| author | nipkow | 
| Wed, 26 Jun 2002 11:07:14 +0200 | |
| changeset 13249 | 4b3de6370184 | 
| parent 13197 | 0567f4fd1415 | 
| child 13626 | 282fbabec862 | 
| permissions | -rw-r--r-- | 
| 5094 | 1 | (* Title: HOL/Tools/inductive_package.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 10735 | 4 | Author: Stefan Berghofer, TU Muenchen | 
| 5 | Author: Markus Wenzel, TU Muenchen | |
| 11834 | 6 | License: GPL (GNU GENERAL PUBLIC LICENSE) | 
| 5094 | 7 | |
| 6424 | 8 | (Co)Inductive Definition module for HOL. | 
| 5094 | 9 | |
| 10 | Features: | |
| 6424 | 11 | * least or greatest fixedpoints | 
| 12 | * user-specified product and sum constructions | |
| 13 | * mutually recursive definitions | |
| 14 | * definitions involving arbitrary monotone operators | |
| 15 | * automatically proves introduction and elimination rules | |
| 5094 | 16 | |
| 6424 | 17 | The recursive sets must *already* be declared as constants in the | 
| 18 | current theory! | |
| 5094 | 19 | |
| 20 | Introduction rules have the form | |
| 8316 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 21 | [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk | 
| 5094 | 22 | where M is some monotone operator (usually the identity) | 
| 23 | P(x) is any side condition on the free variables | |
| 24 | ti, t are any terms | |
| 25 | Sj, Sk are two of the sets being defined in mutual recursion | |
| 26 | ||
| 6424 | 27 | Sums are used only for mutual recursion. Products are used only to | 
| 28 | derive "streamlined" induction rules for relations. | |
| 5094 | 29 | *) | 
| 30 | ||
| 31 | signature INDUCTIVE_PACKAGE = | |
| 32 | sig | |
| 6424 | 33 | val quiet_mode: bool ref | 
| 7020 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 34 | val unify_consts: Sign.sg -> term list -> term list -> term list * term list | 
| 10988 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 35 | val split_rule_vars: term list -> thm -> thm | 
| 9116 
9df44b5c610b
get_inductive now returns None instead of raising an exception.
 berghofe parents: 
9072diff
changeset | 36 |   val get_inductive: theory -> string -> ({names: string list, coind: bool} *
 | 
| 
9df44b5c610b
get_inductive now returns None instead of raising an exception.
 berghofe parents: 
9072diff
changeset | 37 |     {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
 | 
| 
9df44b5c610b
get_inductive now returns None instead of raising an exception.
 berghofe parents: 
9072diff
changeset | 38 | intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}) option | 
| 12400 | 39 | val the_mk_cases: theory -> string -> string -> thm | 
| 6437 | 40 | val print_inductives: theory -> unit | 
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 41 | val mono_add_global: theory attribute | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 42 | val mono_del_global: theory attribute | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 43 | val get_monos: theory -> thm list | 
| 10910 
058775a575db
export inductive_forall_name, inductive_forall_def, rulify;
 wenzelm parents: 
10804diff
changeset | 44 | val inductive_forall_name: string | 
| 
058775a575db
export inductive_forall_name, inductive_forall_def, rulify;
 wenzelm parents: 
10804diff
changeset | 45 | val inductive_forall_def: thm | 
| 
058775a575db
export inductive_forall_name, inductive_forall_def, rulify;
 wenzelm parents: 
10804diff
changeset | 46 | val rulify: thm -> thm | 
| 12876 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12798diff
changeset | 47 | val inductive_cases: ((bstring * Args.src list) * string list) list -> theory -> theory | 
| 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12798diff
changeset | 48 | val inductive_cases_i: ((bstring * theory attribute list) * term list) list -> theory -> theory | 
| 6424 | 49 | val add_inductive_i: bool -> bool -> bstring -> bool -> bool -> bool -> term list -> | 
| 12180 | 50 | ((bstring * term) * theory attribute list) list -> thm list -> theory -> theory * | 
| 6424 | 51 |       {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
 | 
| 6437 | 52 | intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm} | 
| 11628 | 53 | val add_inductive: bool -> bool -> string list -> | 
| 6521 | 54 | ((bstring * string) * Args.src list) list -> (xstring * Args.src list) list -> | 
| 12180 | 55 | theory -> theory * | 
| 6424 | 56 |       {defs: thm list, elims: thm list, raw_induct: thm, induct: thm,
 | 
| 6437 | 57 | intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm} | 
| 58 | val setup: (theory -> theory) list | |
| 5094 | 59 | end; | 
| 60 | ||
| 6424 | 61 | structure InductivePackage: INDUCTIVE_PACKAGE = | 
| 5094 | 62 | struct | 
| 63 | ||
| 9598 | 64 | |
| 10729 | 65 | (** theory context references **) | 
| 66 | ||
| 11755 | 67 | val mono_name = "HOL.mono"; | 
| 10735 | 68 | val gfp_name = "Gfp.gfp"; | 
| 69 | val lfp_name = "Lfp.lfp"; | |
| 12259 | 70 | val vimage_name = "Set.vimage"; | 
| 10735 | 71 | val Const _ $ (vimage_f $ _) $ _ = HOLogic.dest_Trueprop (Thm.concl_of vimageD); | 
| 72 | ||
| 11991 | 73 | val inductive_forall_name = "HOL.induct_forall"; | 
| 74 | val inductive_forall_def = thm "induct_forall_def"; | |
| 75 | val inductive_conj_name = "HOL.induct_conj"; | |
| 76 | val inductive_conj_def = thm "induct_conj_def"; | |
| 77 | val inductive_conj = thms "induct_conj"; | |
| 78 | val inductive_atomize = thms "induct_atomize"; | |
| 79 | val inductive_rulify1 = thms "induct_rulify1"; | |
| 80 | val inductive_rulify2 = thms "induct_rulify2"; | |
| 10729 | 81 | |
| 82 | ||
| 83 | ||
| 10735 | 84 | (** theory data **) | 
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 85 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 86 | (* data kind 'HOL/inductive' *) | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 87 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 88 | type inductive_info = | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 89 |   {names: string list, coind: bool} * {defs: thm list, elims: thm list, raw_induct: thm,
 | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 90 | induct: thm, intrs: thm list, mk_cases: string -> thm, mono: thm, unfold: thm}; | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 91 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 92 | structure InductiveArgs = | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 93 | struct | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 94 | val name = "HOL/inductive"; | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 95 | type T = inductive_info Symtab.table * thm list; | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 96 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 97 | val empty = (Symtab.empty, []); | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 98 | val copy = I; | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 99 | val prep_ext = I; | 
| 11502 | 100 | fun merge ((tab1, monos1), (tab2, monos2)) = | 
| 101 | (Symtab.merge (K true) (tab1, tab2), Drule.merge_rules (monos1, monos2)); | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 102 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 103 | fun print sg (tab, monos) = | 
| 8720 | 104 |     [Pretty.strs ("(co)inductives:" :: map #1 (Sign.cond_extern_table sg Sign.constK tab)),
 | 
| 10008 | 105 | Pretty.big_list "monotonicity rules:" (map (Display.pretty_thm_sg sg) monos)] | 
| 8720 | 106 | |> Pretty.chunks |> Pretty.writeln; | 
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 107 | end; | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 108 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 109 | structure InductiveData = TheoryDataFun(InductiveArgs); | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 110 | val print_inductives = InductiveData.print; | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 111 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 112 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 113 | (* get and put data *) | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 114 | |
| 9116 
9df44b5c610b
get_inductive now returns None instead of raising an exception.
 berghofe parents: 
9072diff
changeset | 115 | fun get_inductive thy name = Symtab.lookup (fst (InductiveData.get thy), name); | 
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 116 | |
| 9598 | 117 | fun the_inductive thy name = | 
| 118 | (case get_inductive thy name of | |
| 119 |     None => error ("Unknown (co)inductive set " ^ quote name)
 | |
| 120 | | Some info => info); | |
| 121 | ||
| 12400 | 122 | val the_mk_cases = (#mk_cases o #2) oo the_inductive; | 
| 123 | ||
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 124 | fun put_inductives names info thy = | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 125 | let | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 126 | fun upd ((tab, monos), name) = (Symtab.update_new ((name, info), tab), monos); | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 127 | val tab_monos = foldl upd (InductiveData.get thy, names) | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 128 |       handle Symtab.DUP name => error ("Duplicate definition of (co)inductive set " ^ quote name);
 | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 129 | in InductiveData.put tab_monos thy end; | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 130 | |
| 8277 | 131 | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 132 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 133 | (** monotonicity rules **) | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 134 | |
| 9831 | 135 | val get_monos = #2 o InductiveData.get; | 
| 136 | fun map_monos f = InductiveData.map (Library.apsnd f); | |
| 8277 | 137 | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 138 | fun mk_mono thm = | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 139 | let | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 140 | fun eq2mono thm' = [standard (thm' RS (thm' RS eq_to_mono))] @ | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 141 | (case concl_of thm of | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 142 |           (_ $ (_ $ (Const ("Not", _) $ _) $ _)) => []
 | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 143 | | _ => [standard (thm' RS (thm' RS eq_to_mono2))]); | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 144 | val concl = concl_of thm | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 145 | in | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 146 | if Logic.is_equals concl then | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 147 | eq2mono (thm RS meta_eq_to_obj_eq) | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 148 | else if can (HOLogic.dest_eq o HOLogic.dest_Trueprop) concl then | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 149 | eq2mono thm | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 150 | else [thm] | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 151 | end; | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 152 | |
| 8634 | 153 | |
| 154 | (* attributes *) | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 155 | |
| 9831 | 156 | fun mono_add_global (thy, thm) = (map_monos (Drule.add_rules (mk_mono thm)) thy, thm); | 
| 157 | fun mono_del_global (thy, thm) = (map_monos (Drule.del_rules (mk_mono thm)) thy, thm); | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 158 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 159 | val mono_attr = | 
| 8634 | 160 | (Attrib.add_del_args mono_add_global mono_del_global, | 
| 161 | Attrib.add_del_args Attrib.undef_local_attribute Attrib.undef_local_attribute); | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 162 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 163 | |
| 7107 | 164 | |
| 10735 | 165 | (** misc utilities **) | 
| 6424 | 166 | |
| 5662 | 167 | val quiet_mode = ref false; | 
| 10735 | 168 | fun message s = if ! quiet_mode then () else writeln s; | 
| 169 | fun clean_message s = if ! quick_and_dirty then () else message s; | |
| 5662 | 170 | |
| 6424 | 171 | fun coind_prefix true = "co" | 
| 172 | | coind_prefix false = ""; | |
| 173 | ||
| 174 | ||
| 10735 | 175 | (*the following code ensures that each recursive set always has the | 
| 176 | same type in all introduction rules*) | |
| 7020 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 177 | fun unify_consts sign cs intr_ts = | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 178 | (let | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 179 |     val {tsig, ...} = Sign.rep_sg sign;
 | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 180 | val add_term_consts_2 = | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 181 | foldl_aterms (fn (cs, Const c) => c ins cs | (cs, _) => cs); | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 182 | fun varify (t, (i, ts)) = | 
| 12494 | 183 | let val t' = map_term_types (incr_tvar (i + 1)) (#1 (Type.varify (t, []))) | 
| 7020 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 184 | in (maxidx_of_term t', t'::ts) end; | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 185 | val (i, cs') = foldr varify (cs, (~1, [])); | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 186 | val (i', intr_ts') = foldr varify (intr_ts, (i, [])); | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 187 | val rec_consts = foldl add_term_consts_2 ([], cs'); | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 188 | val intr_consts = foldl add_term_consts_2 ([], intr_ts'); | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 189 | fun unify (env, (cname, cT)) = | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 190 | let val consts = map snd (filter (fn c => fst c = cname) intr_consts) | 
| 12527 | 191 | in foldl (fn ((env', j'), Tp) => (Type.unify tsig (env', j') Tp)) | 
| 7020 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 192 | (env, (replicate (length consts) cT) ~~ consts) | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 193 | end; | 
| 8410 
5902c02fa122
Type.unify now uses Vartab instead of association lists.
 berghofe parents: 
8401diff
changeset | 194 | val (env, _) = foldl unify ((Vartab.empty, i'), rec_consts); | 
| 
5902c02fa122
Type.unify now uses Vartab instead of association lists.
 berghofe parents: 
8401diff
changeset | 195 | fun typ_subst_TVars_2 env T = let val T' = typ_subst_TVars_Vartab env T | 
| 7020 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 196 | in if T = T' then T else typ_subst_TVars_2 env T' end; | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 197 | val subst = fst o Type.freeze_thaw o | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 198 | (map_term_types (typ_subst_TVars_2 env)) | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 199 | |
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 200 | in (map subst cs', map subst intr_ts') | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 201 | end) handle Type.TUNIFY => | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 202 | (warning "Occurrences of recursive constant have non-unifiable types"; (cs, intr_ts)); | 
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 203 | |
| 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 204 | |
| 10735 | 205 | (*make injections used in mutually recursive definitions*) | 
| 5094 | 206 | fun mk_inj cs sumT c x = | 
| 207 | let | |
| 208 | fun mk_inj' T n i = | |
| 209 | if n = 1 then x else | |
| 210 | let val n2 = n div 2; | |
| 211 | val Type (_, [T1, T2]) = T | |
| 212 | in | |
| 213 | if i <= n2 then | |
| 214 |           Const ("Inl", T1 --> T) $ (mk_inj' T1 n2 i)
 | |
| 215 | else | |
| 216 |           Const ("Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
 | |
| 217 | end | |
| 218 | in mk_inj' sumT (length cs) (1 + find_index_eq c cs) | |
| 219 | end; | |
| 220 | ||
| 10735 | 221 | (*make "vimage" terms for selecting out components of mutually rec.def*) | 
| 5094 | 222 | fun mk_vimage cs sumT t c = if length cs < 2 then t else | 
| 223 | let | |
| 224 | val cT = HOLogic.dest_setT (fastype_of c); | |
| 225 | val vimageT = [cT --> sumT, HOLogic.mk_setT sumT] ---> HOLogic.mk_setT cT | |
| 226 | in | |
| 227 | Const (vimage_name, vimageT) $ | |
| 228 |       Abs ("y", cT, mk_inj cs sumT c (Bound 0)) $ t
 | |
| 229 | end; | |
| 230 | ||
| 10988 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 231 | (** proper splitting **) | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 232 | |
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 233 | fun prod_factors p (Const ("Pair", _) $ t $ u) =
 | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 234 | p :: prod_factors (1::p) t @ prod_factors (2::p) u | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 235 | | prod_factors p _ = []; | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 236 | |
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 237 | fun mg_prod_factors ts (fs, t $ u) = if t mem ts then | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 238 | let val f = prod_factors [] u | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 239 | in overwrite (fs, (t, f inter if_none (assoc (fs, t)) f)) end | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 240 | else mg_prod_factors ts (mg_prod_factors ts (fs, t), u) | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 241 | | mg_prod_factors ts (fs, Abs (_, _, t)) = mg_prod_factors ts (fs, t) | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 242 | | mg_prod_factors ts (fs, _) = fs; | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 243 | |
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 244 | fun prodT_factors p ps (T as Type ("*", [T1, T2])) =
 | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 245 | if p mem ps then prodT_factors (1::p) ps T1 @ prodT_factors (2::p) ps T2 | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 246 | else [T] | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 247 | | prodT_factors _ _ T = [T]; | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 248 | |
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 249 | fun ap_split p ps (Type ("*", [T1, T2])) T3 u =
 | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 250 | if p mem ps then HOLogic.split_const (T1, T2, T3) $ | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 251 |         Abs ("v", T1, ap_split (2::p) ps T2 T3 (ap_split (1::p) ps T1
 | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 252 | (prodT_factors (2::p) ps T2 ---> T3) (incr_boundvars 1 u) $ Bound 0)) | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 253 | else u | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 254 | | ap_split _ _ _ _ u = u; | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 255 | |
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 256 | fun mk_tuple p ps (Type ("*", [T1, T2])) (tms as t::_) =
 | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 257 | if p mem ps then HOLogic.mk_prod (mk_tuple (1::p) ps T1 tms, | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 258 | mk_tuple (2::p) ps T2 (drop (length (prodT_factors (1::p) ps T1), tms))) | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 259 | else t | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 260 | | mk_tuple _ _ _ (t::_) = t; | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 261 | |
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 262 | fun split_rule_var' ((t as Var (v, Type ("fun", [T1, T2])), ps), rl) =
 | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 263 | let val T' = prodT_factors [] ps T1 ---> T2 | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 264 | val newt = ap_split [] ps T1 T2 (Var (v, T')) | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 265 | val cterm = Thm.cterm_of (#sign (rep_thm rl)) | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 266 | in | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 267 | instantiate ([], [(cterm t, cterm newt)]) rl | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 268 | end | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 269 | | split_rule_var' (_, rl) = rl; | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 270 | |
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 271 | val remove_split = rewrite_rule [split_conv RS eq_reflection]; | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 272 | |
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 273 | fun split_rule_vars vs rl = standard (remove_split (foldr split_rule_var' | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 274 | (mg_prod_factors vs ([], #prop (rep_thm rl)), rl))); | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 275 | |
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 276 | fun split_rule vs rl = standard (remove_split (foldr split_rule_var' | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 277 | (mapfilter (fn (t as Var ((a, _), _)) => | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 278 | apsome (pair t) (assoc (vs, a))) (term_vars (#prop (rep_thm rl))), rl))); | 
| 6424 | 279 | |
| 280 | ||
| 10729 | 281 | (** process rules **) | 
| 282 | ||
| 283 | local | |
| 5094 | 284 | |
| 10729 | 285 | fun err_in_rule sg name t msg = | 
| 286 | error (cat_lines ["Ill-formed introduction rule " ^ quote name, Sign.string_of_term sg t, msg]); | |
| 287 | ||
| 288 | fun err_in_prem sg name t p msg = | |
| 289 | error (cat_lines ["Ill-formed premise", Sign.string_of_term sg p, | |
| 290 | "in introduction rule " ^ quote name, Sign.string_of_term sg t, msg]); | |
| 5094 | 291 | |
| 10729 | 292 | val bad_concl = "Conclusion of introduction rule must have form \"t : S_i\""; | 
| 293 | ||
| 11358 
416ea5c009f5
now checks for leading meta-quantifiers and complains, instead of
 paulson parents: 
11036diff
changeset | 294 | val all_not_allowed = | 
| 
416ea5c009f5
now checks for leading meta-quantifiers and complains, instead of
 paulson parents: 
11036diff
changeset | 295 | "Introduction rule must not have a leading \"!!\" quantifier"; | 
| 
416ea5c009f5
now checks for leading meta-quantifiers and complains, instead of
 paulson parents: 
11036diff
changeset | 296 | |
| 13197 
0567f4fd1415
Changed interface of MetaSimplifier.rewrite_term.
 berghofe parents: 
12922diff
changeset | 297 | fun atomize_term sg = MetaSimplifier.rewrite_term sg inductive_atomize []; | 
| 10729 | 298 | |
| 299 | in | |
| 5094 | 300 | |
| 10729 | 301 | fun check_rule sg cs ((name, rule), att) = | 
| 302 | let | |
| 303 | val concl = Logic.strip_imp_concl rule; | |
| 304 | val prems = Logic.strip_imp_prems rule; | |
| 12798 
f7e2d0d32ea7
MetaSimplifier.rewrite_term replaces slow Tactic.rewrite_cterm;
 wenzelm parents: 
12709diff
changeset | 305 | val aprems = map (atomize_term sg) prems; | 
| 10729 | 306 | val arule = Logic.list_implies (aprems, concl); | 
| 5094 | 307 | |
| 10729 | 308 | fun check_prem (prem, aprem) = | 
| 309 | if can HOLogic.dest_Trueprop aprem then () | |
| 310 | else err_in_prem sg name rule prem "Non-atomic premise"; | |
| 311 | in | |
| 11358 
416ea5c009f5
now checks for leading meta-quantifiers and complains, instead of
 paulson parents: 
11036diff
changeset | 312 | (case concl of | 
| 
416ea5c009f5
now checks for leading meta-quantifiers and complains, instead of
 paulson parents: 
11036diff
changeset | 313 |       Const ("Trueprop", _) $ (Const ("op :", _) $ t $ u) =>
 | 
| 10729 | 314 | if u mem cs then | 
| 315 | if exists (Logic.occs o rpair t) cs then | |
| 316 | err_in_rule sg name rule "Recursion term on left of member symbol" | |
| 317 | else seq check_prem (prems ~~ aprems) | |
| 318 | else err_in_rule sg name rule bad_concl | |
| 11358 
416ea5c009f5
now checks for leading meta-quantifiers and complains, instead of
 paulson parents: 
11036diff
changeset | 319 |       | Const ("all", _) $ _ => err_in_rule sg name rule all_not_allowed
 | 
| 10729 | 320 | | _ => err_in_rule sg name rule bad_concl); | 
| 321 | ((name, arule), att) | |
| 322 | end; | |
| 5094 | 323 | |
| 10729 | 324 | val rulify = | 
| 12798 
f7e2d0d32ea7
MetaSimplifier.rewrite_term replaces slow Tactic.rewrite_cterm;
 wenzelm parents: 
12709diff
changeset | 325 | standard o Tactic.norm_hhf_rule o | 
| 11036 | 326 | hol_simplify inductive_rulify2 o hol_simplify inductive_rulify1 o | 
| 327 | hol_simplify inductive_conj; | |
| 10729 | 328 | |
| 329 | end; | |
| 330 | ||
| 5094 | 331 | |
| 6424 | 332 | |
| 10735 | 333 | (** properties of (co)inductive sets **) | 
| 5094 | 334 | |
| 10735 | 335 | (* elimination rules *) | 
| 5094 | 336 | |
| 8375 | 337 | fun mk_elims cs cTs params intr_ts intr_names = | 
| 5094 | 338 | let | 
| 339 | val used = foldr add_term_names (intr_ts, []); | |
| 340 | val [aname, pname] = variantlist (["a", "P"], used); | |
| 341 | val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT)); | |
| 342 | ||
| 343 | fun dest_intr r = | |
| 344 |       let val Const ("op :", _) $ t $ u =
 | |
| 345 | HOLogic.dest_Trueprop (Logic.strip_imp_concl r) | |
| 346 | in (u, t, Logic.strip_imp_prems r) end; | |
| 347 | ||
| 8380 | 348 | val intrs = map dest_intr intr_ts ~~ intr_names; | 
| 5094 | 349 | |
| 350 | fun mk_elim (c, T) = | |
| 351 | let | |
| 352 | val a = Free (aname, T); | |
| 353 | ||
| 354 | fun mk_elim_prem (_, t, ts) = | |
| 355 | list_all_free (map dest_Free ((foldr add_term_frees (t::ts, [])) \\ params), | |
| 356 | Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_eq (a, t)) :: ts, P)); | |
| 8375 | 357 | val c_intrs = (filter (equal c o #1 o #1) intrs); | 
| 5094 | 358 | in | 
| 8375 | 359 | (Logic.list_implies (HOLogic.mk_Trueprop (HOLogic.mk_mem (a, c)) :: | 
| 360 | map mk_elim_prem (map #1 c_intrs), P), map #2 c_intrs) | |
| 5094 | 361 | end | 
| 362 | in | |
| 363 | map mk_elim (cs ~~ cTs) | |
| 364 | end; | |
| 9598 | 365 | |
| 6424 | 366 | |
| 10735 | 367 | (* premises and conclusions of induction rules *) | 
| 5094 | 368 | |
| 369 | fun mk_indrule cs cTs params intr_ts = | |
| 370 | let | |
| 371 | val used = foldr add_term_names (intr_ts, []); | |
| 372 | ||
| 373 | (* predicates for induction rule *) | |
| 374 | ||
| 375 | val preds = map Free (variantlist (if length cs < 2 then ["P"] else | |
| 376 | map (fn i => "P" ^ string_of_int i) (1 upto length cs), used) ~~ | |
| 377 | map (fn T => T --> HOLogic.boolT) cTs); | |
| 378 | ||
| 379 | (* transform an introduction rule into a premise for induction rule *) | |
| 380 | ||
| 381 | fun mk_ind_prem r = | |
| 382 | let | |
| 383 | val frees = map dest_Free ((add_term_frees (r, [])) \\ params); | |
| 384 | ||
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 385 | val pred_of = curry (Library.gen_assoc (op aconv)) (cs ~~ preds); | 
| 5094 | 386 | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 387 |         fun subst (s as ((m as Const ("op :", T)) $ t $ u)) =
 | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 388 | (case pred_of u of | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 389 | None => (m $ fst (subst t) $ fst (subst u), None) | 
| 10735 | 390 | | Some P => (HOLogic.mk_binop inductive_conj_name (s, P $ t), Some (s, P $ t))) | 
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 391 | | subst s = | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 392 | (case pred_of s of | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 393 | Some P => (HOLogic.mk_binop "op Int" | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 394 | (s, HOLogic.Collect_const (HOLogic.dest_setT | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 395 | (fastype_of s)) $ P), None) | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 396 | | None => (case s of | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 397 | (t $ u) => (fst (subst t) $ fst (subst u), None) | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 398 | | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), None) | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 399 | | _ => (s, None))); | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 400 | |
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 401 | fun mk_prem (s, prems) = (case subst s of | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 402 | (_, Some (t, u)) => t :: u :: prems | 
| 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 403 | | (t, _) => t :: prems); | 
| 9598 | 404 | |
| 5094 | 405 |         val Const ("op :", _) $ t $ u =
 | 
| 406 | HOLogic.dest_Trueprop (Logic.strip_imp_concl r) | |
| 407 | ||
| 408 | in list_all_free (frees, | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 409 | Logic.list_implies (map HOLogic.mk_Trueprop (foldr mk_prem | 
| 5094 | 410 | (map HOLogic.dest_Trueprop (Logic.strip_imp_prems r), [])), | 
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 411 | HOLogic.mk_Trueprop (the (pred_of u) $ t))) | 
| 5094 | 412 | end; | 
| 413 | ||
| 414 | val ind_prems = map mk_ind_prem intr_ts; | |
| 10988 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 415 | val factors = foldl (mg_prod_factors preds) ([], ind_prems); | 
| 5094 | 416 | |
| 417 | (* make conclusions for induction rules *) | |
| 418 | ||
| 419 | fun mk_ind_concl ((c, P), (ts, x)) = | |
| 420 | let val T = HOLogic.dest_setT (fastype_of c); | |
| 10988 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 421 | val ps = if_none (assoc (factors, P)) []; | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 422 | val Ts = prodT_factors [] ps T; | 
| 5094 | 423 | val (frees, x') = foldr (fn (T', (fs, s)) => | 
| 12902 | 424 | ((Free (s, T'))::fs, Symbol.bump_string s)) (Ts, ([], x)); | 
| 10988 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 425 | val tuple = mk_tuple [] ps T frees; | 
| 5094 | 426 | in ((HOLogic.mk_binop "op -->" | 
| 427 | (HOLogic.mk_mem (tuple, c), P $ tuple))::ts, x') | |
| 428 | end; | |
| 429 | ||
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 430 | val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj | 
| 5094 | 431 | (fst (foldr mk_ind_concl (cs ~~ preds, ([], "xa"))))) | 
| 432 | ||
| 10988 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 433 | in (preds, ind_prems, mutual_ind_concl, | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 434 | map (apfst (fst o dest_Free)) factors) | 
| 5094 | 435 | end; | 
| 436 | ||
| 6424 | 437 | |
| 10735 | 438 | (* prepare cases and induct rules *) | 
| 8316 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 439 | |
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 440 | (* | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 441 | transform mutual rule: | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 442 | HH ==> (x1:A1 --> P1 x1) & ... & (xn:An --> Pn xn) | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 443 | into i-th projection: | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 444 | xi:Ai ==> HH ==> Pi xi | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 445 | *) | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 446 | |
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 447 | fun project_rules [name] rule = [(name, rule)] | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 448 | | project_rules names mutual_rule = | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 449 | let | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 450 | val n = length names; | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 451 | fun proj i = | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 452 | (if i < n then (fn th => th RS conjunct1) else I) | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 453 | (Library.funpow (i - 1) (fn th => th RS conjunct2) mutual_rule) | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 454 | RS mp |> Thm.permute_prems 0 ~1 |> Drule.standard; | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 455 | in names ~~ map proj (1 upto n) end; | 
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 456 | |
| 12172 | 457 | fun add_cases_induct no_elim no_induct names elims induct = | 
| 8316 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 458 | let | 
| 9405 | 459 | fun cases_spec (name, elim) thy = | 
| 460 | thy | |
| 461 | |> Theory.add_path (Sign.base_name name) | |
| 10279 | 462 |       |> (#1 o PureThy.add_thms [(("cases", elim), [InductAttrib.cases_set_global name])])
 | 
| 9405 | 463 | |> Theory.parent_path; | 
| 8375 | 464 | val cases_specs = if no_elim then [] else map2 cases_spec (names, elims); | 
| 8316 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 465 | |
| 11005 | 466 | fun induct_spec (name, th) = #1 o PureThy.add_thms | 
| 467 |       [(("", RuleCases.save induct th), [InductAttrib.induct_set_global name])];
 | |
| 12172 | 468 | val induct_specs = if no_induct then [] else map induct_spec (project_rules names induct); | 
| 9405 | 469 | in Library.apply (cases_specs @ induct_specs) end; | 
| 8316 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 470 | |
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 471 | |
| 
74639e19eca0
add_cases_induct: project_rules accomodates mutual induction;
 wenzelm parents: 
8312diff
changeset | 472 | |
| 10735 | 473 | (** proofs for (co)inductive sets **) | 
| 6424 | 474 | |
| 10735 | 475 | (* prove monotonicity -- NOT subject to quick_and_dirty! *) | 
| 5094 | 476 | |
| 477 | fun prove_mono setT fp_fun monos thy = | |
| 10735 | 478 | (message " Proving monotonicity ..."; | 
| 11880 | 479 | Goals.prove_goalw_cterm [] (*NO quick_and_dirty_prove_goalw_cterm here!*) | 
| 10735 | 480 | (Thm.cterm_of (Theory.sign_of thy) (HOLogic.mk_Trueprop | 
| 5094 | 481 | (Const (mono_name, (setT --> setT) --> HOLogic.boolT) $ fp_fun))) | 
| 11502 | 482 | (fn _ => [rtac monoI 1, REPEAT (ares_tac (flat (map mk_mono monos) @ get_monos thy) 1)])); | 
| 5094 | 483 | |
| 6424 | 484 | |
| 10735 | 485 | (* prove introduction rules *) | 
| 5094 | 486 | |
| 12180 | 487 | fun prove_intrs coind mono fp_def intr_ts rec_sets_defs thy = | 
| 5094 | 488 | let | 
| 10735 | 489 | val _ = clean_message " Proving the introduction rules ..."; | 
| 5094 | 490 | |
| 491 | val unfold = standard (mono RS (fp_def RS | |
| 10186 | 492 | (if coind then def_gfp_unfold else def_lfp_unfold))); | 
| 5094 | 493 | |
| 494 | fun select_disj 1 1 = [] | |
| 495 | | select_disj _ 1 = [rtac disjI1] | |
| 496 | | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1)); | |
| 497 | ||
| 11880 | 498 | val intrs = map (fn (i, intr) => quick_and_dirty_prove_goalw_cterm thy rec_sets_defs | 
| 10735 | 499 | (Thm.cterm_of (Theory.sign_of thy) intr) (fn prems => | 
| 5094 | 500 | [(*insert prems and underlying sets*) | 
| 501 | cut_facts_tac prems 1, | |
| 502 | stac unfold 1, | |
| 503 | REPEAT (resolve_tac [vimageI2, CollectI] 1), | |
| 504 | (*Now 1-2 subgoals: the disjunction, perhaps equality.*) | |
| 505 | EVERY1 (select_disj (length intr_ts) i), | |
| 506 | (*Not ares_tac, since refl must be tried before any equality assumptions; | |
| 507 | backtracking may occur if the premises have extra variables!*) | |
| 10735 | 508 | DEPTH_SOLVE_1 (resolve_tac [refl, exI, conjI] 1 APPEND assume_tac 1), | 
| 5094 | 509 | (*Now solve the equations like Inl 0 = Inl ?b2*) | 
| 10729 | 510 | REPEAT (rtac refl 1)]) | 
| 511 | |> rulify) (1 upto (length intr_ts) ~~ intr_ts) | |
| 5094 | 512 | |
| 513 | in (intrs, unfold) end; | |
| 514 | ||
| 6424 | 515 | |
| 10735 | 516 | (* prove elimination rules *) | 
| 5094 | 517 | |
| 8375 | 518 | fun prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs thy = | 
| 5094 | 519 | let | 
| 10735 | 520 | val _ = clean_message " Proving the elimination rules ..."; | 
| 5094 | 521 | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 522 | val rules1 = [CollectE, disjE, make_elim vimageD, exE]; | 
| 10735 | 523 | val rules2 = [conjE, Inl_neq_Inr, Inr_neq_Inl] @ map make_elim [Inl_inject, Inr_inject]; | 
| 8375 | 524 | in | 
| 11005 | 525 | mk_elims cs cTs params intr_ts intr_names |> map (fn (t, cases) => | 
| 11880 | 526 | quick_and_dirty_prove_goalw_cterm thy rec_sets_defs | 
| 11005 | 527 | (Thm.cterm_of (Theory.sign_of thy) t) (fn prems => | 
| 528 | [cut_facts_tac [hd prems] 1, | |
| 529 | dtac (unfold RS subst) 1, | |
| 530 | REPEAT (FIRSTGOAL (eresolve_tac rules1)), | |
| 531 | REPEAT (FIRSTGOAL (eresolve_tac rules2)), | |
| 532 | EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [prem, conjI] 1)) (tl prems))]) | |
| 533 | |> rulify | |
| 534 | |> RuleCases.name cases) | |
| 8375 | 535 | end; | 
| 5094 | 536 | |
| 6424 | 537 | |
| 10735 | 538 | (* derivation of simplified elimination rules *) | 
| 5094 | 539 | |
| 11682 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 540 | local | 
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 541 | |
| 7107 | 542 | (*cprop should have the form t:Si where Si is an inductive set*) | 
| 11682 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 543 | val mk_cases_err = "mk_cases: proposition not of form \"t : S_i\""; | 
| 9598 | 544 | |
| 11682 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 545 | (*delete needless equality assumptions*) | 
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 546 | val refl_thin = prove_goal HOL.thy "!!P. a = a ==> P ==> P" (fn _ => [assume_tac 1]); | 
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 547 | val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE, Pair_inject]; | 
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 548 | val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls; | 
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 549 | |
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 550 | fun simp_case_tac solved ss i = | 
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 551 | EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i | 
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 552 | THEN_MAYBE (if solved then no_tac else all_tac); | 
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 553 | |
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 554 | in | 
| 9598 | 555 | |
| 556 | fun mk_cases_i elims ss cprop = | |
| 7107 | 557 | let | 
| 558 | val prem = Thm.assume cprop; | |
| 11682 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 559 | val tac = ALLGOALS (simp_case_tac false ss) THEN prune_params_tac; | 
| 9298 | 560 | fun mk_elim rl = Drule.standard (Tactic.rule_by_tactic tac (prem RS rl)); | 
| 7107 | 561 | in | 
| 562 | (case get_first (try mk_elim) elims of | |
| 563 | Some r => r | |
| 564 | | None => error (Pretty.string_of (Pretty.block | |
| 9598 | 565 | [Pretty.str mk_cases_err, Pretty.fbrk, Display.pretty_cterm cprop]))) | 
| 7107 | 566 | end; | 
| 567 | ||
| 6141 | 568 | fun mk_cases elims s = | 
| 9598 | 569 | mk_cases_i elims (simpset()) (Thm.read_cterm (Thm.sign_of_thm (hd elims)) (s, propT)); | 
| 570 | ||
| 571 | fun smart_mk_cases thy ss cprop = | |
| 572 | let | |
| 573 | val c = #1 (Term.dest_Const (Term.head_of (#2 (HOLogic.dest_mem (HOLogic.dest_Trueprop | |
| 574 | (Logic.strip_imp_concl (Thm.term_of cprop))))))) handle TERM _ => error mk_cases_err; | |
| 575 |     val (_, {elims, ...}) = the_inductive thy c;
 | |
| 576 | in mk_cases_i elims ss cprop end; | |
| 7107 | 577 | |
| 11682 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 578 | end; | 
| 
d9063229b4a1
simp_case_tac is back again from induct_method.ML;
 wenzelm parents: 
11628diff
changeset | 579 | |
| 7107 | 580 | |
| 581 | (* inductive_cases(_i) *) | |
| 582 | ||
| 12609 | 583 | fun gen_inductive_cases prep_att prep_prop args thy = | 
| 9598 | 584 | let | 
| 12609 | 585 | val cert_prop = Thm.cterm_of (Theory.sign_of thy) o prep_prop (ProofContext.init thy); | 
| 586 | val mk_cases = smart_mk_cases thy (Simplifier.simpset_of thy) o cert_prop; | |
| 587 | ||
| 12876 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12798diff
changeset | 588 | val facts = args |> map (fn ((a, atts), props) => | 
| 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12798diff
changeset | 589 | ((a, map (prep_att thy) atts), map (Thm.no_attributes o single o mk_cases) props)); | 
| 12709 | 590 | in thy |> IsarThy.theorems_i Drule.lemmaK facts |> #1 end; | 
| 5094 | 591 | |
| 12172 | 592 | val inductive_cases = gen_inductive_cases Attrib.global_attribute ProofContext.read_prop; | 
| 593 | val inductive_cases_i = gen_inductive_cases (K I) ProofContext.cert_prop; | |
| 7107 | 594 | |
| 6424 | 595 | |
| 9598 | 596 | (* mk_cases_meth *) | 
| 597 | ||
| 598 | fun mk_cases_meth (ctxt, raw_props) = | |
| 599 | let | |
| 600 | val thy = ProofContext.theory_of ctxt; | |
| 601 | val ss = Simplifier.get_local_simpset ctxt; | |
| 602 | val cprops = map (Thm.cterm_of (Theory.sign_of thy) o ProofContext.read_prop ctxt) raw_props; | |
| 10743 | 603 | in Method.erule 0 (map (smart_mk_cases thy ss) cprops) end; | 
| 9598 | 604 | |
| 605 | val mk_cases_args = Method.syntax (Scan.lift (Scan.repeat1 Args.name)); | |
| 606 | ||
| 607 | ||
| 10735 | 608 | (* prove induction rule *) | 
| 5094 | 609 | |
| 610 | fun prove_indrule cs cTs sumT rec_const params intr_ts mono | |
| 611 | fp_def rec_sets_defs thy = | |
| 612 | let | |
| 10735 | 613 | val _ = clean_message " Proving the induction rule ..."; | 
| 5094 | 614 | |
| 6394 | 615 | val sign = Theory.sign_of thy; | 
| 5094 | 616 | |
| 12922 | 617 | val sum_case_rewrites = | 
| 618 | (if PureThy.get_name thy = "Datatype" then PureThy.get_thms thy "sum.cases" | |
| 619 | else | |
| 620 | (case ThyInfo.lookup_theory "Datatype" of | |
| 621 | None => [] | |
| 622 | | Some thy' => PureThy.get_thms thy' "sum.cases")) |> map mk_meta_eq; | |
| 7293 | 623 | |
| 10988 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 624 | val (preds, ind_prems, mutual_ind_concl, factors) = | 
| 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 625 | mk_indrule cs cTs params intr_ts; | 
| 5094 | 626 | |
| 627 | (* make predicate for instantiation of abstract induction rule *) | |
| 628 | ||
| 629 | fun mk_ind_pred _ [P] = P | |
| 630 | | mk_ind_pred T Ps = | |
| 631 | let val n = (length Ps) div 2; | |
| 632 | val Type (_, [T1, T2]) = T | |
| 7293 | 633 |          in Const ("Datatype.sum.sum_case",
 | 
| 5094 | 634 | [T1 --> HOLogic.boolT, T2 --> HOLogic.boolT, T] ---> HOLogic.boolT) $ | 
| 635 | mk_ind_pred T1 (take (n, Ps)) $ mk_ind_pred T2 (drop (n, Ps)) | |
| 636 | end; | |
| 637 | ||
| 638 | val ind_pred = mk_ind_pred sumT preds; | |
| 639 | ||
| 640 | val ind_concl = HOLogic.mk_Trueprop | |
| 641 |       (HOLogic.all_const sumT $ Abs ("x", sumT, HOLogic.mk_binop "op -->"
 | |
| 642 | (HOLogic.mk_mem (Bound 0, rec_const), ind_pred $ Bound 0))); | |
| 643 | ||
| 644 | (* simplification rules for vimage and Collect *) | |
| 645 | ||
| 646 | val vimage_simps = if length cs < 2 then [] else | |
| 11880 | 647 | map (fn c => quick_and_dirty_prove_goalw_cterm thy [] (Thm.cterm_of sign | 
| 5094 | 648 | (HOLogic.mk_Trueprop (HOLogic.mk_eq | 
| 649 | (mk_vimage cs sumT (HOLogic.Collect_const sumT $ ind_pred) c, | |
| 650 | HOLogic.Collect_const (HOLogic.dest_setT (fastype_of c)) $ | |
| 651 | nth_elem (find_index_eq c cs, preds))))) | |
| 10735 | 652 | (fn _ => [rtac vimage_Collect 1, rewrite_goals_tac sum_case_rewrites, rtac refl 1])) cs; | 
| 5094 | 653 | |
| 11880 | 654 | val induct = quick_and_dirty_prove_goalw_cterm thy [inductive_conj_def] (Thm.cterm_of sign | 
| 5094 | 655 | (Logic.list_implies (ind_prems, ind_concl))) (fn prems => | 
| 656 | [rtac (impI RS allI) 1, | |
| 10202 | 657 | DETERM (etac (mono RS (fp_def RS def_lfp_induct)) 1), | 
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 658 | rewrite_goals_tac (map mk_meta_eq (vimage_Int::Int_Collect::vimage_simps)), | 
| 5094 | 659 | fold_goals_tac rec_sets_defs, | 
| 660 | (*This CollectE and disjE separates out the introduction rules*) | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 661 | REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE, exE])), | 
| 5094 | 662 | (*Now break down the individual cases. No disjE here in case | 
| 663 | some premise involves disjunction.*) | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 664 | REPEAT (FIRSTGOAL (etac conjE ORELSE' hyp_subst_tac)), | 
| 7293 | 665 | rewrite_goals_tac sum_case_rewrites, | 
| 5094 | 666 | EVERY (map (fn prem => | 
| 5149 | 667 | DEPTH_SOLVE_1 (ares_tac [prem, conjI, refl] 1)) prems)]); | 
| 5094 | 668 | |
| 11880 | 669 | val lemma = quick_and_dirty_prove_goalw_cterm thy rec_sets_defs (Thm.cterm_of sign | 
| 5094 | 670 | (Logic.mk_implies (ind_concl, mutual_ind_concl))) (fn prems => | 
| 671 | [cut_facts_tac prems 1, | |
| 672 | REPEAT (EVERY | |
| 673 | [REPEAT (resolve_tac [conjI, impI] 1), | |
| 674 | TRY (dtac vimageD 1), etac allE 1, dtac mp 1, atac 1, | |
| 7293 | 675 | rewrite_goals_tac sum_case_rewrites, | 
| 5094 | 676 | atac 1])]) | 
| 677 | ||
| 10988 
e0016a009c17
Splitting of arguments of product types in induction rules is now less
 berghofe parents: 
10910diff
changeset | 678 | in standard (split_rule factors (induct RS lemma)) end; | 
| 5094 | 679 | |
| 6424 | 680 | |
| 681 | ||
| 10735 | 682 | (** specification of (co)inductive sets **) | 
| 5094 | 683 | |
| 10729 | 684 | fun cond_declare_consts declare_consts cs paramTs cnames = | 
| 685 | if declare_consts then | |
| 686 | Theory.add_consts_i (map (fn (c, n) => (n, paramTs ---> fastype_of c, NoSyn)) (cs ~~ cnames)) | |
| 687 | else I; | |
| 688 | ||
| 12180 | 689 | fun mk_ind_def declare_consts alt_name coind cs intr_ts monos thy | 
| 9072 
a4896cf23638
Now also proves monotonicity when in quick_and_dirty mode.
 berghofe parents: 
8720diff
changeset | 690 | params paramTs cTs cnames = | 
| 5094 | 691 | let | 
| 692 |     val sumT = fold_bal (fn (T, U) => Type ("+", [T, U])) cTs;
 | |
| 693 | val setT = HOLogic.mk_setT sumT; | |
| 694 | ||
| 10735 | 695 | val fp_name = if coind then gfp_name else lfp_name; | 
| 5094 | 696 | |
| 5149 | 697 | val used = foldr add_term_names (intr_ts, []); | 
| 698 | val [sname, xname] = variantlist (["S", "x"], used); | |
| 699 | ||
| 5094 | 700 | (* transform an introduction rule into a conjunction *) | 
| 701 | (* [| t : ... S_i ... ; ... |] ==> u : S_j *) | |
| 702 | (* is transformed into *) | |
| 703 | (* x = Inj_j u & t : ... Inj_i -`` S ... & ... *) | |
| 704 | ||
| 705 | fun transform_rule r = | |
| 706 | let | |
| 707 | val frees = map dest_Free ((add_term_frees (r, [])) \\ params); | |
| 5149 | 708 | val subst = subst_free | 
| 709 | (cs ~~ (map (mk_vimage cs sumT (Free (sname, setT))) cs)); | |
| 5094 | 710 |         val Const ("op :", _) $ t $ u =
 | 
| 711 | HOLogic.dest_Trueprop (Logic.strip_imp_concl r) | |
| 712 | ||
| 713 | in foldr (fn ((x, T), P) => HOLogic.mk_exists (x, T, P)) | |
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 714 | (frees, foldr1 HOLogic.mk_conj | 
| 5149 | 715 | (((HOLogic.eq_const sumT) $ Free (xname, sumT) $ (mk_inj cs sumT u t)):: | 
| 5094 | 716 | (map (subst o HOLogic.dest_Trueprop) | 
| 717 | (Logic.strip_imp_prems r)))) | |
| 718 | end | |
| 719 | ||
| 720 | (* make a disjunction of all introduction rules *) | |
| 721 | ||
| 5149 | 722 | val fp_fun = absfree (sname, setT, (HOLogic.Collect_const sumT) $ | 
| 7710 
bf8cb3fc5d64
Monotonicity rules for inductive definitions can now be added to a theory via
 berghofe parents: 
7349diff
changeset | 723 | absfree (xname, sumT, foldr1 HOLogic.mk_disj (map transform_rule intr_ts))); | 
| 5094 | 724 | |
| 725 | (* add definiton of recursive sets to theory *) | |
| 726 | ||
| 727 | val rec_name = if alt_name = "" then space_implode "_" cnames else alt_name; | |
| 6394 | 728 | val full_rec_name = Sign.full_name (Theory.sign_of thy) rec_name; | 
| 5094 | 729 | |
| 730 | val rec_const = list_comb | |
| 731 | (Const (full_rec_name, paramTs ---> setT), params); | |
| 732 | ||
| 733 | val fp_def_term = Logic.mk_equals (rec_const, | |
| 10735 | 734 | Const (fp_name, (setT --> setT) --> setT) $ fp_fun); | 
| 5094 | 735 | |
| 736 | val def_terms = fp_def_term :: (if length cs < 2 then [] else | |
| 737 | map (fn c => Logic.mk_equals (c, mk_vimage cs sumT rec_const c)) cs); | |
| 738 | ||
| 8433 | 739 | val (thy', [fp_def :: rec_sets_defs]) = | 
| 740 | thy | |
| 10729 | 741 | |> cond_declare_consts declare_consts cs paramTs cnames | 
| 8433 | 742 | |> (if length cs < 2 then I | 
| 743 | else Theory.add_consts_i [(rec_name, paramTs ---> setT, NoSyn)]) | |
| 744 | |> Theory.add_path rec_name | |
| 9315 | 745 |       |> PureThy.add_defss_i false [(("defs", def_terms), [])];
 | 
| 5094 | 746 | |
| 9072 
a4896cf23638
Now also proves monotonicity when in quick_and_dirty mode.
 berghofe parents: 
8720diff
changeset | 747 | val mono = prove_mono setT fp_fun monos thy' | 
| 5094 | 748 | |
| 10735 | 749 | in (thy', mono, fp_def, rec_sets_defs, rec_const, sumT) end; | 
| 5094 | 750 | |
| 9072 
a4896cf23638
Now also proves monotonicity when in quick_and_dirty mode.
 berghofe parents: 
8720diff
changeset | 751 | fun add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs | 
| 12180 | 752 | intros monos thy params paramTs cTs cnames induct_cases = | 
| 9072 
a4896cf23638
Now also proves monotonicity when in quick_and_dirty mode.
 berghofe parents: 
8720diff
changeset | 753 | let | 
| 10735 | 754 | val _ = | 
| 755 |       if verbose then message ("Proofs for " ^ coind_prefix coind ^ "inductive set(s) " ^
 | |
| 756 | commas_quote cnames) else (); | |
| 9072 
a4896cf23638
Now also proves monotonicity when in quick_and_dirty mode.
 berghofe parents: 
8720diff
changeset | 757 | |
| 
a4896cf23638
Now also proves monotonicity when in quick_and_dirty mode.
 berghofe parents: 
8720diff
changeset | 758 | val ((intr_names, intr_ts), intr_atts) = apfst split_list (split_list intros); | 
| 
a4896cf23638
Now also proves monotonicity when in quick_and_dirty mode.
 berghofe parents: 
8720diff
changeset | 759 | |
| 9939 | 760 | val (thy1, mono, fp_def, rec_sets_defs, rec_const, sumT) = | 
| 12180 | 761 | mk_ind_def declare_consts alt_name coind cs intr_ts monos thy | 
| 9072 
a4896cf23638
Now also proves monotonicity when in quick_and_dirty mode.
 berghofe parents: 
8720diff
changeset | 762 | params paramTs cTs cnames; | 
| 
a4896cf23638
Now also proves monotonicity when in quick_and_dirty mode.
 berghofe parents: 
8720diff
changeset | 763 | |
| 12180 | 764 | val (intrs, unfold) = prove_intrs coind mono fp_def intr_ts rec_sets_defs thy1; | 
| 5094 | 765 | val elims = if no_elim then [] else | 
| 9939 | 766 | prove_elims cs cTs params intr_ts intr_names unfold rec_sets_defs thy1; | 
| 8312 
b470bc28b59d
add_cases_induct: accomodate no_elim and no_ind flags;
 wenzelm parents: 
8307diff
changeset | 767 | val raw_induct = if no_ind then Drule.asm_rl else | 
| 5094 | 768 | if coind then standard (rule_by_tactic | 
| 5553 | 769 | (rewrite_tac [mk_meta_eq vimage_Un] THEN | 
| 5094 | 770 | fold_tac rec_sets_defs) (mono RS (fp_def RS def_Collect_coinduct))) | 
| 771 | else | |
| 772 | prove_indrule cs cTs sumT rec_const params intr_ts mono fp_def | |
| 9939 | 773 | rec_sets_defs thy1; | 
| 12165 | 774 | val induct = | 
| 775 | if coind orelse no_ind orelse length cs > 1 then (raw_induct, [RuleCases.consumes 0]) | |
| 776 | else (raw_induct RSN (2, rev_mp), [RuleCases.consumes 1]); | |
| 5094 | 777 | |
| 9939 | 778 | val (thy2, intrs') = | 
| 779 | thy1 |> PureThy.add_thms ((intr_names ~~ intrs) ~~ intr_atts); | |
| 10735 | 780 | val (thy3, ([intrs'', elims'], [induct'])) = | 
| 781 | thy2 | |
| 11005 | 782 | |> PureThy.add_thmss | 
| 11628 | 783 |         [(("intros", intrs'), []),
 | 
| 11005 | 784 |           (("elims", elims), [RuleCases.consumes 1])]
 | 
| 10735 | 785 | |>>> PureThy.add_thms | 
| 12165 | 786 | [((coind_prefix coind ^ "induct", rulify (#1 induct)), | 
| 787 | (RuleCases.case_names induct_cases :: #2 induct))] | |
| 8433 | 788 | |>> Theory.parent_path; | 
| 9939 | 789 | in (thy3, | 
| 10735 | 790 |     {defs = fp_def :: rec_sets_defs,
 | 
| 5094 | 791 | mono = mono, | 
| 792 | unfold = unfold, | |
| 9939 | 793 | intrs = intrs'', | 
| 7798 
42e94b618f34
return stored thms with proper naming in derivation;
 wenzelm parents: 
7710diff
changeset | 794 | elims = elims', | 
| 
42e94b618f34
return stored thms with proper naming in derivation;
 wenzelm parents: 
7710diff
changeset | 795 | mk_cases = mk_cases elims', | 
| 10729 | 796 | raw_induct = rulify raw_induct, | 
| 7798 
42e94b618f34
return stored thms with proper naming in derivation;
 wenzelm parents: 
7710diff
changeset | 797 | induct = induct'}) | 
| 5094 | 798 | end; | 
| 799 | ||
| 6424 | 800 | |
| 10735 | 801 | (* external interfaces *) | 
| 5094 | 802 | |
| 10735 | 803 | fun try_term f msg sign t = | 
| 804 | (case Library.try f t of | |
| 805 | Some x => x | |
| 806 | | None => error (msg ^ Sign.string_of_term sign t)); | |
| 5094 | 807 | |
| 12180 | 808 | fun add_inductive_i verbose declare_consts alt_name coind no_elim no_ind cs pre_intros monos thy = | 
| 5094 | 809 | let | 
| 6424 | 810 | val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions"); | 
| 6394 | 811 | val sign = Theory.sign_of thy; | 
| 5094 | 812 | |
| 813 | (*parameters should agree for all mutually recursive components*) | |
| 814 | val (_, params) = strip_comb (hd cs); | |
| 10735 | 815 | val paramTs = map (try_term (snd o dest_Free) "Parameter in recursive\ | 
| 5094 | 816 | \ component is not a free variable: " sign) params; | 
| 817 | ||
| 10735 | 818 | val cTs = map (try_term (HOLogic.dest_setT o fastype_of) | 
| 5094 | 819 | "Recursive component not of type set: " sign) cs; | 
| 820 | ||
| 10735 | 821 | val full_cnames = map (try_term (fst o dest_Const o head_of) | 
| 5094 | 822 | "Recursive set not previously declared as constant: " sign) cs; | 
| 6437 | 823 | val cnames = map Sign.base_name full_cnames; | 
| 5094 | 824 | |
| 10729 | 825 | val save_sign = | 
| 826 | thy |> Theory.copy |> cond_declare_consts declare_consts cs paramTs cnames |> Theory.sign_of; | |
| 827 | val intros = map (check_rule save_sign cs) pre_intros; | |
| 8401 | 828 | val induct_cases = map (#1 o #1) intros; | 
| 6437 | 829 | |
| 9405 | 830 |     val (thy1, result as {elims, induct, ...}) =
 | 
| 11628 | 831 | add_ind_def verbose declare_consts alt_name coind no_elim no_ind cs intros monos | 
| 12180 | 832 | thy params paramTs cTs cnames induct_cases; | 
| 8307 | 833 | val thy2 = thy1 | 
| 834 |       |> put_inductives full_cnames ({names = full_cnames, coind = coind}, result)
 | |
| 12172 | 835 | |> add_cases_induct no_elim (no_ind orelse coind orelse length cs > 1) | 
| 836 | full_cnames elims induct; | |
| 6437 | 837 | in (thy2, result) end; | 
| 5094 | 838 | |
| 12180 | 839 | fun add_inductive verbose coind c_strings intro_srcs raw_monos thy = | 
| 5094 | 840 | let | 
| 6394 | 841 | val sign = Theory.sign_of thy; | 
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12311diff
changeset | 842 | val cs = map (term_of o HOLogic.read_cterm sign) c_strings; | 
| 6424 | 843 | |
| 844 | val intr_names = map (fst o fst) intro_srcs; | |
| 9405 | 845 | fun read_rule s = Thm.read_cterm sign (s, propT) | 
| 846 |       handle ERROR => error ("The error(s) above occurred for " ^ s);
 | |
| 847 | val intr_ts = map (Thm.term_of o read_rule o snd o fst) intro_srcs; | |
| 6424 | 848 | val intr_atts = map (map (Attrib.global_attribute thy) o snd) intro_srcs; | 
| 7020 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 849 | val (cs', intr_ts') = unify_consts sign cs intr_ts; | 
| 5094 | 850 | |
| 12180 | 851 | val (thy', monos) = thy |> IsarThy.apply_theorems raw_monos; | 
| 6424 | 852 | in | 
| 7020 
75ff179df7b7
Exported function unify_consts (workaround to avoid inconsistently
 berghofe parents: 
6851diff
changeset | 853 | add_inductive_i verbose false "" coind false false cs' | 
| 12180 | 854 | ((intr_names ~~ intr_ts') ~~ intr_atts) monos thy' | 
| 5094 | 855 | end; | 
| 856 | ||
| 6424 | 857 | |
| 858 | ||
| 6437 | 859 | (** package setup **) | 
| 860 | ||
| 861 | (* setup theory *) | |
| 862 | ||
| 8634 | 863 | val setup = | 
| 864 | [InductiveData.init, | |
| 9625 | 865 |   Method.add_methods [("ind_cases", mk_cases_meth oo mk_cases_args,
 | 
| 9598 | 866 | "dynamic case analysis on sets")], | 
| 9893 | 867 |   Attrib.add_attributes [("mono", mono_attr, "declaration of monotonicity rule")]];
 | 
| 6437 | 868 | |
| 869 | ||
| 870 | (* outer syntax *) | |
| 6424 | 871 | |
| 6723 | 872 | local structure P = OuterParse and K = OuterSyntax.Keyword in | 
| 6424 | 873 | |
| 12180 | 874 | fun mk_ind coind ((sets, intrs), monos) = | 
| 875 | #1 o add_inductive true coind sets (map P.triple_swap intrs) monos; | |
| 6424 | 876 | |
| 877 | fun ind_decl coind = | |
| 12876 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12798diff
changeset | 878 | Scan.repeat1 P.term -- | 
| 9598 | 879 | (P.$$$ "intros" |-- | 
| 12876 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12798diff
changeset | 880 | P.!!! (Scan.repeat1 (P.opt_thm_name ":" -- P.prop))) -- | 
| 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12798diff
changeset | 881 | Scan.optional (P.$$$ "monos" |-- P.!!! P.xthms1) [] | 
| 6424 | 882 | >> (Toplevel.theory o mk_ind coind); | 
| 883 | ||
| 6723 | 884 | val inductiveP = | 
| 885 | OuterSyntax.command "inductive" "define inductive sets" K.thy_decl (ind_decl false); | |
| 886 | ||
| 887 | val coinductiveP = | |
| 888 | OuterSyntax.command "coinductive" "define coinductive sets" K.thy_decl (ind_decl true); | |
| 6424 | 889 | |
| 7107 | 890 | |
| 891 | val ind_cases = | |
| 12876 
a70df1e5bf10
got rid of explicit marginal comments (now stripped earlier from input);
 wenzelm parents: 
12798diff
changeset | 892 | P.and_list1 (P.opt_thm_name ":" -- Scan.repeat1 P.prop) | 
| 7107 | 893 | >> (Toplevel.theory o inductive_cases); | 
| 894 | ||
| 895 | val inductive_casesP = | |
| 9804 | 896 | OuterSyntax.command "inductive_cases" | 
| 9598 | 897 | "create simplified instances of elimination rules (improper)" K.thy_script ind_cases; | 
| 7107 | 898 | |
| 12180 | 899 | val _ = OuterSyntax.add_keywords ["intros", "monos"]; | 
| 7107 | 900 | val _ = OuterSyntax.add_parsers [inductiveP, coinductiveP, inductive_casesP]; | 
| 6424 | 901 | |
| 5094 | 902 | end; | 
| 6424 | 903 | |
| 904 | end; |