19819
|
1 |
(* Title: FOL/ex/Intro.thy
|
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
3 |
Copyright 1992 University of Cambridge
|
|
4 |
|
|
5 |
Derives some inference rules, illustrating the use of definitions.
|
|
6 |
*)
|
|
7 |
|
|
8 |
header {* Examples for the manual ``Introduction to Isabelle'' *}
|
|
9 |
|
|
10 |
theory Intro
|
|
11 |
imports FOL
|
|
12 |
begin
|
|
13 |
|
|
14 |
subsubsection {* Some simple backward proofs *}
|
|
15 |
|
|
16 |
lemma mythm: "P|P --> P"
|
|
17 |
apply (rule impI)
|
|
18 |
apply (rule disjE)
|
|
19 |
prefer 3 apply (assumption)
|
|
20 |
prefer 2 apply (assumption)
|
|
21 |
apply assumption
|
|
22 |
done
|
|
23 |
|
|
24 |
lemma "(P & Q) | R --> (P | R)"
|
|
25 |
apply (rule impI)
|
|
26 |
apply (erule disjE)
|
|
27 |
apply (drule conjunct1)
|
|
28 |
apply (rule disjI1)
|
|
29 |
apply (rule_tac [2] disjI2)
|
|
30 |
apply assumption+
|
|
31 |
done
|
|
32 |
|
|
33 |
(*Correct version, delaying use of "spec" until last*)
|
|
34 |
lemma "(ALL x y. P(x,y)) --> (ALL z w. P(w,z))"
|
|
35 |
apply (rule impI)
|
|
36 |
apply (rule allI)
|
|
37 |
apply (rule allI)
|
|
38 |
apply (drule spec)
|
|
39 |
apply (drule spec)
|
|
40 |
apply assumption
|
|
41 |
done
|
|
42 |
|
|
43 |
|
|
44 |
subsubsection {* Demonstration of @{text "fast"} *}
|
|
45 |
|
|
46 |
lemma "(EX y. ALL x. J(y,x) <-> ~J(x,x))
|
|
47 |
--> ~ (ALL x. EX y. ALL z. J(z,y) <-> ~ J(z,x))"
|
|
48 |
apply fast
|
|
49 |
done
|
|
50 |
|
|
51 |
|
|
52 |
lemma "ALL x. P(x,f(x)) <->
|
|
53 |
(EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"
|
|
54 |
apply fast
|
|
55 |
done
|
|
56 |
|
|
57 |
|
|
58 |
subsubsection {* Derivation of conjunction elimination rule *}
|
|
59 |
|
|
60 |
lemma
|
|
61 |
assumes major: "P&Q"
|
|
62 |
and minor: "[| P; Q |] ==> R"
|
|
63 |
shows R
|
|
64 |
apply (rule minor)
|
|
65 |
apply (rule major [THEN conjunct1])
|
|
66 |
apply (rule major [THEN conjunct2])
|
|
67 |
done
|
|
68 |
|
|
69 |
|
|
70 |
subsection {* Derived rules involving definitions *}
|
|
71 |
|
|
72 |
text {* Derivation of negation introduction *}
|
|
73 |
|
|
74 |
lemma
|
|
75 |
assumes "P ==> False"
|
|
76 |
shows "~ P"
|
|
77 |
apply (unfold not_def)
|
|
78 |
apply (rule impI)
|
41526
|
79 |
apply (rule assms)
|
19819
|
80 |
apply assumption
|
|
81 |
done
|
|
82 |
|
|
83 |
lemma
|
|
84 |
assumes major: "~P"
|
|
85 |
and minor: P
|
|
86 |
shows R
|
|
87 |
apply (rule FalseE)
|
|
88 |
apply (rule mp)
|
|
89 |
apply (rule major [unfolded not_def])
|
|
90 |
apply (rule minor)
|
|
91 |
done
|
|
92 |
|
|
93 |
text {* Alternative proof of the result above *}
|
|
94 |
lemma
|
|
95 |
assumes major: "~P"
|
|
96 |
and minor: P
|
|
97 |
shows R
|
|
98 |
apply (rule minor [THEN major [unfolded not_def, THEN mp, THEN FalseE]])
|
|
99 |
done
|
|
100 |
|
|
101 |
end
|