| 15013 |      1 | (*  Title:	HOL/Integ/Numeral.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright	1994  University of Cambridge
 | 
|  |      5 | *)
 | 
|  |      6 | 
 | 
|  |      7 | header{*Arithmetic on Binary Integers*}
 | 
|  |      8 | 
 | 
| 15131 |      9 | theory Numeral
 | 
| 15140 |     10 | imports IntDef
 | 
| 15131 |     11 | files "Tools/numeral_syntax.ML"
 | 
|  |     12 | begin
 | 
| 15013 |     13 | 
 | 
|  |     14 | text{* The file @{text numeral_syntax.ML} hides the constructors Pls and Min.
 | 
|  |     15 |    Only qualified access Numeral.Pls and Numeral.Min is allowed.
 | 
|  |     16 |    We do not hide Bit because we need the BIT infix syntax.*}
 | 
|  |     17 | 
 | 
|  |     18 | text{*This formalization defines binary arithmetic in terms of the integers
 | 
|  |     19 | rather than using a datatype. This avoids multiple representations (leading
 | 
|  |     20 | zeroes, etc.)  See @{text "ZF/Integ/twos-compl.ML"}, function @{text
 | 
|  |     21 | int_of_binary}, for the numerical interpretation.
 | 
|  |     22 | 
 | 
|  |     23 | The representation expects that @{text "(m mod 2)"} is 0 or 1,
 | 
|  |     24 | even if m is negative;
 | 
|  |     25 | For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus
 | 
|  |     26 | @{text "-5 = (-3)*2 + 1"}.
 | 
|  |     27 | *}
 | 
|  |     28 | 
 | 
|  |     29 | 
 | 
|  |     30 | typedef (Bin)
 | 
|  |     31 |   bin = "UNIV::int set"
 | 
|  |     32 |     by (auto)
 | 
|  |     33 | 
 | 
|  |     34 | constdefs
 | 
|  |     35 |   Pls :: "bin"
 | 
|  |     36 |    "Pls == Abs_Bin 0"
 | 
|  |     37 | 
 | 
|  |     38 |   Min :: "bin"
 | 
|  |     39 |    "Min == Abs_Bin (- 1)"
 | 
|  |     40 | 
 | 
|  |     41 |   Bit :: "[bin,bool] => bin"    (infixl "BIT" 90)
 | 
|  |     42 |    --{*That is, 2w+b*}
 | 
|  |     43 |    "w BIT b == Abs_Bin ((if b then 1 else 0) + Rep_Bin w + Rep_Bin w)"
 | 
|  |     44 | 
 | 
|  |     45 | 
 | 
|  |     46 | axclass
 | 
|  |     47 |   number < type  -- {* for numeric types: nat, int, real, \dots *}
 | 
|  |     48 | 
 | 
|  |     49 | consts
 | 
|  |     50 |   number_of :: "bin => 'a::number"
 | 
|  |     51 | 
 | 
|  |     52 | syntax
 | 
|  |     53 |   "_Numeral" :: "num_const => 'a"    ("_")
 | 
|  |     54 |   Numeral0 :: 'a
 | 
|  |     55 |   Numeral1 :: 'a
 | 
|  |     56 | 
 | 
|  |     57 | translations
 | 
|  |     58 |   "Numeral0" == "number_of Numeral.Pls"
 | 
|  |     59 |   "Numeral1" == "number_of (Numeral.Pls BIT True)"
 | 
|  |     60 | 
 | 
|  |     61 | 
 | 
|  |     62 | setup NumeralSyntax.setup
 | 
|  |     63 | 
 | 
|  |     64 | syntax (xsymbols)
 | 
|  |     65 |   "_square" :: "'a => 'a"  ("(_\<twosuperior>)" [1000] 999)
 | 
|  |     66 | syntax (HTML output)
 | 
|  |     67 |   "_square" :: "'a => 'a"  ("(_\<twosuperior>)" [1000] 999)
 | 
|  |     68 | syntax (output)
 | 
|  |     69 |   "_square" :: "'a => 'a"  ("(_ ^/ 2)" [81] 80)
 | 
|  |     70 | translations
 | 
|  |     71 |   "x\<twosuperior>" == "x^2"
 | 
|  |     72 |   "x\<twosuperior>" <= "x^(2::nat)"
 | 
|  |     73 | 
 | 
|  |     74 | 
 | 
|  |     75 | lemma Let_number_of [simp]: "Let (number_of v) f == f (number_of v)"
 | 
|  |     76 |   -- {* Unfold all @{text let}s involving constants *}
 | 
|  |     77 |   by (simp add: Let_def)
 | 
|  |     78 | 
 | 
|  |     79 | lemma Let_0 [simp]: "Let 0 f == f 0"
 | 
|  |     80 |   by (simp add: Let_def)
 | 
|  |     81 | 
 | 
|  |     82 | lemma Let_1 [simp]: "Let 1 f == f 1"
 | 
|  |     83 |   by (simp add: Let_def)
 | 
|  |     84 | 
 | 
|  |     85 | 
 | 
|  |     86 | constdefs
 | 
|  |     87 |   bin_succ  :: "bin=>bin"
 | 
|  |     88 |    "bin_succ w == Abs_Bin(Rep_Bin w + 1)"
 | 
|  |     89 | 
 | 
|  |     90 |   bin_pred  :: "bin=>bin"
 | 
|  |     91 |    "bin_pred w == Abs_Bin(Rep_Bin w - 1)"
 | 
|  |     92 | 
 | 
|  |     93 |   bin_minus  :: "bin=>bin"
 | 
|  |     94 |    "bin_minus w == Abs_Bin(- (Rep_Bin w))"
 | 
|  |     95 | 
 | 
|  |     96 |   bin_add  :: "[bin,bin]=>bin"
 | 
|  |     97 |    "bin_add v w == Abs_Bin(Rep_Bin v + Rep_Bin w)"
 | 
|  |     98 | 
 | 
|  |     99 |   bin_mult  :: "[bin,bin]=>bin"
 | 
|  |    100 |    "bin_mult v w == Abs_Bin(Rep_Bin v * Rep_Bin w)"
 | 
|  |    101 | 
 | 
|  |    102 | 
 | 
|  |    103 | lemmas Bin_simps = 
 | 
|  |    104 |        bin_succ_def bin_pred_def bin_minus_def bin_add_def bin_mult_def
 | 
|  |    105 |        Pls_def Min_def Bit_def Abs_Bin_inverse Rep_Bin_inverse Bin_def
 | 
|  |    106 | 
 | 
|  |    107 | text{*Removal of leading zeroes*}
 | 
|  |    108 | lemma Pls_0_eq [simp]: "Numeral.Pls BIT False = Numeral.Pls"
 | 
|  |    109 | by (simp add: Bin_simps)
 | 
|  |    110 | 
 | 
|  |    111 | lemma Min_1_eq [simp]: "Numeral.Min BIT True = Numeral.Min"
 | 
|  |    112 | by (simp add: Bin_simps)
 | 
|  |    113 | 
 | 
|  |    114 | subsection{*The Functions @{term bin_succ},  @{term bin_pred} and @{term bin_minus}*}
 | 
|  |    115 | 
 | 
|  |    116 | lemma bin_succ_Pls [simp]: "bin_succ Numeral.Pls = Numeral.Pls BIT True"
 | 
|  |    117 | by (simp add: Bin_simps) 
 | 
|  |    118 | 
 | 
|  |    119 | lemma bin_succ_Min [simp]: "bin_succ Numeral.Min = Numeral.Pls"
 | 
|  |    120 | by (simp add: Bin_simps) 
 | 
|  |    121 | 
 | 
|  |    122 | lemma bin_succ_1 [simp]: "bin_succ(w BIT True) = (bin_succ w) BIT False"
 | 
|  |    123 | by (simp add: Bin_simps add_ac) 
 | 
|  |    124 | 
 | 
|  |    125 | lemma bin_succ_0 [simp]: "bin_succ(w BIT False) = w BIT True"
 | 
|  |    126 | by (simp add: Bin_simps add_ac) 
 | 
|  |    127 | 
 | 
|  |    128 | lemma bin_pred_Pls [simp]: "bin_pred Numeral.Pls = Numeral.Min"
 | 
|  |    129 | by (simp add: Bin_simps) 
 | 
|  |    130 | 
 | 
|  |    131 | lemma bin_pred_Min [simp]: "bin_pred Numeral.Min = Numeral.Min BIT False"
 | 
|  |    132 | by (simp add: Bin_simps diff_minus) 
 | 
|  |    133 | 
 | 
|  |    134 | lemma bin_pred_1 [simp]: "bin_pred(w BIT True) = w BIT False"
 | 
|  |    135 | by (simp add: Bin_simps) 
 | 
|  |    136 | 
 | 
|  |    137 | lemma bin_pred_0 [simp]: "bin_pred(w BIT False) = (bin_pred w) BIT True"
 | 
|  |    138 | by (simp add: Bin_simps diff_minus add_ac) 
 | 
|  |    139 | 
 | 
|  |    140 | lemma bin_minus_Pls [simp]: "bin_minus Numeral.Pls = Numeral.Pls"
 | 
|  |    141 | by (simp add: Bin_simps) 
 | 
|  |    142 | 
 | 
|  |    143 | lemma bin_minus_Min [simp]: "bin_minus Numeral.Min = Numeral.Pls BIT True"
 | 
|  |    144 | by (simp add: Bin_simps) 
 | 
|  |    145 | 
 | 
|  |    146 | lemma bin_minus_1 [simp]:
 | 
|  |    147 |      "bin_minus (w BIT True) = bin_pred (bin_minus w) BIT True"
 | 
|  |    148 | by (simp add: Bin_simps add_ac diff_minus) 
 | 
|  |    149 | 
 | 
|  |    150 |  lemma bin_minus_0 [simp]: "bin_minus(w BIT False) = (bin_minus w) BIT False"
 | 
|  |    151 | by (simp add: Bin_simps) 
 | 
|  |    152 | 
 | 
|  |    153 | 
 | 
|  |    154 | subsection{*Binary Addition and Multiplication:
 | 
|  |    155 |          @{term bin_add} and @{term bin_mult}*}
 | 
|  |    156 | 
 | 
|  |    157 | lemma bin_add_Pls [simp]: "bin_add Numeral.Pls w = w"
 | 
|  |    158 | by (simp add: Bin_simps) 
 | 
|  |    159 | 
 | 
|  |    160 | lemma bin_add_Min [simp]: "bin_add Numeral.Min w = bin_pred w"
 | 
|  |    161 | by (simp add: Bin_simps diff_minus add_ac) 
 | 
|  |    162 | 
 | 
|  |    163 | lemma bin_add_BIT_11 [simp]:
 | 
|  |    164 |      "bin_add (v BIT True) (w BIT True) = bin_add v (bin_succ w) BIT False"
 | 
|  |    165 | by (simp add: Bin_simps add_ac)
 | 
|  |    166 | 
 | 
|  |    167 | lemma bin_add_BIT_10 [simp]:
 | 
|  |    168 |      "bin_add (v BIT True) (w BIT False) = (bin_add v w) BIT True"
 | 
|  |    169 | by (simp add: Bin_simps add_ac)
 | 
|  |    170 | 
 | 
|  |    171 | lemma bin_add_BIT_0 [simp]:
 | 
|  |    172 |      "bin_add (v BIT False) (w BIT y) = bin_add v w BIT y"
 | 
|  |    173 | by (simp add: Bin_simps add_ac)
 | 
|  |    174 | 
 | 
|  |    175 | lemma bin_add_Pls_right [simp]: "bin_add w Numeral.Pls = w"
 | 
|  |    176 | by (simp add: Bin_simps) 
 | 
|  |    177 | 
 | 
|  |    178 | lemma bin_add_Min_right [simp]: "bin_add w Numeral.Min = bin_pred w"
 | 
|  |    179 | by (simp add: Bin_simps diff_minus) 
 | 
|  |    180 | 
 | 
|  |    181 | lemma bin_mult_Pls [simp]: "bin_mult Numeral.Pls w = Numeral.Pls"
 | 
|  |    182 | by (simp add: Bin_simps) 
 | 
|  |    183 | 
 | 
|  |    184 | lemma bin_mult_Min [simp]: "bin_mult Numeral.Min w = bin_minus w"
 | 
|  |    185 | by (simp add: Bin_simps) 
 | 
|  |    186 | 
 | 
|  |    187 | lemma bin_mult_1 [simp]:
 | 
|  |    188 |      "bin_mult (v BIT True) w = bin_add ((bin_mult v w) BIT False) w"
 | 
|  |    189 | by (simp add: Bin_simps add_ac left_distrib)
 | 
|  |    190 | 
 | 
|  |    191 | lemma bin_mult_0 [simp]: "bin_mult (v BIT False) w = (bin_mult v w) BIT False"
 | 
|  |    192 | by (simp add: Bin_simps left_distrib)
 | 
|  |    193 | 
 | 
|  |    194 | 
 | 
|  |    195 | 
 | 
|  |    196 | subsection{*Converting Numerals to Rings: @{term number_of}*}
 | 
|  |    197 | 
 | 
|  |    198 | axclass number_ring \<subseteq> number, comm_ring_1
 | 
|  |    199 |   number_of_eq: "number_of w = of_int (Rep_Bin w)"
 | 
|  |    200 | 
 | 
|  |    201 | lemma number_of_succ:
 | 
|  |    202 |      "number_of(bin_succ w) = (1 + number_of w ::'a::number_ring)"
 | 
|  |    203 | by (simp add: number_of_eq Bin_simps)
 | 
|  |    204 | 
 | 
|  |    205 | lemma number_of_pred:
 | 
|  |    206 |      "number_of(bin_pred w) = (- 1 + number_of w ::'a::number_ring)"
 | 
|  |    207 | by (simp add: number_of_eq Bin_simps)
 | 
|  |    208 | 
 | 
|  |    209 | lemma number_of_minus:
 | 
|  |    210 |      "number_of(bin_minus w) = (- (number_of w)::'a::number_ring)"
 | 
|  |    211 | by (simp add: number_of_eq Bin_simps) 
 | 
|  |    212 | 
 | 
|  |    213 | lemma number_of_add:
 | 
|  |    214 |      "number_of(bin_add v w) = (number_of v + number_of w::'a::number_ring)"
 | 
|  |    215 | by (simp add: number_of_eq Bin_simps) 
 | 
|  |    216 | 
 | 
|  |    217 | lemma number_of_mult:
 | 
|  |    218 |      "number_of(bin_mult v w) = (number_of v * number_of w::'a::number_ring)"
 | 
|  |    219 | by (simp add: number_of_eq Bin_simps) 
 | 
|  |    220 | 
 | 
|  |    221 | text{*The correctness of shifting.  But it doesn't seem to give a measurable
 | 
|  |    222 |   speed-up.*}
 | 
|  |    223 | lemma double_number_of_BIT:
 | 
|  |    224 |      "(1+1) * number_of w = (number_of (w BIT False) ::'a::number_ring)"
 | 
|  |    225 | by (simp add: number_of_eq Bin_simps left_distrib) 
 | 
|  |    226 | 
 | 
|  |    227 | text{*Converting numerals 0 and 1 to their abstract versions*}
 | 
|  |    228 | lemma numeral_0_eq_0 [simp]: "Numeral0 = (0::'a::number_ring)"
 | 
|  |    229 | by (simp add: number_of_eq Bin_simps) 
 | 
|  |    230 | 
 | 
|  |    231 | lemma numeral_1_eq_1 [simp]: "Numeral1 = (1::'a::number_ring)"
 | 
|  |    232 | by (simp add: number_of_eq Bin_simps) 
 | 
|  |    233 | 
 | 
|  |    234 | text{*Special-case simplification for small constants*}
 | 
|  |    235 | 
 | 
|  |    236 | text{*Unary minus for the abstract constant 1. Cannot be inserted
 | 
|  |    237 |   as a simprule until later: it is @{text number_of_Min} re-oriented!*}
 | 
|  |    238 | lemma numeral_m1_eq_minus_1: "(-1::'a::number_ring) = - 1"
 | 
|  |    239 | by (simp add: number_of_eq Bin_simps) 
 | 
|  |    240 | 
 | 
|  |    241 | 
 | 
|  |    242 | lemma mult_minus1 [simp]: "-1 * z = -(z::'a::number_ring)"
 | 
|  |    243 | by (simp add: numeral_m1_eq_minus_1)
 | 
|  |    244 | 
 | 
|  |    245 | lemma mult_minus1_right [simp]: "z * -1 = -(z::'a::number_ring)"
 | 
|  |    246 | by (simp add: numeral_m1_eq_minus_1)
 | 
|  |    247 | 
 | 
|  |    248 | (*Negation of a coefficient*)
 | 
|  |    249 | lemma minus_number_of_mult [simp]:
 | 
|  |    250 |      "- (number_of w) * z = number_of(bin_minus w) * (z::'a::number_ring)"
 | 
|  |    251 | by (simp add: number_of_minus)
 | 
|  |    252 | 
 | 
|  |    253 | text{*Subtraction*}
 | 
|  |    254 | lemma diff_number_of_eq:
 | 
|  |    255 |      "number_of v - number_of w =
 | 
|  |    256 |       (number_of(bin_add v (bin_minus w))::'a::number_ring)"
 | 
|  |    257 | by (simp add: diff_minus number_of_add number_of_minus)
 | 
|  |    258 | 
 | 
|  |    259 | 
 | 
|  |    260 | lemma number_of_Pls: "number_of Numeral.Pls = (0::'a::number_ring)"
 | 
|  |    261 | by (simp add: number_of_eq Bin_simps) 
 | 
|  |    262 | 
 | 
|  |    263 | lemma number_of_Min: "number_of Numeral.Min = (- 1::'a::number_ring)"
 | 
|  |    264 | by (simp add: number_of_eq Bin_simps) 
 | 
|  |    265 | 
 | 
|  |    266 | lemma number_of_BIT:
 | 
|  |    267 |      "number_of(w BIT x) = (if x then 1 else (0::'a::number_ring)) +
 | 
|  |    268 | 	                   (number_of w) + (number_of w)"
 | 
|  |    269 | by (simp add: number_of_eq Bin_simps) 
 | 
|  |    270 | 
 | 
|  |    271 | 
 | 
|  |    272 | 
 | 
|  |    273 | subsection{*Equality of Binary Numbers*}
 | 
|  |    274 | 
 | 
|  |    275 | text{*First version by Norbert Voelker*}
 | 
|  |    276 | 
 | 
|  |    277 | lemma eq_number_of_eq:
 | 
|  |    278 |   "((number_of x::'a::number_ring) = number_of y) =
 | 
|  |    279 |    iszero (number_of (bin_add x (bin_minus y)) :: 'a)"
 | 
|  |    280 | by (simp add: iszero_def compare_rls number_of_add number_of_minus)
 | 
|  |    281 | 
 | 
|  |    282 | lemma iszero_number_of_Pls: "iszero ((number_of Numeral.Pls)::'a::number_ring)"
 | 
|  |    283 | by (simp add: iszero_def numeral_0_eq_0)
 | 
|  |    284 | 
 | 
|  |    285 | lemma nonzero_number_of_Min: "~ iszero ((number_of Numeral.Min)::'a::number_ring)"
 | 
|  |    286 | by (simp add: iszero_def numeral_m1_eq_minus_1 eq_commute)
 | 
|  |    287 | 
 | 
|  |    288 | 
 | 
|  |    289 | subsection{*Comparisons, for Ordered Rings*}
 | 
|  |    290 | 
 | 
|  |    291 | lemma double_eq_0_iff: "(a + a = 0) = (a = (0::'a::ordered_idom))"
 | 
|  |    292 | proof -
 | 
|  |    293 |   have "a + a = (1+1)*a" by (simp add: left_distrib)
 | 
|  |    294 |   with zero_less_two [where 'a = 'a]
 | 
|  |    295 |   show ?thesis by force
 | 
|  |    296 | qed
 | 
|  |    297 | 
 | 
|  |    298 | lemma le_imp_0_less: 
 | 
|  |    299 |   assumes le: "0 \<le> z" shows "(0::int) < 1 + z"
 | 
|  |    300 | proof -
 | 
|  |    301 |   have "0 \<le> z" .
 | 
|  |    302 |   also have "... < z + 1" by (rule less_add_one) 
 | 
|  |    303 |   also have "... = 1 + z" by (simp add: add_ac)
 | 
|  |    304 |   finally show "0 < 1 + z" .
 | 
|  |    305 | qed
 | 
|  |    306 | 
 | 
|  |    307 | lemma odd_nonzero: "1 + z + z \<noteq> (0::int)";
 | 
|  |    308 | proof (cases z rule: int_cases)
 | 
|  |    309 |   case (nonneg n)
 | 
|  |    310 |   have le: "0 \<le> z+z" by (simp add: nonneg add_increasing) 
 | 
|  |    311 |   thus ?thesis using  le_imp_0_less [OF le]
 | 
|  |    312 |     by (auto simp add: add_assoc) 
 | 
|  |    313 | next
 | 
|  |    314 |   case (neg n)
 | 
|  |    315 |   show ?thesis
 | 
|  |    316 |   proof
 | 
|  |    317 |     assume eq: "1 + z + z = 0"
 | 
|  |    318 |     have "0 < 1 + (int n + int n)"
 | 
|  |    319 |       by (simp add: le_imp_0_less add_increasing) 
 | 
|  |    320 |     also have "... = - (1 + z + z)" 
 | 
|  |    321 |       by (simp add: neg add_assoc [symmetric]) 
 | 
|  |    322 |     also have "... = 0" by (simp add: eq) 
 | 
|  |    323 |     finally have "0<0" ..
 | 
|  |    324 |     thus False by blast
 | 
|  |    325 |   qed
 | 
|  |    326 | qed
 | 
|  |    327 | 
 | 
|  |    328 | 
 | 
|  |    329 | text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*}
 | 
|  |    330 | lemma Ints_odd_nonzero: "a \<in> Ints ==> 1 + a + a \<noteq> (0::'a::ordered_idom)"
 | 
|  |    331 | proof (unfold Ints_def) 
 | 
|  |    332 |   assume "a \<in> range of_int"
 | 
|  |    333 |   then obtain z where a: "a = of_int z" ..
 | 
|  |    334 |   show ?thesis
 | 
|  |    335 |   proof
 | 
|  |    336 |     assume eq: "1 + a + a = 0"
 | 
|  |    337 |     hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a)
 | 
|  |    338 |     hence "1 + z + z = 0" by (simp only: of_int_eq_iff)
 | 
|  |    339 |     with odd_nonzero show False by blast
 | 
|  |    340 |   qed
 | 
|  |    341 | qed 
 | 
|  |    342 | 
 | 
|  |    343 | lemma Ints_number_of: "(number_of w :: 'a::number_ring) \<in> Ints"
 | 
|  |    344 | by (simp add: number_of_eq Ints_def) 
 | 
|  |    345 | 
 | 
|  |    346 | 
 | 
|  |    347 | lemma iszero_number_of_BIT:
 | 
|  |    348 |      "iszero (number_of (w BIT x)::'a) = 
 | 
|  |    349 |       (~x & iszero (number_of w::'a::{ordered_idom,number_ring}))"
 | 
|  |    350 | by (simp add: iszero_def number_of_eq Bin_simps double_eq_0_iff 
 | 
|  |    351 |               Ints_odd_nonzero Ints_def)
 | 
|  |    352 | 
 | 
|  |    353 | lemma iszero_number_of_0:
 | 
|  |    354 |      "iszero (number_of (w BIT False) :: 'a::{ordered_idom,number_ring}) = 
 | 
|  |    355 |       iszero (number_of w :: 'a)"
 | 
|  |    356 | by (simp only: iszero_number_of_BIT simp_thms)
 | 
|  |    357 | 
 | 
|  |    358 | lemma iszero_number_of_1:
 | 
|  |    359 |      "~ iszero (number_of (w BIT True)::'a::{ordered_idom,number_ring})"
 | 
|  |    360 | by (simp only: iszero_number_of_BIT simp_thms)
 | 
|  |    361 | 
 | 
|  |    362 | 
 | 
|  |    363 | 
 | 
|  |    364 | subsection{*The Less-Than Relation*}
 | 
|  |    365 | 
 | 
|  |    366 | lemma less_number_of_eq_neg:
 | 
|  |    367 |     "((number_of x::'a::{ordered_idom,number_ring}) < number_of y)
 | 
|  |    368 |      = neg (number_of (bin_add x (bin_minus y)) :: 'a)"
 | 
|  |    369 | apply (subst less_iff_diff_less_0) 
 | 
|  |    370 | apply (simp add: neg_def diff_minus number_of_add number_of_minus)
 | 
|  |    371 | done
 | 
|  |    372 | 
 | 
|  |    373 | text{*If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
 | 
|  |    374 |   @{term Numeral0} IS @{term "number_of Numeral.Pls"} *}
 | 
|  |    375 | lemma not_neg_number_of_Pls:
 | 
|  |    376 |      "~ neg (number_of Numeral.Pls ::'a::{ordered_idom,number_ring})"
 | 
|  |    377 | by (simp add: neg_def numeral_0_eq_0)
 | 
|  |    378 | 
 | 
|  |    379 | lemma neg_number_of_Min:
 | 
|  |    380 |      "neg (number_of Numeral.Min ::'a::{ordered_idom,number_ring})"
 | 
|  |    381 | by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1)
 | 
|  |    382 | 
 | 
|  |    383 | lemma double_less_0_iff: "(a + a < 0) = (a < (0::'a::ordered_idom))"
 | 
|  |    384 | proof -
 | 
|  |    385 |   have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib)
 | 
|  |    386 |   also have "... = (a < 0)"
 | 
|  |    387 |     by (simp add: mult_less_0_iff zero_less_two 
 | 
|  |    388 |                   order_less_not_sym [OF zero_less_two]) 
 | 
|  |    389 |   finally show ?thesis .
 | 
|  |    390 | qed
 | 
|  |    391 | 
 | 
|  |    392 | lemma odd_less_0: "(1 + z + z < 0) = (z < (0::int))";
 | 
|  |    393 | proof (cases z rule: int_cases)
 | 
|  |    394 |   case (nonneg n)
 | 
|  |    395 |   thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing
 | 
|  |    396 |                              le_imp_0_less [THEN order_less_imp_le])  
 | 
|  |    397 | next
 | 
|  |    398 |   case (neg n)
 | 
|  |    399 |   thus ?thesis by (simp del: int_Suc
 | 
|  |    400 | 			add: int_Suc0_eq_1 [symmetric] zadd_int compare_rls)
 | 
|  |    401 | qed
 | 
|  |    402 | 
 | 
|  |    403 | text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*}
 | 
|  |    404 | lemma Ints_odd_less_0: 
 | 
|  |    405 |      "a \<in> Ints ==> (1 + a + a < 0) = (a < (0::'a::ordered_idom))";
 | 
|  |    406 | proof (unfold Ints_def) 
 | 
|  |    407 |   assume "a \<in> range of_int"
 | 
|  |    408 |   then obtain z where a: "a = of_int z" ..
 | 
|  |    409 |   hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))"
 | 
|  |    410 |     by (simp add: a)
 | 
|  |    411 |   also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0)
 | 
|  |    412 |   also have "... = (a < 0)" by (simp add: a)
 | 
|  |    413 |   finally show ?thesis .
 | 
|  |    414 | qed
 | 
|  |    415 | 
 | 
|  |    416 | lemma neg_number_of_BIT:
 | 
|  |    417 |      "neg (number_of (w BIT x)::'a) = 
 | 
|  |    418 |       neg (number_of w :: 'a::{ordered_idom,number_ring})"
 | 
|  |    419 | by (simp add: neg_def number_of_eq Bin_simps double_less_0_iff
 | 
|  |    420 |               Ints_odd_less_0 Ints_def)
 | 
|  |    421 | 
 | 
|  |    422 | 
 | 
|  |    423 | text{*Less-Than or Equals*}
 | 
|  |    424 | 
 | 
|  |    425 | text{*Reduces @{term "a\<le>b"} to @{term "~ (b<a)"} for ALL numerals*}
 | 
|  |    426 | lemmas le_number_of_eq_not_less =
 | 
|  |    427 |        linorder_not_less [of "number_of w" "number_of v", symmetric, 
 | 
|  |    428 |                           standard]
 | 
|  |    429 | 
 | 
|  |    430 | lemma le_number_of_eq:
 | 
|  |    431 |     "((number_of x::'a::{ordered_idom,number_ring}) \<le> number_of y)
 | 
|  |    432 |      = (~ (neg (number_of (bin_add y (bin_minus x)) :: 'a)))"
 | 
|  |    433 | by (simp add: le_number_of_eq_not_less less_number_of_eq_neg)
 | 
|  |    434 | 
 | 
|  |    435 | 
 | 
|  |    436 | text{*Absolute value (@{term abs})*}
 | 
|  |    437 | 
 | 
|  |    438 | lemma abs_number_of:
 | 
|  |    439 |      "abs(number_of x::'a::{ordered_idom,number_ring}) =
 | 
|  |    440 |       (if number_of x < (0::'a) then -number_of x else number_of x)"
 | 
|  |    441 | by (simp add: abs_if)
 | 
|  |    442 | 
 | 
|  |    443 | 
 | 
|  |    444 | text{*Re-orientation of the equation nnn=x*}
 | 
|  |    445 | lemma number_of_reorient: "(number_of w = x) = (x = number_of w)"
 | 
|  |    446 | by auto
 | 
|  |    447 | 
 | 
|  |    448 | 
 | 
|  |    449 | 
 | 
|  |    450 | 
 | 
|  |    451 | subsection{*Simplification of arithmetic operations on integer constants.*}
 | 
|  |    452 | 
 | 
|  |    453 | lemmas bin_arith_extra_simps = 
 | 
|  |    454 |        number_of_add [symmetric]
 | 
|  |    455 |        number_of_minus [symmetric] numeral_m1_eq_minus_1 [symmetric]
 | 
|  |    456 |        number_of_mult [symmetric]
 | 
|  |    457 |        diff_number_of_eq abs_number_of 
 | 
|  |    458 | 
 | 
|  |    459 | text{*For making a minimal simpset, one must include these default simprules.
 | 
|  |    460 |   Also include @{text simp_thms} or at least @{term "(~False)=True"} *}
 | 
|  |    461 | lemmas bin_arith_simps = 
 | 
|  |    462 |        Pls_0_eq Min_1_eq
 | 
|  |    463 |        bin_pred_Pls bin_pred_Min bin_pred_1 bin_pred_0
 | 
|  |    464 |        bin_succ_Pls bin_succ_Min bin_succ_1 bin_succ_0
 | 
|  |    465 |        bin_add_Pls bin_add_Min bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11
 | 
|  |    466 |        bin_minus_Pls bin_minus_Min bin_minus_1 bin_minus_0
 | 
|  |    467 |        bin_mult_Pls bin_mult_Min bin_mult_1 bin_mult_0 
 | 
|  |    468 |        bin_add_Pls_right bin_add_Min_right
 | 
|  |    469 |        abs_zero abs_one bin_arith_extra_simps
 | 
|  |    470 | 
 | 
|  |    471 | text{*Simplification of relational operations*}
 | 
|  |    472 | lemmas bin_rel_simps = 
 | 
|  |    473 |        eq_number_of_eq iszero_number_of_Pls nonzero_number_of_Min
 | 
|  |    474 |        iszero_number_of_0 iszero_number_of_1
 | 
|  |    475 |        less_number_of_eq_neg
 | 
|  |    476 |        not_neg_number_of_Pls not_neg_0 not_neg_1 not_iszero_1
 | 
|  |    477 |        neg_number_of_Min neg_number_of_BIT
 | 
|  |    478 |        le_number_of_eq
 | 
|  |    479 | 
 | 
|  |    480 | declare bin_arith_extra_simps [simp]
 | 
|  |    481 | declare bin_rel_simps [simp]
 | 
|  |    482 | 
 | 
|  |    483 | 
 | 
|  |    484 | subsection{*Simplification of arithmetic when nested to the right*}
 | 
|  |    485 | 
 | 
|  |    486 | lemma add_number_of_left [simp]:
 | 
|  |    487 |      "number_of v + (number_of w + z) =
 | 
|  |    488 |       (number_of(bin_add v w) + z::'a::number_ring)"
 | 
|  |    489 | by (simp add: add_assoc [symmetric])
 | 
|  |    490 | 
 | 
|  |    491 | lemma mult_number_of_left [simp]:
 | 
|  |    492 |     "number_of v * (number_of w * z) =
 | 
|  |    493 |      (number_of(bin_mult v w) * z::'a::number_ring)"
 | 
|  |    494 | by (simp add: mult_assoc [symmetric])
 | 
|  |    495 | 
 | 
|  |    496 | lemma add_number_of_diff1:
 | 
|  |    497 |     "number_of v + (number_of w - c) = 
 | 
|  |    498 |      number_of(bin_add v w) - (c::'a::number_ring)"
 | 
|  |    499 | by (simp add: diff_minus add_number_of_left)
 | 
|  |    500 | 
 | 
|  |    501 | lemma add_number_of_diff2 [simp]: "number_of v + (c - number_of w) =
 | 
|  |    502 |      number_of (bin_add v (bin_minus w)) + (c::'a::number_ring)"
 | 
|  |    503 | apply (subst diff_number_of_eq [symmetric])
 | 
|  |    504 | apply (simp only: compare_rls)
 | 
|  |    505 | done
 | 
|  |    506 | 
 | 
|  |    507 | end
 |