [lepoll_def] "[| A lepoll B; well_ord(B,r) |] ==> EX s. well_ord(A,s)"; | 
| 4091 | 146 | by (blast_tac (claset() addIs [well_ord_rvimage]) 1); | 
| 1609 | 147 | qed "lepoll_well_ord"; | 
| 148 | ||
| 5067 | 149 | Goalw [lesspoll_def] "A lepoll B <-> A lesspoll B | A eqpoll B"; | 
| 4091 | 150 | by (blast_tac (claset() addSIs [eqpollI] addSEs [eqpollE]) 1); | 
| 1609 | 151 | qed "lepoll_iff_leqpoll"; | 
| 152 | ||
| 5067 | 153 | Goalw [inj_def, surj_def] | 
| 5137 | 154 | "[| f : inj(A, succ(m)); f ~: surj(A, succ(m)) |] ==> EX f. f:inj(A,m)"; | 
| 4091 | 155 | by (safe_tac (claset_of ZF.thy)); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 156 | by (swap_res_tac [exI] 1); | 
| 6068 | 157 | by (res_inst_tac [("a", "lam z:A. if f`z=m then y else f`z")] CollectI 1);
 | 
| 4091 | 158 | by (best_tac (claset() addSIs [if_type RS lam_type] | 
| 3016 | 159 | addEs [apply_funtype RS succE]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 160 | (*Proving it's injective*) | 
| 5137 | 161 | by (Asm_simp_tac 1); | 
| 4091 | 162 | by (blast_tac (claset() delrules [equalityI]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 163 | qed "inj_not_surj_succ"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 164 | |
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 165 | (** Variations on transitivity **) | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 166 | |
| 5067 | 167 | Goalw [lesspoll_def] | 
| 5137 | 168 | "[| X lesspoll Y; Y lesspoll Z |] ==> X lesspoll Z"; | 
| 4091 | 169 | by (blast_tac (claset() addSEs [eqpollE] addIs [eqpollI, lepoll_trans]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 170 | qed "lesspoll_trans"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 171 | |
| 5067 | 172 | Goalw [lesspoll_def] | 
| 5137 | 173 | "[| X lesspoll Y; Y lepoll Z |] ==> X lesspoll Z"; | 
| 4091 | 174 | by (blast_tac (claset() addSEs [eqpollE] addIs [eqpollI, lepoll_trans]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 175 | qed "lesspoll_lepoll_lesspoll"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 176 | |
| 5067 | 177 | Goalw [lesspoll_def] | 
| 5137 | 178 | "[| X lesspoll Y; Z lepoll X |] ==> Z lesspoll Y"; | 
| 4091 | 179 | by (blast_tac (claset() addSEs [eqpollE] addIs [eqpollI, lepoll_trans]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 180 | qed "lepoll_lesspoll_lesspoll"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 181 | |
| 435 | 182 | |
| 183 | (** LEAST -- the least number operator [from HOL/Univ.ML] **) | |
| 184 | ||
| 5268 | 185 | val [premP,premOrd,premNot] = Goalw [Least_def] | 
| 3840 | 186 | "[| P(i); Ord(i); !!x. x<i ==> ~P(x) |] ==> (LEAST x. P(x)) = i"; | 
| 435 | 187 | by (rtac the_equality 1); | 
| 4091 | 188 | by (blast_tac (claset() addSIs [premP,premOrd,premNot]) 1); | 
| 435 | 189 | by (REPEAT (etac conjE 1)); | 
| 437 | 190 | by (etac (premOrd RS Ord_linear_lt) 1); | 
| 4091 | 191 | by (ALLGOALS (blast_tac (claset() addSIs [premP] addSDs [premNot]))); | 
| 760 | 192 | qed "Least_equality"; | 
| 435 | 193 | |
| 5137 | 194 | Goal "[| P(i); Ord(i) |] ==> P(LEAST x. P(x))"; | 
| 435 | 195 | by (etac rev_mp 1); | 
| 196 | by (trans_ind_tac "i" [] 1); | |
| 197 | by (rtac impI 1); | |
| 198 | by (rtac classical 1); | |
| 2033 | 199 | by (EVERY1 [stac Least_equality, assume_tac, assume_tac]); | 
| 435 | 200 | by (assume_tac 2); | 
| 4091 | 201 | by (blast_tac (claset() addSEs [ltE]) 1); | 
| 760 | 202 | qed "LeastI"; | 
| 435 | 203 | |
| 204 | (*Proof is almost identical to the one above!*) | |
| 5137 | 205 | Goal "[| P(i); Ord(i) |] ==> (LEAST x. P(x)) le i"; | 
| 435 | 206 | by (etac rev_mp 1); | 
| 207 | by (trans_ind_tac "i" [] 1); | |
| 208 | by (rtac impI 1); | |
| 209 | by (rtac classical 1); | |
| 2033 | 210 | by (EVERY1 [stac Least_equality, assume_tac, assume_tac]); | 
| 435 | 211 | by (etac le_refl 2); | 
| 4091 | 212 | by (blast_tac (claset() addEs [ltE] addIs [leI, ltI, lt_trans1]) 1); | 
| 760 | 213 | qed "Least_le"; | 
| 435 | 214 | |
| 215 | (*LEAST really is the smallest*) | |
| 5137 | 216 | Goal "[| P(i); i < (LEAST x. P(x)) |] ==> Q"; | 
| 437 | 217 | by (rtac (Least_le RSN (2,lt_trans2) RS lt_irrefl) 1); | 
| 435 | 218 | by (REPEAT (eresolve_tac [asm_rl, ltE] 1)); | 
| 760 | 219 | qed "less_LeastE"; | 
| 435 | 220 | |
| 1031 | 221 | (*Easier to apply than LeastI: conclusion has only one occurrence of P*) | 
| 9907 | 222 | val prems = goal (the_context ()) | 
| 9211 | 223 | "[| P(i); Ord(i); !!j. P(j) ==> Q(j) |] ==> Q(LEAST j. P(j))"; | 
| 224 | by (resolve_tac prems 1); | |
| 225 | by (rtac LeastI 1); | |
| 226 | by (resolve_tac prems 1); | |
| 227 | by (resolve_tac prems 1) ; | |
| 228 | qed "LeastI2"; | |
| 845 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 229 | |
| 437 | 230 | (*If there is no such P then LEAST is vacuously 0*) | 
| 5067 | 231 | Goalw [Least_def] | 
| 5137 | 232 | "[| ~ (EX i. Ord(i) & P(i)) |] ==> (LEAST x. P(x)) = 0"; | 
| 437 | 233 | by (rtac the_0 1); | 
| 2875 | 234 | by (Blast_tac 1); | 
| 760 | 235 | qed "Least_0"; | 
| 437 | 236 | |
| 5067 | 237 | Goal "Ord(LEAST x. P(x))"; | 
| 437 | 238 | by (excluded_middle_tac "EX i. Ord(i) & P(i)" 1); | 
| 4152 | 239 | by Safe_tac; | 
| 437 | 240 | by (rtac (Least_le RS ltE) 2); | 
| 435 | 241 | by (REPEAT_SOME assume_tac); | 
| 437 | 242 | by (etac (Least_0 RS ssubst) 1); | 
| 243 | by (rtac Ord_0 1); | |
| 760 | 244 | qed "Ord_Least"; | 
| 435 | 245 | |
| 246 | ||
| 247 | (** Basic properties of cardinals **) | |
| 248 | ||
| 249 | (*Not needed for simplification, but helpful below*) | |
| 5268 | 250 | val prems = Goal "(!!y. P(y) <-> Q(y)) ==> (LEAST x. P(x)) = (LEAST x. Q(x))"; | 
| 4091 | 251 | by (simp_tac (simpset() addsimps prems) 1); | 
| 760 | 252 | qed "Least_cong"; | 
| 435 | 253 | |
| 1609 | 254 | (*Need AC to get X lepoll Y ==> |X| le |Y|; see well_ord_lepoll_imp_Card_le | 
| 255 | Converse also requires AC, but see well_ord_cardinal_eqE*) | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5137diff
changeset | 256 | Goalw [eqpoll_def,cardinal_def] "X eqpoll Y ==> |X| = |Y|"; | 
| 437 | 257 | by (rtac Least_cong 1); | 
| 4091 | 258 | by (blast_tac (claset() addIs [comp_bij, bij_converse_bij]) 1); | 
| 760 | 259 | qed "cardinal_cong"; | 
| 435 | 260 | |
| 261 | (*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*) | |
| 5067 | 262 | Goalw [cardinal_def] | 
| 5137 | 263 | "well_ord(A,r) ==> |A| eqpoll A"; | 
| 437 | 264 | by (rtac LeastI 1); | 
| 265 | by (etac Ord_ordertype 2); | |
| 845 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 266 | by (etac (ordermap_bij RS bij_converse_bij RS bij_imp_eqpoll) 1); | 
| 760 | 267 | qed "well_ord_cardinal_eqpoll"; | 
| 435 | 268 | |
| 1609 | 269 | (* Ord(A) ==> |A| eqpoll A *) | 
| 803 
4c8333ab3eae
changed useless "qed" calls for lemmas back to uses of "result",
 lcp parents: 
792diff
changeset | 270 | bind_thm ("Ord_cardinal_eqpoll", well_ord_Memrel RS well_ord_cardinal_eqpoll);
 | 
| 435 | 271 | |
| 5268 | 272 | Goal "[| well_ord(X,r); well_ord(Y,s); |X| = |Y| |] ==> X eqpoll Y"; | 
| 437 | 273 | by (rtac (eqpoll_sym RS eqpoll_trans) 1); | 
| 274 | by (etac well_ord_cardinal_eqpoll 1); | |
| 4091 | 275 | by (asm_simp_tac (simpset() addsimps [well_ord_cardinal_eqpoll]) 1); | 
| 760 | 276 | qed "well_ord_cardinal_eqE"; | 
| 435 | 277 | |
| 5268 | 278 | Goal "[| well_ord(X,r); well_ord(Y,s) |] ==> |X| = |Y| <-> X eqpoll Y"; | 
| 4091 | 279 | by (blast_tac (claset() addIs [cardinal_cong, well_ord_cardinal_eqE]) 1); | 
| 1609 | 280 | qed "well_ord_cardinal_eqpoll_iff"; | 
| 281 | ||
| 435 | 282 | |
| 283 | (** Observations from Kunen, page 28 **) | |
| 284 | ||
| 5137 | 285 | Goalw [cardinal_def] "Ord(i) ==> |i| le i"; | 
| 437 | 286 | by (etac (eqpoll_refl RS Least_le) 1); | 
| 760 | 287 | qed "Ord_cardinal_le"; | 
| 435 | 288 | |
| 5137 | 289 | Goalw [Card_def] "Card(K) ==> |K| = K"; | 
| 437 | 290 | by (etac sym 1); | 
| 760 | 291 | qed "Card_cardinal_eq"; | 
| 435 | 292 | |
| 845 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 293 | (* Could replace the ~(j eqpoll i) by ~(i lepoll j) *) | 
| 5268 | 294 | val prems = Goalw [Card_def,cardinal_def] | 
| 435 | 295 | "[| Ord(i); !!j. j<i ==> ~(j eqpoll i) |] ==> Card(i)"; | 
| 2033 | 296 | by (stac Least_equality 1); | 
| 435 | 297 | by (REPEAT (ares_tac ([refl,eqpoll_refl]@prems) 1)); | 
| 760 | 298 | qed "CardI"; | 
| 435 | 299 | |
| 5147 
825877190618
More tidying and removal of "\!\!... from Goal commands
 paulson parents: 
5143diff
changeset | 300 | Goalw [Card_def, cardinal_def] "Card(i) ==> Ord(i)"; | 
| 437 | 301 | by (etac ssubst 1); | 
| 302 | by (rtac Ord_Least 1); | |
| 760 | 303 | qed "Card_is_Ord"; | 
| 435 | 304 | |
| 5137 | 305 | Goal "Card(K) ==> K le |K|"; | 
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 306 | by (asm_simp_tac (simpset() addsimps [Card_is_Ord, Card_cardinal_eq]) 1); | 
| 782 
200a16083201
added bind_thm for theorems defined by "standard ..."
 clasohm parents: 
765diff
changeset | 307 | qed "Card_cardinal_le"; | 
| 765 | 308 | |
| 5067 | 309 | Goalw [cardinal_def] "Ord(|A|)"; | 
| 437 | 310 | by (rtac Ord_Least 1); | 
| 760 | 311 | qed "Ord_cardinal"; | 
| 435 | 312 | |
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 313 | Addsimps [Ord_cardinal]; | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 314 | AddSIs [Ord_cardinal]; | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 315 | |
| 845 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 316 | (*The cardinals are the initial ordinals*) | 
| 5067 | 317 | Goal "Card(K) <-> Ord(K) & (ALL j. j<K --> ~ j eqpoll K)"; | 
| 4091 | 318 | by (safe_tac (claset() addSIs [CardI, Card_is_Ord])); | 
| 2875 | 319 | by (Blast_tac 2); | 
| 845 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 320 | by (rewrite_goals_tac [Card_def, cardinal_def]); | 
| 1461 | 321 | by (rtac less_LeastE 1); | 
| 322 | by (etac subst 2); | |
| 845 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 323 | by (ALLGOALS assume_tac); | 
| 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 324 | qed "Card_iff_initial"; | 
| 
825e96b87ef7
Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
 lcp parents: 
833diff
changeset | 325 | |
| 5137 | 326 | Goalw [lesspoll_def] "[| Card(a); i<a |] ==> i lesspoll a"; | 
| 1609 | 327 | by (dresolve_tac [Card_iff_initial RS iffD1] 1); | 
| 4091 | 328 | by (blast_tac (claset() addSIs [leI RS le_imp_lepoll]) 1); | 
| 1609 | 329 | qed "lt_Card_imp_lesspoll"; | 
| 330 | ||
| 5067 | 331 | Goal "Card(0)"; | 
| 437 | 332 | by (rtac (Ord_0 RS CardI) 1); | 
| 4091 | 333 | by (blast_tac (claset() addSEs [ltE]) 1); | 
| 760 | 334 | qed "Card_0"; | 
| 437 | 335 | |
| 9907 | 336 | val [premK,premL] = goal (the_context ()) | 
| 522 | 337 | "[| Card(K); Card(L) |] ==> Card(K Un L)"; | 
| 338 | by (rtac ([premK RS Card_is_Ord, premL RS Card_is_Ord] MRS Ord_linear_le) 1); | |
| 339 | by (asm_simp_tac | |
| 4091 | 340 | (simpset() addsimps [premL, le_imp_subset, subset_Un_iff RS iffD1]) 1); | 
| 522 | 341 | by (asm_simp_tac | 
| 4091 | 342 | (simpset() addsimps [premK, le_imp_subset, subset_Un_iff2 RS iffD1]) 1); | 
| 760 | 343 | qed "Card_Un"; | 
| 522 | 344 | |
| 345 | (*Infinite unions of cardinals? See Devlin, Lemma 6.7, page 98*) | |
| 346 | ||
| 5067 | 347 | Goalw [cardinal_def] "Card(|A|)"; | 
| 437 | 348 | by (excluded_middle_tac "EX i. Ord(i) & i eqpoll A" 1); | 
| 349 | by (etac (Least_0 RS ssubst) 1 THEN rtac Card_0 1); | |
| 350 | by (rtac (Ord_Least RS CardI) 1); | |
| 4152 | 351 | by Safe_tac; | 
| 437 | 352 | by (rtac less_LeastE 1); | 
| 353 | by (assume_tac 2); | |
| 354 | by (etac eqpoll_trans 1); | |
| 355 | by (REPEAT (ares_tac [LeastI] 1)); | |
| 760 | 356 | qed "Card_cardinal"; | 
| 437 | 357 | |
| 435 | 358 | (*Kunen's Lemma 10.5*) | 
| 5137 | 359 | Goal "[| |i| le j; j le i |] ==> |j| = |i|"; | 
| 437 | 360 | by (rtac (eqpollI RS cardinal_cong) 1); | 
| 1609 | 361 | by (etac le_imp_lepoll 1); | 
| 437 | 362 | by (rtac lepoll_trans 1); | 
| 1609 | 363 | by (etac le_imp_lepoll 2); | 
| 437 | 364 | by (rtac (eqpoll_sym RS eqpoll_imp_lepoll) 1); | 
| 365 | by (rtac Ord_cardinal_eqpoll 1); | |
| 435 | 366 | by (REPEAT (eresolve_tac [ltE, Ord_succD] 1)); | 
| 760 | 367 | qed "cardinal_eq_lemma"; | 
| 435 | 368 | |
| 5137 | 369 | Goal "i le j ==> |i| le |j|"; | 
| 435 | 370 | by (res_inst_tac [("i","|i|"),("j","|j|")] Ord_linear_le 1);
 | 
| 371 | by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI])); | |
| 437 | 372 | by (rtac cardinal_eq_lemma 1); | 
| 373 | by (assume_tac 2); | |
| 374 | by (etac le_trans 1); | |
| 375 | by (etac ltE 1); | |
| 376 | by (etac Ord_cardinal_le 1); | |
| 760 | 377 | qed "cardinal_mono"; | 
| 435 | 378 | |
| 379 | (*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*) | |
| 5137 | 380 | Goal "[| |i| < |j|; Ord(i); Ord(j) |] ==> i < j"; | 
| 437 | 381 | by (rtac Ord_linear2 1); | 
| 435 | 382 | by (REPEAT_SOME assume_tac); | 
| 437 | 383 | by (etac (lt_trans2 RS lt_irrefl) 1); | 
| 384 | by (etac cardinal_mono 1); | |
| 760 | 385 | qed "cardinal_lt_imp_lt"; | 
| 435 | 386 | |
| 5137 | 387 | Goal "[| |i| < K; Ord(i); Card(K) |] ==> i < K"; | 
| 4091 | 388 | by (asm_simp_tac (simpset() addsimps | 
| 1461 | 389 | [cardinal_lt_imp_lt, Card_is_Ord, Card_cardinal_eq]) 1); | 
| 760 | 390 | qed "Card_lt_imp_lt"; | 
| 435 | 391 | |
| 5137 | 392 | Goal "[| Ord(i); Card(K) |] ==> (|i| < K) <-> (i < K)"; | 
| 4091 | 393 | by (blast_tac (claset() addIs [Card_lt_imp_lt, Ord_cardinal_le RS lt_trans1]) 1); | 
| 760 | 394 | qed "Card_lt_iff"; | 
| 484 | 395 | |
| 5137 | 396 | Goal "[| Ord(i); Card(K) |] ==> (K le |i|) <-> (K le i)"; | 
| 4091 | 397 | by (asm_simp_tac (simpset() addsimps | 
| 1461 | 398 | [Card_lt_iff, Card_is_Ord, Ord_cardinal, | 
| 399 | not_lt_iff_le RS iff_sym]) 1); | |
| 760 | 400 | qed "Card_le_iff"; | 
| 484 | 401 | |
| 1609 | 402 | (*Can use AC or finiteness to discharge first premise*) | 
| 5268 | 403 | Goal "[| well_ord(B,r); A lepoll B |] ==> |A| le |B|"; | 
| 1609 | 404 | by (res_inst_tac [("i","|A|"),("j","|B|")] Ord_linear_le 1);
 | 
| 405 | by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI])); | |
| 406 | by (rtac (eqpollI RS cardinal_cong) 1 THEN assume_tac 1); | |
| 407 | by (rtac lepoll_trans 1); | |
| 408 | by (rtac (well_ord_cardinal_eqpoll RS eqpoll_sym RS eqpoll_imp_lepoll) 1); | |
| 409 | by (assume_tac 1); | |
| 410 | by (etac (le_imp_lepoll RS lepoll_trans) 1); | |
| 411 | by (rtac eqpoll_imp_lepoll 1); | |
| 412 | by (rewtac lepoll_def); | |
| 413 | by (etac exE 1); | |
| 414 | by (rtac well_ord_cardinal_eqpoll 1); | |
| 415 | by (etac well_ord_rvimage 1); | |
| 416 | by (assume_tac 1); | |
| 417 | qed "well_ord_lepoll_imp_Card_le"; | |
| 418 | ||
| 419 | ||
| 5137 | 420 | Goal "[| A lepoll i; Ord(i) |] ==> |A| le i"; | 
| 1623 | 421 | by (rtac le_trans 1); | 
| 422 | by (etac (well_ord_Memrel RS well_ord_lepoll_imp_Card_le) 1); | |
| 423 | by (assume_tac 1); | |
| 424 | by (etac Ord_cardinal_le 1); | |
| 1609 | 425 | qed "lepoll_cardinal_le"; | 
| 426 | ||
| 9099 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 427 | Goal "[| A lepoll i; Ord(i) |] ==> |A| eqpoll A"; | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 428 | by (blast_tac (claset() addIs [lepoll_cardinal_le, well_ord_Memrel, | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 429 | well_ord_cardinal_eqpoll] | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 430 | addSDs [lepoll_well_ord]) 1); | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 431 | qed "lepoll_Ord_imp_eqpoll"; | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 432 | |
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 433 | Goalw [lesspoll_def] | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 434 | "[| A lesspoll i; Ord(i) |] ==> |A| eqpoll A"; | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 435 | by (blast_tac (claset() addIs [lepoll_Ord_imp_eqpoll]) 1); | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 436 | qed "lesspoll_imp_eqpoll"; | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 437 | |
| 435 | 438 | |
| 439 | (*** The finite cardinals ***) | |
| 440 | ||
| 5067 | 441 | Goalw [lepoll_def, inj_def] | 
| 5137 | 442 | "[| cons(u,A) lepoll cons(v,B); u~:A; v~:B |] ==> A lepoll B"; | 
| 4152 | 443 | by Safe_tac; | 
| 6068 | 444 | by (res_inst_tac [("x", "lam x:A. if f`x=v then f`u else f`x")] exI 1);
 | 
| 437 | 445 | by (rtac CollectI 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 446 | (*Proving it's in the function space A->B*) | 
| 437 | 447 | by (rtac (if_type RS lam_type) 1); | 
| 9173 | 448 | by (blast_tac (claset() addDs [apply_funtype]) 1); | 
| 449 | by (blast_tac (claset() addSEs [mem_irrefl] addDs [apply_funtype]) 1); | |
| 435 | 450 | (*Proving it's injective*) | 
| 5137 | 451 | by (Asm_simp_tac 1); | 
| 2875 | 452 | by (Blast_tac 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 453 | qed "cons_lepoll_consD"; | 
| 435 | 454 | |
| 5268 | 455 | Goal "[| cons(u,A) eqpoll cons(v,B); u~:A; v~:B |] ==> A eqpoll B"; | 
| 4091 | 456 | by (asm_full_simp_tac (simpset() addsimps [eqpoll_iff]) 1); | 
| 457 | by (blast_tac (claset() addIs [cons_lepoll_consD]) 1); | |
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 458 | qed "cons_eqpoll_consD"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 459 | |
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 460 | (*Lemma suggested by Mike Fourman*) | 
| 5137 | 461 | Goalw [succ_def] "succ(m) lepoll succ(n) ==> m lepoll n"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 462 | by (etac cons_lepoll_consD 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 463 | by (REPEAT (rtac mem_not_refl 1)); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 464 | qed "succ_lepoll_succD"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 465 | |
| 5268 | 466 | Goal "m:nat ==> ALL n: nat. m lepoll n --> m le n"; | 
| 9683 | 467 | by (nat_ind_tac "m" [] 1); (*induct_tac isn't available yet*) | 
| 4091 | 468 | by (blast_tac (claset() addSIs [nat_0_le]) 1); | 
| 437 | 469 | by (rtac ballI 1); | 
| 435 | 470 | by (eres_inst_tac [("n","n")] natE 1);
 | 
| 9683 | 471 | by (asm_simp_tac (simpset() addsimps [lepoll_def, inj_def]) 1); | 
| 4091 | 472 | by (blast_tac (claset() addSIs [succ_leI] addSDs [succ_lepoll_succD]) 1); | 
| 6112 | 473 | qed_spec_mp "nat_lepoll_imp_le"; | 
| 435 | 474 | |
| 5268 | 475 | Goal "[| m:nat; n: nat |] ==> m eqpoll n <-> m = n"; | 
| 437 | 476 | by (rtac iffI 1); | 
| 4091 | 477 | by (asm_simp_tac (simpset() addsimps [eqpoll_refl]) 2); | 
| 478 | by (blast_tac (claset() addIs [nat_lepoll_imp_le, le_anti_sym] | |
| 9173 | 479 | addSEs [eqpollE]) 1); | 
| 760 | 480 | qed "nat_eqpoll_iff"; | 
| 435 | 481 | |
| 1609 | 482 | (*The object of all this work: every natural number is a (finite) cardinal*) | 
| 5067 | 483 | Goalw [Card_def,cardinal_def] | 
| 5137 | 484 | "n: nat ==> Card(n)"; | 
| 2033 | 485 | by (stac Least_equality 1); | 
| 435 | 486 | by (REPEAT_FIRST (ares_tac [eqpoll_refl, nat_into_Ord, refl])); | 
| 4091 | 487 | by (asm_simp_tac (simpset() addsimps [lt_nat_in_nat RS nat_eqpoll_iff]) 1); | 
| 488 | by (blast_tac (claset() addSEs [lt_irrefl]) 1); | |
| 760 | 489 | qed "nat_into_Card"; | 
| 435 | 490 | |
| 491 | (*Part of Kunen's Lemma 10.6*) | |
| 5137 | 492 | Goal "[| succ(n) lepoll n; n:nat |] ==> P"; | 
| 437 | 493 | by (rtac (nat_lepoll_imp_le RS lt_irrefl) 1); | 
| 435 | 494 | by (REPEAT (ares_tac [nat_succI] 1)); | 
| 760 | 495 | qed "succ_lepoll_natE"; | 
| 435 | 496 | |
| 11386 | 497 | Goalw [lesspoll_def] "n \\<in> nat ==> n lesspoll nat"; | 
| 498 | by (fast_tac (claset() addSEs [Ord_nat RSN (2, ltI) RS leI RS le_imp_lepoll, | |
| 499 | eqpoll_sym RS eqpoll_imp_lepoll] | |
| 500 | addIs [Ord_nat RSN (2, nat_succI RS ltI) RS leI | |
| 501 | RS le_imp_lepoll RS lepoll_trans RS succ_lepoll_natE]) 1); | |
| 502 | qed "n_lesspoll_nat"; | |
| 503 | ||
| 504 | Goalw [lepoll_def, eqpoll_def] | |
| 505 | "[| n \\<in> nat; nat lepoll X |] ==> \\<exists>Y. Y \\<subseteq> X & n eqpoll Y"; | |
| 506 | by (fast_tac (subset_cs addSDs [Ord_nat RSN (2, OrdmemD) RSN (2, restrict_inj)] | |
| 507 | addSEs [restrict_bij, inj_is_fun RS fun_is_rel RS image_subset]) 1); | |
| 508 | qed "nat_lepoll_imp_ex_eqpoll_n"; | |
| 509 | ||
| 435 | 510 | |
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 511 | (** lepoll, lesspoll and natural numbers **) | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 512 | |
| 5067 | 513 | Goalw [lesspoll_def] | 
| 9099 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 514 | "[| A lepoll m; m:nat |] ==> A lesspoll succ(m)"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 515 | by (rtac conjI 1); | 
| 4091 | 516 | by (blast_tac (claset() addIs [subset_imp_lepoll RSN (2,lepoll_trans)]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 517 | by (rtac notI 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 518 | by (dresolve_tac [eqpoll_sym RS eqpoll_imp_lepoll] 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 519 | by (dtac lepoll_trans 1 THEN assume_tac 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 520 | by (etac succ_lepoll_natE 1 THEN assume_tac 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 521 | qed "lepoll_imp_lesspoll_succ"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 522 | |
| 5067 | 523 | Goalw [lesspoll_def, lepoll_def, eqpoll_def, bij_def] | 
| 9099 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 524 | "[| A lesspoll succ(m); m:nat |] ==> A lepoll m"; | 
| 3736 
39ee3d31cfbc
Much tidying including step_tac -> clarify_tac or safe_tac; sometimes
 paulson parents: 
3016diff
changeset | 525 | by (Clarify_tac 1); | 
| 4091 | 526 | by (blast_tac (claset() addSIs [inj_not_surj_succ]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 527 | qed "lesspoll_succ_imp_lepoll"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 528 | |
| 5137 | 529 | Goal "m:nat ==> A lesspoll succ(m) <-> A lepoll m"; | 
| 4091 | 530 | by (blast_tac (claset() addSIs [lepoll_imp_lesspoll_succ, | 
| 9099 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 531 | lesspoll_succ_imp_lepoll]) 1); | 
| 1031 | 532 | qed "lesspoll_succ_iff"; | 
| 533 | ||
| 9099 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 534 | Goal "[| A lepoll succ(m); m:nat |] ==> A lepoll m | A eqpoll succ(m)"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 535 | by (rtac disjCI 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 536 | by (rtac lesspoll_succ_imp_lepoll 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 537 | by (assume_tac 2); | 
| 4091 | 538 | by (asm_simp_tac (simpset() addsimps [lesspoll_def]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 539 | qed "lepoll_succ_disj"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 540 | |
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 541 | Goalw [lesspoll_def] "[| A lesspoll i; Ord(i) |] ==> |A| < i"; | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 542 | by (Clarify_tac 1); | 
| 8183 | 543 | by (ftac lepoll_cardinal_le 1); | 
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 544 | by (assume_tac 1); | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 545 | by (blast_tac (claset() addIs [well_ord_Memrel, | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 546 | well_ord_cardinal_eqpoll RS eqpoll_sym] | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 547 | addDs [lepoll_well_ord] | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 548 | addSEs [leE]) 1); | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 549 | qed "lesspoll_cardinal_lt"; | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 550 | |
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 551 | |
| 435 | 552 | (*** The first infinite cardinal: Omega, or nat ***) | 
| 553 | ||
| 554 | (*This implies Kunen's Lemma 10.6*) | |
| 5137 | 555 | Goal "[| n<i; n:nat |] ==> ~ i lepoll n"; | 
| 437 | 556 | by (rtac notI 1); | 
| 435 | 557 | by (rtac succ_lepoll_natE 1 THEN assume_tac 2); | 
| 558 | by (rtac lepoll_trans 1 THEN assume_tac 2); | |
| 437 | 559 | by (etac ltE 1); | 
| 435 | 560 | by (REPEAT (ares_tac [Ord_succ_subsetI RS subset_imp_lepoll] 1)); | 
| 760 | 561 | qed "lt_not_lepoll"; | 
| 435 | 562 | |
| 5137 | 563 | Goal "[| Ord(i); n:nat |] ==> i eqpoll n <-> i=n"; | 
| 437 | 564 | by (rtac iffI 1); | 
| 4091 | 565 | by (asm_simp_tac (simpset() addsimps [eqpoll_refl]) 2); | 
| 435 | 566 | by (rtac Ord_linear_lt 1); | 
| 567 | by (REPEAT_SOME (eresolve_tac [asm_rl, nat_into_Ord])); | |
| 568 | by (etac (lt_nat_in_nat RS nat_eqpoll_iff RS iffD1) 1 THEN | |
| 569 | REPEAT (assume_tac 1)); | |
| 570 | by (rtac (lt_not_lepoll RS notE) 1 THEN (REPEAT (assume_tac 1))); | |
| 437 | 571 | by (etac eqpoll_imp_lepoll 1); | 
| 760 | 572 | qed "Ord_nat_eqpoll_iff"; | 
| 435 | 573 | |
| 5067 | 574 | Goalw [Card_def,cardinal_def] "Card(nat)"; | 
| 2033 | 575 | by (stac Least_equality 1); | 
| 437 | 576 | by (REPEAT_FIRST (ares_tac [eqpoll_refl, Ord_nat, refl])); | 
| 577 | by (etac ltE 1); | |
| 4091 | 578 | by (asm_simp_tac (simpset() addsimps [eqpoll_iff, lt_not_lepoll, ltI]) 1); | 
| 760 | 579 | qed "Card_nat"; | 
| 435 | 580 | |
| 437 | 581 | (*Allows showing that |i| is a limit cardinal*) | 
| 5137 | 582 | Goal "nat le i ==> nat le |i|"; | 
| 437 | 583 | by (rtac (Card_nat RS Card_cardinal_eq RS subst) 1); | 
| 584 | by (etac cardinal_mono 1); | |
| 760 | 585 | qed "nat_le_cardinal"; | 
| 437 | 586 | |
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 587 | |
| 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 588 | (*** Towards Cardinal Arithmetic ***) | 
| 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 589 | (** Congruence laws for successor, cardinal addition and multiplication **) | 
| 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 590 | |
| 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 591 | (*Congruence law for cons under equipollence*) | 
| 5067 | 592 | Goalw [lepoll_def] | 
| 5137 | 593 | "[| A lepoll B; b ~: B |] ==> cons(a,A) lepoll cons(b,B)"; | 
| 4152 | 594 | by Safe_tac; | 
| 6068 | 595 | by (res_inst_tac [("x", "lam y: cons(a,A). if y=a then b else f`y")] exI 1);
 | 
| 596 | by (res_inst_tac [("d","%z. if z:B then converse(f)`z else a")] 
 | |
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 597 | lam_injective 1); | 
| 4091 | 598 | by (asm_simp_tac (simpset() addsimps [inj_is_fun RS apply_type, cons_iff] | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 599 | setloop etac consE') 1); | 
| 6176 
707b6f9859d2
tidied, with left_inverse & right_inverse as default simprules
 paulson parents: 
6112diff
changeset | 600 | by (asm_simp_tac (simpset() addsimps [inj_is_fun RS apply_type] | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 601 | setloop etac consE') 1); | 
| 760 | 602 | qed "cons_lepoll_cong"; | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 603 | |
| 5268 | 604 | Goal "[| A eqpoll B; a ~: A; b ~: B |] ==> cons(a,A) eqpoll cons(b,B)"; | 
| 4091 | 605 | by (asm_full_simp_tac (simpset() addsimps [eqpoll_iff, cons_lepoll_cong]) 1); | 
| 760 | 606 | qed "cons_eqpoll_cong"; | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 607 | |
| 5268 | 608 | Goal "[| a ~: A; b ~: B |] ==> \ | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 609 | \ cons(a,A) lepoll cons(b,B) <-> A lepoll B"; | 
| 4091 | 610 | by (blast_tac (claset() addIs [cons_lepoll_cong, cons_lepoll_consD]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 611 | qed "cons_lepoll_cons_iff"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 612 | |
| 5268 | 613 | Goal "[| a ~: A; b ~: B |] ==> \ | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 614 | \ cons(a,A) eqpoll cons(b,B) <-> A eqpoll B"; | 
| 4091 | 615 | by (blast_tac (claset() addIs [cons_eqpoll_cong, cons_eqpoll_consD]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 616 | qed "cons_eqpoll_cons_iff"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 617 | |
| 5067 | 618 | Goalw [succ_def] "{a} eqpoll 1";
 | 
| 4091 | 619 | by (blast_tac (claset() addSIs [eqpoll_refl RS cons_eqpoll_cong]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 620 | qed "singleton_eqpoll_1"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 621 | |
| 5067 | 622 | Goal "|{a}| = 1";
 | 
| 1609 | 623 | by (resolve_tac [singleton_eqpoll_1 RS cardinal_cong RS trans] 1); | 
| 4091 | 624 | by (simp_tac (simpset() addsimps [nat_into_Card RS Card_cardinal_eq]) 1); | 
| 1609 | 625 | qed "cardinal_singleton"; | 
| 626 | ||
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 627 | (*Congruence law for succ under equipollence*) | 
| 5067 | 628 | Goalw [succ_def] | 
| 5137 | 629 | "A eqpoll B ==> succ(A) eqpoll succ(B)"; | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 630 | by (REPEAT (ares_tac [cons_eqpoll_cong, mem_not_refl] 1)); | 
| 760 | 631 | qed "succ_eqpoll_cong"; | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 632 | |
| 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 633 | (*Congruence law for + under equipollence*) | 
| 5067 | 634 | Goalw [eqpoll_def] | 
| 5137 | 635 | "[| A eqpoll C; B eqpoll D |] ==> A+B eqpoll C+D"; | 
| 4091 | 636 | by (blast_tac (claset() addSIs [sum_bij]) 1); | 
| 760 | 637 | qed "sum_eqpoll_cong"; | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 638 | |
| 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 639 | (*Congruence law for * under equipollence*) | 
| 5067 | 640 | Goalw [eqpoll_def] | 
| 5137 | 641 | "[| A eqpoll C; B eqpoll D |] ==> A*B eqpoll C*D"; | 
| 4091 | 642 | by (blast_tac (claset() addSIs [prod_bij]) 1); | 
| 760 | 643 | qed "prod_eqpoll_cong"; | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 644 | |
| 5067 | 645 | Goalw [eqpoll_def] | 
| 5137 | 646 | "[| f: inj(A,B); A Int B = 0 |] ==> A Un (B - range(f)) eqpoll B"; | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 647 | by (rtac exI 1); | 
| 6068 | 648 | by (res_inst_tac [("c", "%x. if x:A then f`x else x"),
 | 
| 649 |                   ("d", "%y. if y: range(f) then converse(f)`y else y")] 
 | |
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 650 | lam_bijective 1); | 
| 4091 | 651 | by (blast_tac (claset() addSIs [if_type, inj_is_fun RS apply_type]) 1); | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 652 | by (asm_simp_tac | 
| 5137 | 653 | (simpset() addsimps [inj_converse_fun RS apply_funtype]) 1); | 
| 6176 
707b6f9859d2
tidied, with left_inverse & right_inverse as default simprules
 paulson parents: 
6112diff
changeset | 654 | by (asm_simp_tac (simpset() addsimps [inj_is_fun RS apply_rangeI] | 
| 571 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 lcp parents: 
522diff
changeset | 655 | setloop etac UnE') 1); | 
| 6176 
707b6f9859d2
tidied, with left_inverse & right_inverse as default simprules
 paulson parents: 
6112diff
changeset | 656 | by (asm_simp_tac (simpset() addsimps [inj_converse_fun RS apply_funtype]) 1); | 
| 5265 
9d1d4c43c76d
Disjointness reasoning by  AddEs [equals0E, sym RS equals0E]
 paulson parents: 
5242diff
changeset | 657 | by (Blast_tac 1); | 
| 760 | 658 | qed "inj_disjoint_eqpoll"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 659 | |
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 660 | |
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 661 | (*** Lemmas by Krzysztof Grabczewski. New proofs using cons_lepoll_cons. | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 662 | Could easily generalise from succ to cons. ***) | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 663 | |
| 1055 
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
 lcp parents: 
1031diff
changeset | 664 | (*If A has at most n+1 elements and a:A then A-{a} has at most n.*)
 | 
| 5067 | 665 | Goalw [succ_def] | 
| 5137 | 666 |       "[| a:A;  A lepoll succ(n) |] ==> A - {a} lepoll n";
 | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 667 | by (rtac cons_lepoll_consD 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 668 | by (rtac mem_not_refl 3); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 669 | by (eresolve_tac [cons_Diff RS ssubst] 1); | 
| 4152 | 670 | by Safe_tac; | 
| 1055 
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
 lcp parents: 
1031diff
changeset | 671 | qed "Diff_sing_lepoll"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 672 | |
| 1055 
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
 lcp parents: 
1031diff
changeset | 673 | (*If A has at least n+1 elements then A-{a} has at least n.*)
 | 
| 5067 | 674 | Goalw [succ_def] | 
| 5137 | 675 |       "[| succ(n) lepoll A |] ==> n lepoll A - {a}";
 | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 676 | by (rtac cons_lepoll_consD 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 677 | by (rtac mem_not_refl 2); | 
| 2875 | 678 | by (Blast_tac 2); | 
| 4091 | 679 | by (blast_tac (claset() addIs [subset_imp_lepoll RSN (2, lepoll_trans)]) 1); | 
| 1055 
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
 lcp parents: 
1031diff
changeset | 680 | qed "lepoll_Diff_sing"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 681 | |
| 5137 | 682 | Goal "[| a:A; A eqpoll succ(n) |] ==> A - {a} eqpoll n";
 | 
| 4091 | 683 | by (blast_tac (claset() addSIs [eqpollI] addSEs [eqpollE] | 
| 1055 
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
 lcp parents: 
1031diff
changeset | 684 | addIs [Diff_sing_lepoll,lepoll_Diff_sing]) 1); | 
| 
67f5344605b7
Renamed diff_sing_lepoll, lepoll_diff_sing and diff_sing_eqpoll
 lcp parents: 
1031diff
changeset | 685 | qed "Diff_sing_eqpoll"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 686 | |
| 5137 | 687 | Goal "[| A lepoll 1; a:A |] ==> A = {a}";
 | 
| 7499 | 688 | by (ftac Diff_sing_lepoll 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 689 | by (assume_tac 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 690 | by (dtac lepoll_0_is_0 1); | 
| 4091 | 691 | by (blast_tac (claset() addEs [equalityE]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 692 | qed "lepoll_1_is_sing"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 693 | |
| 5067 | 694 | Goalw [lepoll_def] "A Un B lepoll A+B"; | 
| 6068 | 695 | by (res_inst_tac [("x",
 | 
| 696 | "lam x: A Un B. if x:A then Inl(x) else Inr(x)")] exI 1); | |
| 1609 | 697 | by (res_inst_tac [("d","%z. snd(z)")] lam_injective 1);
 | 
| 6068 | 698 | by (asm_full_simp_tac (simpset() addsimps [Inl_def, Inr_def]) 2); | 
| 699 | by Auto_tac; | |
| 1609 | 700 | qed "Un_lepoll_sum"; | 
| 701 | ||
| 5284 
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
 paulson parents: 
5268diff
changeset | 702 | Goal "[| well_ord(X,R); well_ord(Y,S) |] ==> EX T. well_ord(X Un Y, T)"; | 
| 
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
 paulson parents: 
5268diff
changeset | 703 | by (eresolve_tac [well_ord_radd RS (Un_lepoll_sum RS lepoll_well_ord)] 1); | 
| 
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
 paulson parents: 
5268diff
changeset | 704 | by (assume_tac 1); | 
| 
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
 paulson parents: 
5268diff
changeset | 705 | qed "well_ord_Un"; | 
| 
c77e9dd9bafc
Tidying of AC, especially of AC16_WO4 using a locale
 paulson parents: 
5268diff
changeset | 706 | |
| 5242 | 707 | (*Krzysztof Grabczewski*) | 
| 708 | Goalw [eqpoll_def] "A Int B = 0 ==> A Un B eqpoll A + B"; | |
| 6068 | 709 | by (res_inst_tac [("x","lam a:A Un B. if a:A then Inl(a) else Inr(a)")] exI 1);
 | 
| 5242 | 710 | by (res_inst_tac [("d","%z. case(%x. x, %x. x, z)")] lam_bijective 1);
 | 
| 5265 
9d1d4c43c76d
Disjointness reasoning by  AddEs [equals0E, sym RS equals0E]
 paulson parents: 
5242diff
changeset | 711 | by Auto_tac; | 
| 5242 | 712 | qed "disj_Un_eqpoll_sum"; | 
| 713 | ||
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 714 | |
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 715 | (*** Finite and infinite sets ***) | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 716 | |
| 5067 | 717 | Goalw [Finite_def] "Finite(0)"; | 
| 4091 | 718 | by (blast_tac (claset() addSIs [eqpoll_refl, nat_0I]) 1); | 
| 1609 | 719 | qed "Finite_0"; | 
| 720 | ||
| 5067 | 721 | Goalw [Finite_def] | 
| 5137 | 722 | "[| A lepoll n; n:nat |] ==> Finite(A)"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 723 | by (etac rev_mp 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 724 | by (etac nat_induct 1); | 
| 4091 | 725 | by (blast_tac (claset() addSDs [lepoll_0_is_0] addSIs [eqpoll_refl,nat_0I]) 1); | 
| 5137 | 726 | by (blast_tac (claset() addSDs [lepoll_succ_disj]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 727 | qed "lepoll_nat_imp_Finite"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 728 | |
| 5067 | 729 | Goalw [Finite_def] | 
| 9099 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 730 | "A lesspoll nat ==> Finite(A)"; | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 731 | by (blast_tac (claset() addDs [ltD, lesspoll_cardinal_lt, | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 732 | lesspoll_imp_eqpoll RS eqpoll_sym]) 1);; | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 733 | qed "lesspoll_nat_is_Finite"; | 
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 734 | |
| 
f713ef362ad0
new theorems lepoll_Ord_imp_eqpoll, lesspoll_imp_eqpoll, lesspoll_nat_is_Finite
 paulson parents: 
8183diff
changeset | 735 | Goalw [Finite_def] | 
| 5137 | 736 | "[| Y lepoll X; Finite(X) |] ==> Finite(Y)"; | 
| 3016 | 737 | by (blast_tac | 
| 4091 | 738 | (claset() addSEs [eqpollE] | 
| 3016 | 739 | addIs [lepoll_trans RS | 
| 740 | rewrite_rule [Finite_def] lepoll_nat_imp_Finite]) 1); | |
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 741 | qed "lepoll_Finite"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 742 | |
| 1623 | 743 | bind_thm ("subset_Finite", subset_imp_lepoll RS lepoll_Finite);
 | 
| 744 | ||
| 745 | bind_thm ("Finite_Diff", Diff_subset RS subset_Finite);
 | |
| 1609 | 746 | |
| 5137 | 747 | Goalw [Finite_def] "Finite(x) ==> Finite(cons(y,x))"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 748 | by (excluded_middle_tac "y:x" 1); | 
| 4091 | 749 | by (asm_simp_tac (simpset() addsimps [cons_absorb]) 2); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 750 | by (etac bexE 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 751 | by (rtac bexI 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 752 | by (etac nat_succI 2); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 753 | by (asm_simp_tac | 
| 4091 | 754 | (simpset() addsimps [succ_def, cons_eqpoll_cong, mem_not_refl]) 1); | 
| 1609 | 755 | qed "Finite_cons"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 756 | |
| 5137 | 757 | Goalw [succ_def] "Finite(x) ==> Finite(succ(x))"; | 
| 1609 | 758 | by (etac Finite_cons 1); | 
| 759 | qed "Finite_succ"; | |
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 760 | |
| 5067 | 761 | Goalw [Finite_def] | 
| 5137 | 762 | "[| Ord(i); ~ Finite(i) |] ==> nat le i"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 763 | by (eresolve_tac [Ord_nat RSN (2,Ord_linear2)] 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 764 | by (assume_tac 2); | 
| 4091 | 765 | by (blast_tac (claset() addSIs [eqpoll_refl] addSEs [ltE]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 766 | qed "nat_le_infinite_Ord"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 767 | |
| 5067 | 768 | Goalw [Finite_def, eqpoll_def] | 
| 5137 | 769 | "Finite(A) ==> EX r. well_ord(A,r)"; | 
| 4091 | 770 | by (blast_tac (claset() addIs [well_ord_rvimage, bij_is_inj, well_ord_Memrel, | 
| 3016 | 771 | nat_into_Ord]) 1); | 
| 1609 | 772 | qed "Finite_imp_well_ord"; | 
| 773 | ||
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 774 | |
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 775 | (*Krzysztof Grabczewski's proof that the converse of a finite, well-ordered | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 776 | set is well-ordered. Proofs simplified by lcp. *) | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 777 | |
| 5325 
f7a5e06adea1
Yet more removal of "goal" commands, especially "goal ZF.thy", so ZF.thy
 paulson parents: 
5284diff
changeset | 778 | Goal "n:nat ==> wf[n](converse(Memrel(n)))"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 779 | by (etac nat_induct 1); | 
| 4091 | 780 | by (blast_tac (claset() addIs [wf_onI]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 781 | by (rtac wf_onI 1); | 
| 9842 | 782 | by (asm_full_simp_tac (simpset() addsimps [wf_on_def, wf_def]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 783 | by (excluded_middle_tac "x:Z" 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 784 | by (dres_inst_tac [("x", "x")] bspec 2 THEN assume_tac 2);
 | 
| 4091 | 785 | by (blast_tac (claset() addEs [mem_irrefl, mem_asym]) 2); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 786 | by (dres_inst_tac [("x", "Z")] spec 1);
 | 
| 4091 | 787 | by (Blast.depth_tac (claset()) 4 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 788 | qed "nat_wf_on_converse_Memrel"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 789 | |
| 5137 | 790 | Goal "n:nat ==> well_ord(n,converse(Memrel(n)))"; | 
| 9907 | 791 | by (forward_tac [transfer (the_context ()) Ord_nat RS Ord_in_Ord RS well_ord_Memrel] 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 792 | by (rewtac well_ord_def); | 
| 4091 | 793 | by (blast_tac (claset() addSIs [tot_ord_converse, | 
| 3016 | 794 | nat_wf_on_converse_Memrel]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 795 | qed "nat_well_ord_converse_Memrel"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 796 | |
| 5268 | 797 | Goal "[| well_ord(A,r); \ | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 798 | \ well_ord(ordertype(A,r), converse(Memrel(ordertype(A, r)))) \ | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 799 | \ |] ==> well_ord(A,converse(r))"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 800 | by (resolve_tac [well_ord_Int_iff RS iffD1] 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 801 | by (forward_tac [ordermap_bij RS bij_is_inj RS well_ord_rvimage] 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 802 | by (assume_tac 1); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 803 | by (asm_full_simp_tac | 
| 4091 | 804 | (simpset() addsimps [rvimage_converse, converse_Int, converse_prod, | 
| 1461 | 805 | ordertype_ord_iso RS ord_iso_rvimage_eq]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 806 | qed "well_ord_converse"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 807 | |
| 5268 | 808 | Goal "[| well_ord(A,r); A eqpoll n; n:nat |] ==> ordertype(A,r)=n"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 809 | by (rtac (Ord_ordertype RS Ord_nat_eqpoll_iff RS iffD1) 1 THEN | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 810 | REPEAT (assume_tac 1)); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 811 | by (rtac eqpoll_trans 1 THEN assume_tac 2); | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 812 | by (rewtac eqpoll_def); | 
| 4091 | 813 | by (blast_tac (claset() addSIs [ordermap_bij RS bij_converse_bij]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 814 | qed "ordertype_eq_n"; | 
| 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 815 | |
| 5067 | 816 | Goalw [Finite_def] | 
| 5137 | 817 | "[| Finite(A); well_ord(A,r) |] ==> well_ord(A,converse(r))"; | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 818 | by (rtac well_ord_converse 1 THEN assume_tac 1); | 
| 4091 | 819 | by (blast_tac (claset() addDs [ordertype_eq_n] | 
| 3016 | 820 | addSIs [nat_well_ord_converse_Memrel]) 1); | 
| 833 
ba386650df2c
Proved cons_lepoll_consD, succ_lepoll_succD, cons_eqpoll_consD,
 lcp parents: 
803diff
changeset | 821 | qed "Finite_well_ord_converse"; | 
| 8127 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 822 | |
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 823 | Goalw [Finite_def] "n:nat ==> Finite(n)"; | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 824 | by (fast_tac (claset() addSIs [eqpoll_refl]) 1); | 
| 
68c6159440f1
new lemmas for Ntree recursor example;  more simprules;  more lemmas borrowed
 paulson parents: 
7499diff
changeset | 825 | qed "nat_into_Finite"; |