| author | haftmann | 
| Tue, 20 Jun 2017 13:07:49 +0200 | |
| changeset 66149 | 4bf16fb7c14d | 
| parent 62390 | 842917225d56 | 
| child 67443 | 3abf6a722518 | 
| permissions | -rw-r--r-- | 
| 37936 | 1 | (* Title: HOL/Auth/Message.thy | 
| 1839 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 1996 University of Cambridge | |
| 4 | ||
| 5 | Datatypes of agents and messages; | |
| 1913 | 6 | Inductive relations "parts", "analz" and "synth" | 
| 1839 | 7 | *) | 
| 8 | ||
| 61830 | 9 | section\<open>Theory of Agents and Messages for Security Protocols\<close> | 
| 13956 | 10 | |
| 27105 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 11 | theory Message | 
| 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 12 | imports Main | 
| 
5f139027c365
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26807diff
changeset | 13 | begin | 
| 11189 | 14 | |
| 15 | (*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*) | |
| 13926 | 16 | lemma [simp] : "A \<union> (B \<union> A) = B \<union> A" | 
| 11189 | 17 | by blast | 
| 1839 | 18 | |
| 41774 | 19 | type_synonym | 
| 1839 | 20 | key = nat | 
| 21 | ||
| 22 | consts | |
| 61830 | 23 | all_symmetric :: bool \<comment>\<open>true if all keys are symmetric\<close> | 
| 24 | invKey :: "key=>key" \<comment>\<open>inverse of a symmetric key\<close> | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 25 | |
| 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 26 | specification (invKey) | 
| 14181 | 27 | invKey [simp]: "invKey (invKey K) = K" | 
| 28 | invKey_symmetric: "all_symmetric --> invKey = id" | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 29 | by (rule exI [of _ id], auto) | 
| 1839 | 30 | |
| 14126 
28824746d046
Tidying and replacement of some axioms by specifications
 paulson parents: 
13956diff
changeset | 31 | |
| 61830 | 32 | text\<open>The inverse of a symmetric key is itself; that of a public key | 
| 33 | is the private key and vice versa\<close> | |
| 1839 | 34 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35109diff
changeset | 35 | definition symKeys :: "key set" where | 
| 11230 
756c5034f08b
misc tidying; changing the predicate isSymKey to the set symKeys
 paulson parents: 
11192diff
changeset | 36 |   "symKeys == {K. invKey K = K}"
 | 
| 1839 | 37 | |
| 61830 | 38 | datatype \<comment>\<open>We allow any number of friendly agents\<close> | 
| 2032 | 39 | agent = Server | Friend nat | Spy | 
| 1839 | 40 | |
| 58310 | 41 | datatype | 
| 61830 | 42 | msg = Agent agent \<comment>\<open>Agent names\<close> | 
| 43 | | Number nat \<comment>\<open>Ordinary integers, timestamps, ...\<close> | |
| 44 | | Nonce nat \<comment>\<open>Unguessable nonces\<close> | |
| 45 | | Key key \<comment>\<open>Crypto keys\<close> | |
| 46 | | Hash msg \<comment>\<open>Hashing\<close> | |
| 47 | | MPair msg msg \<comment>\<open>Compound messages\<close> | |
| 48 | | Crypt key msg \<comment>\<open>Encryption, public- or shared-key\<close> | |
| 1839 | 49 | |
| 5234 | 50 | |
| 61956 | 51 | text\<open>Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...\<close> | 
| 5234 | 52 | syntax | 
| 61956 | 53 |   "_MTuple" :: "['a, args] \<Rightarrow> 'a * 'b"  ("(2\<lbrace>_,/ _\<rbrace>)")
 | 
| 1839 | 54 | translations | 
| 61956 | 55 | "\<lbrace>x, y, z\<rbrace>" \<rightleftharpoons> "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>" | 
| 56 | "\<lbrace>x, y\<rbrace>" \<rightleftharpoons> "CONST MPair x y" | |
| 1839 | 57 | |
| 58 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35109diff
changeset | 59 | definition HPair :: "[msg,msg] => msg" ("(4Hash[_] /_)" [0, 1000]) where
 | 
| 61830 | 60 | \<comment>\<open>Message Y paired with a MAC computed with the help of X\<close> | 
| 61956 | 61 | "Hash[X] Y == \<lbrace>Hash\<lbrace>X,Y\<rbrace>, Y\<rbrace>" | 
| 2484 | 62 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35109diff
changeset | 63 | definition keysFor :: "msg set => key set" where | 
| 61830 | 64 | \<comment>\<open>Keys useful to decrypt elements of a message set\<close> | 
| 11192 | 65 |   "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 | 
| 1839 | 66 | |
| 16818 | 67 | |
| 61830 | 68 | subsubsection\<open>Inductive Definition of All Parts" of a Message\<close> | 
| 1839 | 69 | |
| 23746 | 70 | inductive_set | 
| 71 | parts :: "msg set => msg set" | |
| 72 | for H :: "msg set" | |
| 73 | where | |
| 61956 | 74 | Inj [intro]: "X \<in> H ==> X \<in> parts H" | 
| 75 | | Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> X \<in> parts H" | |
| 76 | | Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> Y \<in> parts H" | |
| 23746 | 77 | | Body: "Crypt K X \<in> parts H ==> X \<in> parts H" | 
| 11189 | 78 | |
| 79 | ||
| 61830 | 80 | text\<open>Monotonicity\<close> | 
| 16818 | 81 | lemma parts_mono: "G \<subseteq> H ==> parts(G) \<subseteq> parts(H)" | 
| 11189 | 82 | apply auto | 
| 83 | apply (erule parts.induct) | |
| 16818 | 84 | apply (blast dest: parts.Fst parts.Snd parts.Body)+ | 
| 11189 | 85 | done | 
| 1839 | 86 | |
| 87 | ||
| 61830 | 88 | text\<open>Equations hold because constructors are injective.\<close> | 
| 13926 | 89 | lemma Friend_image_eq [simp]: "(Friend x \<in> Friend`A) = (x:A)" | 
| 90 | by auto | |
| 91 | ||
| 92 | lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)" | |
| 93 | by auto | |
| 94 | ||
| 95 | lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)" | |
| 96 | by auto | |
| 97 | ||
| 98 | ||
| 61830 | 99 | subsubsection\<open>Inverse of keys\<close> | 
| 13926 | 100 | |
| 101 | lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')" | |
| 28698 | 102 | by (metis invKey) | 
| 13926 | 103 | |
| 104 | ||
| 61830 | 105 | subsection\<open>keysFor operator\<close> | 
| 13926 | 106 | |
| 107 | lemma keysFor_empty [simp]: "keysFor {} = {}"
 | |
| 108 | by (unfold keysFor_def, blast) | |
| 109 | ||
| 110 | lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'" | |
| 111 | by (unfold keysFor_def, blast) | |
| 112 | ||
| 113 | lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))" | |
| 114 | by (unfold keysFor_def, blast) | |
| 115 | ||
| 61830 | 116 | text\<open>Monotonicity\<close> | 
| 16818 | 117 | lemma keysFor_mono: "G \<subseteq> H ==> keysFor(G) \<subseteq> keysFor(H)" | 
| 13926 | 118 | by (unfold keysFor_def, blast) | 
| 119 | ||
| 120 | lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H" | |
| 121 | by (unfold keysFor_def, auto) | |
| 122 | ||
| 123 | lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H" | |
| 124 | by (unfold keysFor_def, auto) | |
| 125 | ||
| 126 | lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H" | |
| 127 | by (unfold keysFor_def, auto) | |
| 128 | ||
| 129 | lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H" | |
| 130 | by (unfold keysFor_def, auto) | |
| 131 | ||
| 132 | lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H" | |
| 133 | by (unfold keysFor_def, auto) | |
| 134 | ||
| 61956 | 135 | lemma keysFor_insert_MPair [simp]: "keysFor (insert \<lbrace>X,Y\<rbrace> H) = keysFor H" | 
| 13926 | 136 | by (unfold keysFor_def, auto) | 
| 137 | ||
| 138 | lemma keysFor_insert_Crypt [simp]: | |
| 139 | "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)" | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 140 | by (unfold keysFor_def, auto) | 
| 13926 | 141 | |
| 142 | lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
 | |
| 143 | by (unfold keysFor_def, auto) | |
| 144 | ||
| 145 | lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H" | |
| 146 | by (unfold keysFor_def, blast) | |
| 147 | ||
| 148 | ||
| 61830 | 149 | subsection\<open>Inductive relation "parts"\<close> | 
| 13926 | 150 | |
| 151 | lemma MPair_parts: | |
| 61956 | 152 | "[| \<lbrace>X,Y\<rbrace> \<in> parts H; | 
| 13926 | 153 | [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P" | 
| 154 | by (blast dest: parts.Fst parts.Snd) | |
| 155 | ||
| 156 | declare MPair_parts [elim!] parts.Body [dest!] | |
| 61830 | 157 | text\<open>NB These two rules are UNSAFE in the formal sense, as they discard the | 
| 13926 | 158 | compound message. They work well on THIS FILE. | 
| 61830 | 159 | \<open>MPair_parts\<close> is left as SAFE because it speeds up proofs. | 
| 160 | The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.\<close> | |
| 13926 | 161 | |
| 162 | lemma parts_increasing: "H \<subseteq> parts(H)" | |
| 163 | by blast | |
| 164 | ||
| 45605 | 165 | lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD] | 
| 13926 | 166 | |
| 167 | lemma parts_empty [simp]: "parts{} = {}"
 | |
| 168 | apply safe | |
| 169 | apply (erule parts.induct, blast+) | |
| 170 | done | |
| 171 | ||
| 172 | lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
 | |
| 173 | by simp | |
| 174 | ||
| 61830 | 175 | text\<open>WARNING: loops if H = {Y}, therefore must not be repeated!\<close>
 | 
| 13926 | 176 | lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
 | 
| 26807 
4cd176ea28dc
Replaced blast by fast in proof of parts_singleton, since blast looped
 berghofe parents: 
26342diff
changeset | 177 | by (erule parts.induct, fast+) | 
| 13926 | 178 | |
| 179 | ||
| 61830 | 180 | subsubsection\<open>Unions\<close> | 
| 13926 | 181 | |
| 182 | lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)" | |
| 183 | by (intro Un_least parts_mono Un_upper1 Un_upper2) | |
| 184 | ||
| 185 | lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)" | |
| 186 | apply (rule subsetI) | |
| 187 | apply (erule parts.induct, blast+) | |
| 188 | done | |
| 189 | ||
| 190 | lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)" | |
| 191 | by (intro equalityI parts_Un_subset1 parts_Un_subset2) | |
| 192 | ||
| 193 | lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
 | |
| 34185 | 194 | by (metis insert_is_Un parts_Un) | 
| 13926 | 195 | |
| 61830 | 196 | text\<open>TWO inserts to avoid looping. This rewrite is better than nothing. | 
| 197 | But its behaviour can be strange.\<close> | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 198 | lemma parts_insert2: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 199 |      "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
 | 
| 34185 | 200 | by (metis Un_commute Un_empty_right Un_insert_right insert_is_Un parts_Un) | 
| 13926 | 201 | |
| 202 | lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)" | |
| 203 | by (intro UN_least parts_mono UN_upper) | |
| 204 | ||
| 205 | lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))" | |
| 206 | apply (rule subsetI) | |
| 207 | apply (erule parts.induct, blast+) | |
| 208 | done | |
| 209 | ||
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 210 | lemma parts_UN [simp]: | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 211 | "parts (\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts (H x))" | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 212 | by (intro equalityI parts_UN_subset1 parts_UN_subset2) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 213 | |
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 214 | lemma parts_image [simp]: | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 215 |   "parts (f ` A) = (\<Union>x\<in>A. parts {f x})"
 | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 216 | apply auto | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 217 | apply (metis (mono_tags, hide_lams) image_iff parts_singleton) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 218 | apply (metis empty_subsetI image_eqI insert_absorb insert_subset parts_mono) | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 219 | done | 
| 13926 | 220 | |
| 61830 | 221 | text\<open>Added to simplify arguments to parts, analz and synth. | 
| 222 | NOTE: the UN versions are no longer used!\<close> | |
| 13926 | 223 | |
| 224 | ||
| 61830 | 225 | text\<open>This allows \<open>blast\<close> to simplify occurrences of | 
| 226 |   @{term "parts(G\<union>H)"} in the assumption.\<close>
 | |
| 17729 | 227 | lemmas in_parts_UnE = parts_Un [THEN equalityD1, THEN subsetD, THEN UnE] | 
| 228 | declare in_parts_UnE [elim!] | |
| 13926 | 229 | |
| 230 | ||
| 231 | lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)" | |
| 232 | by (blast intro: parts_mono [THEN [2] rev_subsetD]) | |
| 233 | ||
| 61830 | 234 | subsubsection\<open>Idempotence and transitivity\<close> | 
| 13926 | 235 | |
| 236 | lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H" | |
| 237 | by (erule parts.induct, blast+) | |
| 238 | ||
| 239 | lemma parts_idem [simp]: "parts (parts H) = parts H" | |
| 240 | by blast | |
| 241 | ||
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 242 | lemma parts_subset_iff [simp]: "(parts G \<subseteq> parts H) = (G \<subseteq> parts H)" | 
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 243 | by (metis parts_idem parts_increasing parts_mono subset_trans) | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 244 | |
| 13926 | 245 | lemma parts_trans: "[| X\<in> parts G; G \<subseteq> parts H |] ==> X\<in> parts H" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39216diff
changeset | 246 | by (metis parts_subset_iff set_mp) | 
| 13926 | 247 | |
| 61830 | 248 | text\<open>Cut\<close> | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 249 | lemma parts_cut: | 
| 18492 | 250 | "[| Y\<in> parts (insert X G); X\<in> parts H |] ==> Y\<in> parts (G \<union> H)" | 
| 251 | by (blast intro: parts_trans) | |
| 252 | ||
| 13926 | 253 | lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39216diff
changeset | 254 | by (metis insert_absorb parts_idem parts_insert) | 
| 13926 | 255 | |
| 256 | ||
| 61830 | 257 | subsubsection\<open>Rewrite rules for pulling out atomic messages\<close> | 
| 13926 | 258 | |
| 259 | lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset] | |
| 260 | ||
| 261 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 262 | lemma parts_insert_Agent [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 263 | "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)" | 
| 13926 | 264 | apply (rule parts_insert_eq_I) | 
| 265 | apply (erule parts.induct, auto) | |
| 266 | done | |
| 267 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 268 | lemma parts_insert_Nonce [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 269 | "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)" | 
| 13926 | 270 | apply (rule parts_insert_eq_I) | 
| 271 | apply (erule parts.induct, auto) | |
| 272 | done | |
| 273 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 274 | lemma parts_insert_Number [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 275 | "parts (insert (Number N) H) = insert (Number N) (parts H)" | 
| 13926 | 276 | apply (rule parts_insert_eq_I) | 
| 277 | apply (erule parts.induct, auto) | |
| 278 | done | |
| 279 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 280 | lemma parts_insert_Key [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 281 | "parts (insert (Key K) H) = insert (Key K) (parts H)" | 
| 13926 | 282 | apply (rule parts_insert_eq_I) | 
| 283 | apply (erule parts.induct, auto) | |
| 284 | done | |
| 285 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 286 | lemma parts_insert_Hash [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 287 | "parts (insert (Hash X) H) = insert (Hash X) (parts H)" | 
| 13926 | 288 | apply (rule parts_insert_eq_I) | 
| 289 | apply (erule parts.induct, auto) | |
| 290 | done | |
| 291 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 292 | lemma parts_insert_Crypt [simp]: | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 293 | "parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))" | 
| 13926 | 294 | apply (rule equalityI) | 
| 295 | apply (rule subsetI) | |
| 296 | apply (erule parts.induct, auto) | |
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 297 | apply (blast intro: parts.Body) | 
| 13926 | 298 | done | 
| 299 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 300 | lemma parts_insert_MPair [simp]: | 
| 61956 | 301 | "parts (insert \<lbrace>X,Y\<rbrace> H) = | 
| 302 | insert \<lbrace>X,Y\<rbrace> (parts (insert X (insert Y H)))" | |
| 13926 | 303 | apply (rule equalityI) | 
| 304 | apply (rule subsetI) | |
| 305 | apply (erule parts.induct, auto) | |
| 306 | apply (blast intro: parts.Fst parts.Snd)+ | |
| 307 | done | |
| 308 | ||
| 309 | lemma parts_image_Key [simp]: "parts (Key`N) = Key`N" | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61956diff
changeset | 310 | by auto | 
| 13926 | 311 | |
| 61830 | 312 | text\<open>In any message, there is an upper bound N on its greatest nonce.\<close> | 
| 13926 | 313 | lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
 | 
| 57394 | 314 | proof (induct msg) | 
| 315 | case (Nonce n) | |
| 316 | show ?case | |
| 317 | by simp (metis Suc_n_not_le_n) | |
| 318 | next | |
| 319 | case (MPair X Y) | |
| 61830 | 320 | then show ?case \<comment>\<open>metis works out the necessary sum itself!\<close> | 
| 57394 | 321 | by (simp add: parts_insert2) (metis le_trans nat_le_linear) | 
| 322 | qed auto | |
| 13926 | 323 | |
| 61830 | 324 | subsection\<open>Inductive relation "analz"\<close> | 
| 13926 | 325 | |
| 61830 | 326 | text\<open>Inductive definition of "analz" -- what can be broken down from a set of | 
| 1839 | 327 | messages, including keys. A form of downward closure. Pairs can | 
| 61830 | 328 | be taken apart; messages decrypted with known keys.\<close> | 
| 1839 | 329 | |
| 23746 | 330 | inductive_set | 
| 331 | analz :: "msg set => msg set" | |
| 332 | for H :: "msg set" | |
| 333 | where | |
| 61956 | 334 | Inj [intro,simp]: "X \<in> H ==> X \<in> analz H" | 
| 335 | | Fst: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> X \<in> analz H" | |
| 336 | | Snd: "\<lbrace>X,Y\<rbrace> \<in> analz H ==> Y \<in> analz H" | |
| 23746 | 337 | | Decrypt [dest]: | 
| 11192 | 338 | "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H" | 
| 1839 | 339 | |
| 340 | ||
| 61830 | 341 | text\<open>Monotonicity; Lemma 1 of Lowe's paper\<close> | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 342 | lemma analz_mono: "G\<subseteq>H ==> analz(G) \<subseteq> analz(H)" | 
| 11189 | 343 | apply auto | 
| 344 | apply (erule analz.induct) | |
| 16818 | 345 | apply (auto dest: analz.Fst analz.Snd) | 
| 11189 | 346 | done | 
| 347 | ||
| 61830 | 348 | text\<open>Making it safe speeds up proofs\<close> | 
| 13926 | 349 | lemma MPair_analz [elim!]: | 
| 61956 | 350 | "[| \<lbrace>X,Y\<rbrace> \<in> analz H; | 
| 13926 | 351 | [| X \<in> analz H; Y \<in> analz H |] ==> P | 
| 352 | |] ==> P" | |
| 353 | by (blast dest: analz.Fst analz.Snd) | |
| 354 | ||
| 355 | lemma analz_increasing: "H \<subseteq> analz(H)" | |
| 356 | by blast | |
| 357 | ||
| 358 | lemma analz_subset_parts: "analz H \<subseteq> parts H" | |
| 359 | apply (rule subsetI) | |
| 360 | apply (erule analz.induct, blast+) | |
| 361 | done | |
| 362 | ||
| 45605 | 363 | lemmas analz_into_parts = analz_subset_parts [THEN subsetD] | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 364 | |
| 45605 | 365 | lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD] | 
| 13926 | 366 | |
| 367 | ||
| 368 | lemma parts_analz [simp]: "parts (analz H) = parts H" | |
| 34185 | 369 | by (metis analz_increasing analz_subset_parts equalityI parts_mono parts_subset_iff) | 
| 13926 | 370 | |
| 371 | lemma analz_parts [simp]: "analz (parts H) = parts H" | |
| 372 | apply auto | |
| 373 | apply (erule analz.induct, auto) | |
| 374 | done | |
| 375 | ||
| 45605 | 376 | lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD] | 
| 13926 | 377 | |
| 61830 | 378 | subsubsection\<open>General equational properties\<close> | 
| 13926 | 379 | |
| 380 | lemma analz_empty [simp]: "analz{} = {}"
 | |
| 381 | apply safe | |
| 382 | apply (erule analz.induct, blast+) | |
| 383 | done | |
| 384 | ||
| 61830 | 385 | text\<open>Converse fails: we can analz more from the union than from the | 
| 386 | separate parts, as a key in one might decrypt a message in the other\<close> | |
| 13926 | 387 | lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)" | 
| 388 | by (intro Un_least analz_mono Un_upper1 Un_upper2) | |
| 389 | ||
| 390 | lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)" | |
| 391 | by (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 392 | ||
| 61830 | 393 | subsubsection\<open>Rewrite rules for pulling out atomic messages\<close> | 
| 13926 | 394 | |
| 395 | lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert] | |
| 396 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 397 | lemma analz_insert_Agent [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 398 | "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)" | 
| 13926 | 399 | apply (rule analz_insert_eq_I) | 
| 400 | apply (erule analz.induct, auto) | |
| 401 | done | |
| 402 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 403 | lemma analz_insert_Nonce [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 404 | "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)" | 
| 13926 | 405 | apply (rule analz_insert_eq_I) | 
| 406 | apply (erule analz.induct, auto) | |
| 407 | done | |
| 408 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 409 | lemma analz_insert_Number [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 410 | "analz (insert (Number N) H) = insert (Number N) (analz H)" | 
| 13926 | 411 | apply (rule analz_insert_eq_I) | 
| 412 | apply (erule analz.induct, auto) | |
| 413 | done | |
| 414 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 415 | lemma analz_insert_Hash [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 416 | "analz (insert (Hash X) H) = insert (Hash X) (analz H)" | 
| 13926 | 417 | apply (rule analz_insert_eq_I) | 
| 418 | apply (erule analz.induct, auto) | |
| 419 | done | |
| 420 | ||
| 61830 | 421 | text\<open>Can only pull out Keys if they are not needed to decrypt the rest\<close> | 
| 13926 | 422 | lemma analz_insert_Key [simp]: | 
| 423 | "K \<notin> keysFor (analz H) ==> | |
| 424 | analz (insert (Key K) H) = insert (Key K) (analz H)" | |
| 425 | apply (unfold keysFor_def) | |
| 426 | apply (rule analz_insert_eq_I) | |
| 427 | apply (erule analz.induct, auto) | |
| 428 | done | |
| 429 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 430 | lemma analz_insert_MPair [simp]: | 
| 61956 | 431 | "analz (insert \<lbrace>X,Y\<rbrace> H) = | 
| 432 | insert \<lbrace>X,Y\<rbrace> (analz (insert X (insert Y H)))" | |
| 13926 | 433 | apply (rule equalityI) | 
| 434 | apply (rule subsetI) | |
| 435 | apply (erule analz.induct, auto) | |
| 436 | apply (erule analz.induct) | |
| 437 | apply (blast intro: analz.Fst analz.Snd)+ | |
| 438 | done | |
| 439 | ||
| 61830 | 440 | text\<open>Can pull out enCrypted message if the Key is not known\<close> | 
| 13926 | 441 | lemma analz_insert_Crypt: | 
| 442 | "Key (invKey K) \<notin> analz H | |
| 443 | ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)" | |
| 444 | apply (rule analz_insert_eq_I) | |
| 445 | apply (erule analz.induct, auto) | |
| 446 | ||
| 447 | done | |
| 448 | ||
| 449 | lemma lemma1: "Key (invKey K) \<in> analz H ==> | |
| 450 | analz (insert (Crypt K X) H) \<subseteq> | |
| 451 | insert (Crypt K X) (analz (insert X H))" | |
| 452 | apply (rule subsetI) | |
| 23746 | 453 | apply (erule_tac x = x in analz.induct, auto) | 
| 13926 | 454 | done | 
| 455 | ||
| 456 | lemma lemma2: "Key (invKey K) \<in> analz H ==> | |
| 457 | insert (Crypt K X) (analz (insert X H)) \<subseteq> | |
| 458 | analz (insert (Crypt K X) H)" | |
| 459 | apply auto | |
| 23746 | 460 | apply (erule_tac x = x in analz.induct, auto) | 
| 13926 | 461 | apply (blast intro: analz_insertI analz.Decrypt) | 
| 462 | done | |
| 463 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 464 | lemma analz_insert_Decrypt: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 465 | "Key (invKey K) \<in> analz H ==> | 
| 13926 | 466 | analz (insert (Crypt K X) H) = | 
| 467 | insert (Crypt K X) (analz (insert X H))" | |
| 468 | by (intro equalityI lemma1 lemma2) | |
| 469 | ||
| 61830 | 470 | text\<open>Case analysis: either the message is secure, or it is not! Effective, | 
| 62390 | 471 | but can cause subgoals to blow up! Use with \<open>if_split\<close>; apparently | 
| 61830 | 472 | \<open>split_tac\<close> does not cope with patterns such as @{term"analz (insert
 | 
| 473 | (Crypt K X) H)"}\<close> | |
| 13926 | 474 | lemma analz_Crypt_if [simp]: | 
| 475 | "analz (insert (Crypt K X) H) = | |
| 476 | (if (Key (invKey K) \<in> analz H) | |
| 477 | then insert (Crypt K X) (analz (insert X H)) | |
| 478 | else insert (Crypt K X) (analz H))" | |
| 479 | by (simp add: analz_insert_Crypt analz_insert_Decrypt) | |
| 480 | ||
| 481 | ||
| 61830 | 482 | text\<open>This rule supposes "for the sake of argument" that we have the key.\<close> | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 483 | lemma analz_insert_Crypt_subset: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 484 | "analz (insert (Crypt K X) H) \<subseteq> | 
| 13926 | 485 | insert (Crypt K X) (analz (insert X H))" | 
| 486 | apply (rule subsetI) | |
| 487 | apply (erule analz.induct, auto) | |
| 488 | done | |
| 489 | ||
| 490 | ||
| 491 | lemma analz_image_Key [simp]: "analz (Key`N) = Key`N" | |
| 492 | apply auto | |
| 493 | apply (erule analz.induct, auto) | |
| 494 | done | |
| 495 | ||
| 496 | ||
| 61830 | 497 | subsubsection\<open>Idempotence and transitivity\<close> | 
| 13926 | 498 | |
| 499 | lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H" | |
| 500 | by (erule analz.induct, blast+) | |
| 501 | ||
| 502 | lemma analz_idem [simp]: "analz (analz H) = analz H" | |
| 503 | by blast | |
| 504 | ||
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 505 | lemma analz_subset_iff [simp]: "(analz G \<subseteq> analz H) = (G \<subseteq> analz H)" | 
| 34185 | 506 | by (metis analz_idem analz_increasing analz_mono subset_trans) | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 507 | |
| 13926 | 508 | lemma analz_trans: "[| X\<in> analz G; G \<subseteq> analz H |] ==> X\<in> analz H" | 
| 509 | by (drule analz_mono, blast) | |
| 510 | ||
| 61830 | 511 | text\<open>Cut; Lemma 2 of Lowe\<close> | 
| 13926 | 512 | lemma analz_cut: "[| Y\<in> analz (insert X H); X\<in> analz H |] ==> Y\<in> analz H" | 
| 513 | by (erule analz_trans, blast) | |
| 514 | ||
| 515 | (*Cut can be proved easily by induction on | |
| 516 | "Y: analz (insert X H) ==> X: analz H --> Y: analz H" | |
| 517 | *) | |
| 518 | ||
| 61830 | 519 | text\<open>This rewrite rule helps in the simplification of messages that involve | 
| 13926 | 520 | the forwarding of unknown components (X). Without it, removing occurrences | 
| 61830 | 521 | of X can be very complicated.\<close> | 
| 13926 | 522 | lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39216diff
changeset | 523 | by (metis analz_cut analz_insert_eq_I insert_absorb) | 
| 13926 | 524 | |
| 525 | ||
| 61830 | 526 | text\<open>A congruence rule for "analz"\<close> | 
| 13926 | 527 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 528 | lemma analz_subset_cong: | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 529 | "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H' |] | 
| 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 530 | ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')" | 
| 41693 
47532fe9e075
Introduction of metis calls and other cosmetic modifications.
 paulson parents: 
39216diff
changeset | 531 | by (metis Un_mono analz_Un analz_subset_iff subset_trans) | 
| 13926 | 532 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 533 | lemma analz_cong: | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 534 | "[| analz G = analz G'; analz H = analz H' |] | 
| 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 535 | ==> analz (G \<union> H) = analz (G' \<union> H')" | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 536 | by (intro equalityI analz_subset_cong, simp_all) | 
| 13926 | 537 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 538 | lemma analz_insert_cong: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 539 | "analz H = analz H' ==> analz(insert X H) = analz(insert X H')" | 
| 13926 | 540 | by (force simp only: insert_def intro!: analz_cong) | 
| 541 | ||
| 61830 | 542 | text\<open>If there are no pairs or encryptions then analz does nothing\<close> | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 543 | lemma analz_trivial: | 
| 61956 | 544 | "[| \<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H" | 
| 13926 | 545 | apply safe | 
| 546 | apply (erule analz.induct, blast+) | |
| 547 | done | |
| 548 | ||
| 61830 | 549 | text\<open>These two are obsolete (with a single Spy) but cost little to prove...\<close> | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 550 | lemma analz_UN_analz_lemma: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 551 | "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)" | 
| 13926 | 552 | apply (erule analz.induct) | 
| 553 | apply (blast intro: analz_mono [THEN [2] rev_subsetD])+ | |
| 554 | done | |
| 555 | ||
| 556 | lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)" | |
| 557 | by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD]) | |
| 558 | ||
| 559 | ||
| 61830 | 560 | subsection\<open>Inductive relation "synth"\<close> | 
| 13926 | 561 | |
| 61830 | 562 | text\<open>Inductive definition of "synth" -- what can be built up from a set of | 
| 1839 | 563 | messages. A form of upward closure. Pairs can be built, messages | 
| 3668 | 564 | encrypted with known keys. Agent names are public domain. | 
| 61830 | 565 | Numbers can be guessed, but Nonces cannot be.\<close> | 
| 1839 | 566 | |
| 23746 | 567 | inductive_set | 
| 568 | synth :: "msg set => msg set" | |
| 569 | for H :: "msg set" | |
| 570 | where | |
| 11192 | 571 | Inj [intro]: "X \<in> H ==> X \<in> synth H" | 
| 23746 | 572 | | Agent [intro]: "Agent agt \<in> synth H" | 
| 573 | | Number [intro]: "Number n \<in> synth H" | |
| 574 | | Hash [intro]: "X \<in> synth H ==> Hash X \<in> synth H" | |
| 61956 | 575 | | MPair [intro]: "[|X \<in> synth H; Y \<in> synth H|] ==> \<lbrace>X,Y\<rbrace> \<in> synth H" | 
| 23746 | 576 | | Crypt [intro]: "[|X \<in> synth H; Key(K) \<in> H|] ==> Crypt K X \<in> synth H" | 
| 11189 | 577 | |
| 61830 | 578 | text\<open>Monotonicity\<close> | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 579 | lemma synth_mono: "G\<subseteq>H ==> synth(G) \<subseteq> synth(H)" | 
| 16818 | 580 | by (auto, erule synth.induct, auto) | 
| 11189 | 581 | |
| 61830 | 582 | text\<open>NO \<open>Agent_synth\<close>, as any Agent name can be synthesized. | 
| 583 |   The same holds for @{term Number}\<close>
 | |
| 11189 | 584 | |
| 39216 | 585 | inductive_simps synth_simps [iff]: | 
| 586 | "Nonce n \<in> synth H" | |
| 587 | "Key K \<in> synth H" | |
| 588 | "Hash X \<in> synth H" | |
| 61956 | 589 | "\<lbrace>X,Y\<rbrace> \<in> synth H" | 
| 39216 | 590 | "Crypt K X \<in> synth H" | 
| 13926 | 591 | |
| 592 | lemma synth_increasing: "H \<subseteq> synth(H)" | |
| 593 | by blast | |
| 594 | ||
| 61830 | 595 | subsubsection\<open>Unions\<close> | 
| 13926 | 596 | |
| 61830 | 597 | text\<open>Converse fails: we can synth more from the union than from the | 
| 598 | separate parts, building a compound message using elements of each.\<close> | |
| 13926 | 599 | lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)" | 
| 600 | by (intro Un_least synth_mono Un_upper1 Un_upper2) | |
| 601 | ||
| 602 | lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)" | |
| 603 | by (blast intro: synth_mono [THEN [2] rev_subsetD]) | |
| 604 | ||
| 61830 | 605 | subsubsection\<open>Idempotence and transitivity\<close> | 
| 13926 | 606 | |
| 607 | lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H" | |
| 39216 | 608 | by (erule synth.induct, auto) | 
| 13926 | 609 | |
| 610 | lemma synth_idem: "synth (synth H) = synth H" | |
| 611 | by blast | |
| 612 | ||
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 613 | lemma synth_subset_iff [simp]: "(synth G \<subseteq> synth H) = (G \<subseteq> synth H)" | 
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 614 | by (metis subset_trans synth_idem synth_increasing synth_mono) | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 615 | |
| 13926 | 616 | lemma synth_trans: "[| X\<in> synth G; G \<subseteq> synth H |] ==> X\<in> synth H" | 
| 617 | by (drule synth_mono, blast) | |
| 618 | ||
| 61830 | 619 | text\<open>Cut; Lemma 2 of Lowe\<close> | 
| 13926 | 620 | lemma synth_cut: "[| Y\<in> synth (insert X H); X\<in> synth H |] ==> Y\<in> synth H" | 
| 621 | by (erule synth_trans, blast) | |
| 622 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 623 | lemma Crypt_synth_eq [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 624 | "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)" | 
| 13926 | 625 | by blast | 
| 626 | ||
| 627 | ||
| 628 | lemma keysFor_synth [simp]: | |
| 629 |     "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 630 | by (unfold keysFor_def, blast) | 
| 13926 | 631 | |
| 632 | ||
| 61830 | 633 | subsubsection\<open>Combinations of parts, analz and synth\<close> | 
| 13926 | 634 | |
| 635 | lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H" | |
| 636 | apply (rule equalityI) | |
| 637 | apply (rule subsetI) | |
| 638 | apply (erule parts.induct) | |
| 639 | apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD] | |
| 640 | parts.Fst parts.Snd parts.Body)+ | |
| 641 | done | |
| 642 | ||
| 643 | lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)" | |
| 644 | apply (intro equalityI analz_subset_cong)+ | |
| 645 | apply simp_all | |
| 646 | done | |
| 647 | ||
| 648 | lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G" | |
| 649 | apply (rule equalityI) | |
| 650 | apply (rule subsetI) | |
| 651 | apply (erule analz.induct) | |
| 652 | prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD]) | |
| 653 | apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+ | |
| 654 | done | |
| 655 | ||
| 656 | lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H" | |
| 34185 | 657 | by (metis Un_empty_right analz_synth_Un) | 
| 13926 | 658 | |
| 659 | ||
| 61830 | 660 | subsubsection\<open>For reasoning about the Fake rule in traces\<close> | 
| 13926 | 661 | |
| 662 | lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H" | |
| 34185 | 663 | by (metis UnCI Un_upper2 insert_subset parts_Un parts_mono) | 
| 13926 | 664 | |
| 61830 | 665 | text\<open>More specifically for Fake. See also \<open>Fake_parts_sing\<close> below\<close> | 
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 666 | lemma Fake_parts_insert: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 667 | "X \<in> synth (analz H) ==> | 
| 13926 | 668 | parts (insert X H) \<subseteq> synth (analz H) \<union> parts H" | 
| 34185 | 669 | by (metis Un_commute analz_increasing insert_subset parts_analz parts_mono | 
| 670 | parts_synth synth_mono synth_subset_iff) | |
| 13926 | 671 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 672 | lemma Fake_parts_insert_in_Un: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 673 | "[|Z \<in> parts (insert X H); X: synth (analz H)|] | 
| 34185 | 674 | ==> Z \<in> synth (analz H) \<union> parts H" | 
| 675 | by (metis Fake_parts_insert set_mp) | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 676 | |
| 61830 | 677 | text\<open>@{term H} is sometimes @{term"Key ` KK \<union> spies evs"}, so can't put 
 | 
| 678 |   @{term "G=H"}.\<close>
 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 679 | lemma Fake_analz_insert: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 680 | "X\<in> synth (analz G) ==> | 
| 13926 | 681 | analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)" | 
| 682 | apply (rule subsetI) | |
| 34185 | 683 | apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H)", force) | 
| 684 | apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD]) | |
| 13926 | 685 | done | 
| 686 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 687 | lemma analz_conj_parts [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 688 | "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)" | 
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 689 | by (blast intro: analz_subset_parts [THEN subsetD]) | 
| 13926 | 690 | |
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 691 | lemma analz_disj_parts [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 692 | "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)" | 
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 693 | by (blast intro: analz_subset_parts [THEN subsetD]) | 
| 13926 | 694 | |
| 61830 | 695 | text\<open>Without this equation, other rules for synth and analz would yield | 
| 696 | redundant cases\<close> | |
| 13926 | 697 | lemma MPair_synth_analz [iff]: | 
| 61956 | 698 | "(\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) = | 
| 13926 | 699 | (X \<in> synth (analz H) & Y \<in> synth (analz H))" | 
| 700 | by blast | |
| 701 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 702 | lemma Crypt_synth_analz: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 703 | "[| Key K \<in> analz H; Key (invKey K) \<in> analz H |] | 
| 13926 | 704 | ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))" | 
| 705 | by blast | |
| 706 | ||
| 707 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 708 | lemma Hash_synth_analz [simp]: | 
| 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 709 | "X \<notin> synth (analz H) | 
| 61956 | 710 | ==> (Hash\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) = (Hash\<lbrace>X,Y\<rbrace> \<in> analz H)" | 
| 13926 | 711 | by blast | 
| 712 | ||
| 713 | ||
| 61830 | 714 | subsection\<open>HPair: a combination of Hash and MPair\<close> | 
| 13926 | 715 | |
| 61830 | 716 | subsubsection\<open>Freeness\<close> | 
| 13926 | 717 | |
| 718 | lemma Agent_neq_HPair: "Agent A ~= Hash[X] Y" | |
| 57394 | 719 | unfolding HPair_def by simp | 
| 13926 | 720 | |
| 721 | lemma Nonce_neq_HPair: "Nonce N ~= Hash[X] Y" | |
| 57394 | 722 | unfolding HPair_def by simp | 
| 13926 | 723 | |
| 724 | lemma Number_neq_HPair: "Number N ~= Hash[X] Y" | |
| 57394 | 725 | unfolding HPair_def by simp | 
| 13926 | 726 | |
| 727 | lemma Key_neq_HPair: "Key K ~= Hash[X] Y" | |
| 57394 | 728 | unfolding HPair_def by simp | 
| 13926 | 729 | |
| 730 | lemma Hash_neq_HPair: "Hash Z ~= Hash[X] Y" | |
| 57394 | 731 | unfolding HPair_def by simp | 
| 13926 | 732 | |
| 733 | lemma Crypt_neq_HPair: "Crypt K X' ~= Hash[X] Y" | |
| 57394 | 734 | unfolding HPair_def by simp | 
| 13926 | 735 | |
| 736 | lemmas HPair_neqs = Agent_neq_HPair Nonce_neq_HPair Number_neq_HPair | |
| 737 | Key_neq_HPair Hash_neq_HPair Crypt_neq_HPair | |
| 738 | ||
| 739 | declare HPair_neqs [iff] | |
| 740 | declare HPair_neqs [symmetric, iff] | |
| 741 | ||
| 742 | lemma HPair_eq [iff]: "(Hash[X'] Y' = Hash[X] Y) = (X' = X & Y'=Y)" | |
| 743 | by (simp add: HPair_def) | |
| 744 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 745 | lemma MPair_eq_HPair [iff]: | 
| 61956 | 746 | "(\<lbrace>X',Y'\<rbrace> = Hash[X] Y) = (X' = Hash\<lbrace>X,Y\<rbrace> & Y'=Y)" | 
| 13926 | 747 | by (simp add: HPair_def) | 
| 748 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 749 | lemma HPair_eq_MPair [iff]: | 
| 61956 | 750 | "(Hash[X] Y = \<lbrace>X',Y'\<rbrace>) = (X' = Hash\<lbrace>X,Y\<rbrace> & Y'=Y)" | 
| 13926 | 751 | by (auto simp add: HPair_def) | 
| 752 | ||
| 753 | ||
| 61830 | 754 | subsubsection\<open>Specialized laws, proved in terms of those for Hash and MPair\<close> | 
| 13926 | 755 | |
| 756 | lemma keysFor_insert_HPair [simp]: "keysFor (insert (Hash[X] Y) H) = keysFor H" | |
| 757 | by (simp add: HPair_def) | |
| 758 | ||
| 759 | lemma parts_insert_HPair [simp]: | |
| 760 | "parts (insert (Hash[X] Y) H) = | |
| 61956 | 761 | insert (Hash[X] Y) (insert (Hash\<lbrace>X,Y\<rbrace>) (parts (insert Y H)))" | 
| 13926 | 762 | by (simp add: HPair_def) | 
| 763 | ||
| 764 | lemma analz_insert_HPair [simp]: | |
| 765 | "analz (insert (Hash[X] Y) H) = | |
| 61956 | 766 | insert (Hash[X] Y) (insert (Hash\<lbrace>X,Y\<rbrace>) (analz (insert Y H)))" | 
| 13926 | 767 | by (simp add: HPair_def) | 
| 768 | ||
| 769 | lemma HPair_synth_analz [simp]: | |
| 770 | "X \<notin> synth (analz H) | |
| 771 | ==> (Hash[X] Y \<in> synth (analz H)) = | |
| 61956 | 772 | (Hash \<lbrace>X, Y\<rbrace> \<in> analz H & Y \<in> synth (analz H))" | 
| 39216 | 773 | by (auto simp add: HPair_def) | 
| 13926 | 774 | |
| 775 | ||
| 61830 | 776 | text\<open>We do NOT want Crypt... messages broken up in protocols!!\<close> | 
| 13926 | 777 | declare parts.Body [rule del] | 
| 778 | ||
| 779 | ||
| 61830 | 780 | text\<open>Rewrites to push in Key and Crypt messages, so that other messages can | 
| 781 | be pulled out using the \<open>analz_insert\<close> rules\<close> | |
| 13926 | 782 | |
| 45605 | 783 | lemmas pushKeys = | 
| 27225 | 784 | insert_commute [of "Key K" "Agent C"] | 
| 785 | insert_commute [of "Key K" "Nonce N"] | |
| 786 | insert_commute [of "Key K" "Number N"] | |
| 787 | insert_commute [of "Key K" "Hash X"] | |
| 788 | insert_commute [of "Key K" "MPair X Y"] | |
| 789 | insert_commute [of "Key K" "Crypt X K'"] | |
| 45605 | 790 | for K C N X Y K' | 
| 13926 | 791 | |
| 45605 | 792 | lemmas pushCrypts = | 
| 27225 | 793 | insert_commute [of "Crypt X K" "Agent C"] | 
| 794 | insert_commute [of "Crypt X K" "Agent C"] | |
| 795 | insert_commute [of "Crypt X K" "Nonce N"] | |
| 796 | insert_commute [of "Crypt X K" "Number N"] | |
| 797 | insert_commute [of "Crypt X K" "Hash X'"] | |
| 798 | insert_commute [of "Crypt X K" "MPair X' Y"] | |
| 45605 | 799 | for X K C N X' Y | 
| 13926 | 800 | |
| 61830 | 801 | text\<open>Cannot be added with \<open>[simp]\<close> -- messages should not always be | 
| 802 | re-ordered.\<close> | |
| 13926 | 803 | lemmas pushes = pushKeys pushCrypts | 
| 804 | ||
| 805 | ||
| 61830 | 806 | subsection\<open>The set of key-free messages\<close> | 
| 43582 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 807 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 808 | (*Note that even the encryption of a key-free message remains key-free. | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 809 | This concept is valuable because of the theorem analz_keyfree_into_Un, proved below. *) | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 810 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 811 | inductive_set | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 812 | keyfree :: "msg set" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 813 | where | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 814 | Agent: "Agent A \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 815 | | Number: "Number N \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 816 | | Nonce: "Nonce N \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 817 | | Hash: "Hash X \<in> keyfree" | 
| 61956 | 818 | | MPair: "[|X \<in> keyfree; Y \<in> keyfree|] ==> \<lbrace>X,Y\<rbrace> \<in> keyfree" | 
| 43582 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 819 | | Crypt: "[|X \<in> keyfree|] ==> Crypt K X \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 820 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 821 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 822 | declare keyfree.intros [intro] | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 823 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 824 | inductive_cases keyfree_KeyE: "Key K \<in> keyfree" | 
| 61956 | 825 | inductive_cases keyfree_MPairE: "\<lbrace>X,Y\<rbrace> \<in> keyfree" | 
| 43582 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 826 | inductive_cases keyfree_CryptE: "Crypt K X \<in> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 827 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 828 | lemma parts_keyfree: "parts (keyfree) \<subseteq> keyfree" | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 829 | by (clarify, erule parts.induct, auto elim!: keyfree_KeyE keyfree_MPairE keyfree_CryptE) | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 830 | |
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 831 | (*The key-free part of a set of messages can be removed from the scope of the analz operator.*) | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 832 | lemma analz_keyfree_into_Un: "\<lbrakk>X \<in> analz (G \<union> H); G \<subseteq> keyfree\<rbrakk> \<Longrightarrow> X \<in> parts G \<union> analz H" | 
| 57394 | 833 | apply (erule analz.induct, auto dest: parts.Body) | 
| 44174 
d1d79f0e1ea6
make more HOL theories work with separate set type
 huffman parents: 
43582diff
changeset | 834 | apply (metis Un_absorb2 keyfree_KeyE parts_Un parts_keyfree UnI2) | 
| 43582 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 835 | done | 
| 
ddca453102ab
keyfree: The set of key-free messages (and associated theorems)
 paulson parents: 
42793diff
changeset | 836 | |
| 61830 | 837 | subsection\<open>Tactics useful for many protocol proofs\<close> | 
| 13926 | 838 | ML | 
| 61830 | 839 | \<open> | 
| 13926 | 840 | (*Analysis of Fake cases. Also works for messages that forward unknown parts, | 
| 841 | but this application is no longer necessary if analz_insert_eq is used. | |
| 842 | DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *) | |
| 843 | ||
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
30607diff
changeset | 844 | fun impOfSubs th = th RSN (2, @{thm rev_subsetD})
 | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
30607diff
changeset | 845 | |
| 13926 | 846 | (*Apply rules to break down assumptions of the form | 
| 847 | Y \<in> parts(insert X H) and Y \<in> analz(insert X H) | |
| 848 | *) | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58889diff
changeset | 849 | fun Fake_insert_tac ctxt = | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58889diff
changeset | 850 |     dresolve_tac ctxt [impOfSubs @{thm Fake_analz_insert},
 | 
| 24122 | 851 |                   impOfSubs @{thm Fake_parts_insert}] THEN'
 | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58889diff
changeset | 852 |     eresolve_tac ctxt [asm_rl, @{thm synth.Inj}];
 | 
| 13926 | 853 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51702diff
changeset | 854 | fun Fake_insert_simp_tac ctxt i = | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58889diff
changeset | 855 | REPEAT (Fake_insert_tac ctxt i) THEN asm_full_simp_tac ctxt i; | 
| 13926 | 856 | |
| 42474 | 857 | fun atomic_spy_analz_tac ctxt = | 
| 42793 | 858 | SELECT_GOAL | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51702diff
changeset | 859 | (Fake_insert_simp_tac ctxt 1 THEN | 
| 42793 | 860 | IF_UNSOLVED | 
| 861 | (Blast.depth_tac | |
| 862 |         (ctxt addIs [@{thm analz_insertI}, impOfSubs @{thm analz_subset_parts}]) 4 1));
 | |
| 13926 | 863 | |
| 42474 | 864 | fun spy_analz_tac ctxt i = | 
| 42793 | 865 | DETERM | 
| 866 | (SELECT_GOAL | |
| 867 | (EVERY | |
| 868 | [ (*push in occurrences of X...*) | |
| 869 | (REPEAT o CHANGED) | |
| 59780 | 870 |          (Rule_Insts.res_inst_tac ctxt [((("x", 1), Position.none), "X")] []
 | 
| 871 | (insert_commute RS ssubst) 1), | |
| 42793 | 872 | (*...allowing further simplifications*) | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51702diff
changeset | 873 | simp_tac ctxt 1, | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
58889diff
changeset | 874 | REPEAT (FIRSTGOAL (resolve_tac ctxt [allI,impI,notI,conjI,iffI])), | 
| 42793 | 875 | DEPTH_SOLVE (atomic_spy_analz_tac ctxt 1)]) i); | 
| 61830 | 876 | \<close> | 
| 13926 | 877 | |
| 61830 | 878 | text\<open>By default only \<open>o_apply\<close> is built-in. But in the presence of | 
| 16818 | 879 | eta-expansion this means that some terms displayed as @{term "f o g"} will be
 | 
| 61830 | 880 | rewritten, and others will not!\<close> | 
| 13926 | 881 | declare o_def [simp] | 
| 882 | ||
| 11189 | 883 | |
| 13922 | 884 | lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A" | 
| 885 | by auto | |
| 886 | ||
| 887 | lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A" | |
| 888 | by auto | |
| 889 | ||
| 14200 
d8598e24f8fa
Removal of the Key_supply axiom (affects many possbility proofs) and minor
 paulson parents: 
14181diff
changeset | 890 | lemma synth_analz_mono: "G\<subseteq>H ==> synth (analz(G)) \<subseteq> synth (analz(H))" | 
| 17689 
a04b5b43625e
streamlined theory; conformance to recent publication
 paulson parents: 
16818diff
changeset | 891 | by (iprover intro: synth_mono analz_mono) | 
| 13922 | 892 | |
| 893 | lemma Fake_analz_eq [simp]: | |
| 894 | "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)" | |
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 895 | by (metis Fake_analz_insert Un_absorb Un_absorb1 Un_commute | 
| 34185 | 896 | subset_insertI synth_analz_mono synth_increasing synth_subset_iff) | 
| 13922 | 897 | |
| 61830 | 898 | text\<open>Two generalizations of \<open>analz_insert_eq\<close>\<close> | 
| 13922 | 899 | lemma gen_analz_insert_eq [rule_format]: | 
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 900 | "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G" | 
| 13922 | 901 | by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD]) | 
| 902 | ||
| 903 | lemma synth_analz_insert_eq [rule_format]: | |
| 904 | "X \<in> synth (analz H) | |
| 35566 
3c01f5ad1d34
Simplified a couple of proofs and corrected a comment
 paulson parents: 
35416diff
changeset | 905 | ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)" | 
| 13922 | 906 | apply (erule synth.induct) | 
| 907 | apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI]) | |
| 908 | done | |
| 909 | ||
| 910 | lemma Fake_parts_sing: | |
| 34185 | 911 |      "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H"
 | 
| 912 | by (metis Fake_parts_insert empty_subsetI insert_mono parts_mono subset_trans) | |
| 13922 | 913 | |
| 14145 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 914 | lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD] | 
| 
2e31b8cc8788
ZhouGollmann: new example (fair non-repudiation protocol)
 paulson parents: 
14126diff
changeset | 915 | |
| 61830 | 916 | method_setup spy_analz = \<open> | 
| 917 | Scan.succeed (SIMPLE_METHOD' o spy_analz_tac)\<close> | |
| 11189 | 918 | "for proving the Fake case when analz is involved" | 
| 1839 | 919 | |
| 61830 | 920 | method_setup atomic_spy_analz = \<open> | 
| 921 | Scan.succeed (SIMPLE_METHOD' o atomic_spy_analz_tac)\<close> | |
| 11264 | 922 | "for debugging spy_analz" | 
| 923 | ||
| 61830 | 924 | method_setup Fake_insert_simp = \<open> | 
| 925 | Scan.succeed (SIMPLE_METHOD' o Fake_insert_simp_tac)\<close> | |
| 11264 | 926 | "for debugging spy_analz" | 
| 927 | ||
| 1839 | 928 | end |