| author | haftmann | 
| Tue, 20 Jun 2017 13:07:49 +0200 | |
| changeset 66149 | 4bf16fb7c14d | 
| parent 65955 | 0616ba637b14 | 
| child 67613 | ce654b0e6d69 | 
| permissions | -rw-r--r-- | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 1 | (* Title: HOL/Hilbert_Choice.thy | 
| 32988 | 2 | Author: Lawrence C Paulson, Tobias Nipkow | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 3 | Copyright 2001 University of Cambridge | 
| 12023 | 4 | *) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 5 | |
| 60758 | 6 | section \<open>Hilbert's Epsilon-Operator and the Axiom of Choice\<close> | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 7 | |
| 15131 | 8 | theory Hilbert_Choice | 
| 63612 | 9 | imports Wellfounded | 
| 10 | keywords "specification" :: thy_goal | |
| 15131 | 11 | begin | 
| 12298 | 12 | |
| 60758 | 13 | subsection \<open>Hilbert's epsilon\<close> | 
| 12298 | 14 | |
| 63612 | 15 | axiomatization Eps :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | 
| 16 | where someI: "P x \<Longrightarrow> P (Eps P)" | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 17 | |
| 14872 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 18 | syntax (epsilon) | 
| 63612 | 19 |   "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 62521 | 20 | syntax (input) | 
| 63612 | 21 |   "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3@ _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 22 | syntax | 
| 63612 | 23 |   "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3SOME _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 24 | translations | 
| 63612 | 25 | "SOME x. P" \<rightleftharpoons> "CONST Eps (\<lambda>x. P)" | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 26 | |
| 60758 | 27 | print_translation \<open> | 
| 52143 | 28 |   [(@{const_syntax Eps}, fn _ => fn [Abs abs] =>
 | 
| 42284 | 29 | let val (x, t) = Syntax_Trans.atomic_abs_tr' abs | 
| 35115 | 30 |       in Syntax.const @{syntax_const "_Eps"} $ x $ t end)]
 | 
| 61799 | 31 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 32 | |
| 65815 | 33 | definition inv_into :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
 | 
| 34 | "inv_into A f = (\<lambda>x. SOME y. y \<in> A \<and> f y = x)" | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 35 | |
| 65815 | 36 | lemma inv_into_def2: "inv_into A f x = (SOME y. y \<in> A \<and> f y = x)" | 
| 37 | by(simp add: inv_into_def) | |
| 38 | ||
| 39 | abbreviation inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
 | |
| 40 | "inv \<equiv> inv_into UNIV" | |
| 14760 | 41 | |
| 42 | ||
| 60758 | 43 | subsection \<open>Hilbert's Epsilon-operator\<close> | 
| 14760 | 44 | |
| 63612 | 45 | text \<open> | 
| 46 | Easier to apply than \<open>someI\<close> if the witness comes from an | |
| 47 | existential formula. | |
| 48 | \<close> | |
| 49 | lemma someI_ex [elim?]: "\<exists>x. P x \<Longrightarrow> P (SOME x. P x)" | |
| 50 | apply (erule exE) | |
| 51 | apply (erule someI) | |
| 52 | done | |
| 14760 | 53 | |
| 63612 | 54 | text \<open> | 
| 55 | Easier to apply than \<open>someI\<close> because the conclusion has only one | |
| 56 |   occurrence of @{term P}.
 | |
| 57 | \<close> | |
| 58 | lemma someI2: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)" | |
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60758diff
changeset | 59 | by (blast intro: someI) | 
| 14760 | 60 | |
| 63612 | 61 | text \<open> | 
| 62 | Easier to apply than \<open>someI2\<close> if the witness comes from an | |
| 63 | existential formula. | |
| 64 | \<close> | |
| 65 | lemma someI2_ex: "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)" | |
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60758diff
changeset | 66 | by (blast intro: someI2) | 
| 14760 | 67 | |
| 63612 | 68 | lemma someI2_bex: "\<exists>a\<in>A. P a \<Longrightarrow> (\<And>x. x \<in> A \<and> P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. x \<in> A \<and> P x)" | 
| 69 | by (blast intro: someI2) | |
| 70 | ||
| 71 | lemma some_equality [intro]: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> x = a) \<Longrightarrow> (SOME x. P x) = a" | |
| 72 | by (blast intro: someI2) | |
| 14760 | 73 | |
| 63629 | 74 | lemma some1_equality: "\<exists>!x. P x \<Longrightarrow> P a \<Longrightarrow> (SOME x. P x) = a" | 
| 63612 | 75 | by blast | 
| 14760 | 76 | |
| 63612 | 77 | lemma some_eq_ex: "P (SOME x. P x) \<longleftrightarrow> (\<exists>x. P x)" | 
| 78 | by (blast intro: someI) | |
| 14760 | 79 | |
| 59000 | 80 | lemma some_in_eq: "(SOME x. x \<in> A) \<in> A \<longleftrightarrow> A \<noteq> {}"
 | 
| 81 | unfolding ex_in_conv[symmetric] by (rule some_eq_ex) | |
| 82 | ||
| 63612 | 83 | lemma some_eq_trivial [simp]: "(SOME y. y = x) = x" | 
| 84 | by (rule some_equality) (rule refl) | |
| 14760 | 85 | |
| 63612 | 86 | lemma some_sym_eq_trivial [simp]: "(SOME y. x = y) = x" | 
| 87 | apply (rule some_equality) | |
| 88 | apply (rule refl) | |
| 89 | apply (erule sym) | |
| 90 | done | |
| 14760 | 91 | |
| 92 | ||
| 63612 | 93 | subsection \<open>Axiom of Choice, Proved Using the Description Operator\<close> | 
| 14760 | 94 | |
| 63612 | 95 | lemma choice: "\<forall>x. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)" | 
| 96 | by (fast elim: someI) | |
| 14760 | 97 | |
| 63612 | 98 | lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)" | 
| 99 | by (fast elim: someI) | |
| 14760 | 100 | |
| 50105 | 101 | lemma choice_iff: "(\<forall>x. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x. Q x (f x))" | 
| 63612 | 102 | by (fast elim: someI) | 
| 50105 | 103 | |
| 104 | lemma choice_iff': "(\<forall>x. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x. P x \<longrightarrow> Q x (f x))" | |
| 63612 | 105 | by (fast elim: someI) | 
| 50105 | 106 | |
| 107 | lemma bchoice_iff: "(\<forall>x\<in>S. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. Q x (f x))" | |
| 63612 | 108 | by (fast elim: someI) | 
| 50105 | 109 | |
| 110 | lemma bchoice_iff': "(\<forall>x\<in>S. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. P x \<longrightarrow> Q x (f x))" | |
| 63612 | 111 | by (fast elim: someI) | 
| 14760 | 112 | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 113 | lemma dependent_nat_choice: | 
| 63612 | 114 | assumes 1: "\<exists>x. P 0 x" | 
| 115 | and 2: "\<And>x n. P n x \<Longrightarrow> \<exists>y. P (Suc n) y \<and> Q n x y" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57275diff
changeset | 116 | shows "\<exists>f. \<forall>n. P n (f n) \<and> Q n (f n) (f (Suc n))" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 117 | proof (intro exI allI conjI) | 
| 63040 | 118 | fix n | 
| 119 | define f where "f = rec_nat (SOME x. P 0 x) (\<lambda>n x. SOME y. P (Suc n) y \<and> Q n x y)" | |
| 63612 | 120 | then have "P 0 (f 0)" "\<And>n. P n (f n) \<Longrightarrow> P (Suc n) (f (Suc n)) \<and> Q n (f n) (f (Suc n))" | 
| 121 | using someI_ex[OF 1] someI_ex[OF 2] by simp_all | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57275diff
changeset | 122 | then show "P n (f n)" "Q n (f n) (f (Suc n))" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 123 | by (induct n) auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 124 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 125 | |
| 58074 | 126 | |
| 60758 | 127 | subsection \<open>Function Inverse\<close> | 
| 14760 | 128 | |
| 63612 | 129 | lemma inv_def: "inv f = (\<lambda>y. SOME x. f x = y)" | 
| 130 | by (simp add: inv_into_def) | |
| 33014 | 131 | |
| 63612 | 132 | lemma inv_into_into: "x \<in> f ` A \<Longrightarrow> inv_into A f x \<in> A" | 
| 133 | by (simp add: inv_into_def) (fast intro: someI2) | |
| 14760 | 134 | |
| 63612 | 135 | lemma inv_identity [simp]: "inv (\<lambda>a. a) = (\<lambda>a. a)" | 
| 63365 | 136 | by (simp add: inv_def) | 
| 137 | ||
| 63612 | 138 | lemma inv_id [simp]: "inv id = id" | 
| 63365 | 139 | by (simp add: id_def) | 
| 14760 | 140 | |
| 63612 | 141 | lemma inv_into_f_f [simp]: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> inv_into A f (f x) = x" | 
| 142 | by (simp add: inv_into_def inj_on_def) (blast intro: someI2) | |
| 14760 | 143 | |
| 63612 | 144 | lemma inv_f_f: "inj f \<Longrightarrow> inv f (f x) = x" | 
| 145 | by simp | |
| 32988 | 146 | |
| 63612 | 147 | lemma f_inv_into_f: "y : f`A \<Longrightarrow> f (inv_into A f y) = y" | 
| 148 | by (simp add: inv_into_def) (fast intro: someI2) | |
| 32988 | 149 | |
| 63612 | 150 | lemma inv_into_f_eq: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> f x = y \<Longrightarrow> inv_into A f y = x" | 
| 151 | by (erule subst) (fast intro: inv_into_f_f) | |
| 32988 | 152 | |
| 63612 | 153 | lemma inv_f_eq: "inj f \<Longrightarrow> f x = y \<Longrightarrow> inv f y = x" | 
| 154 | by (simp add:inv_into_f_eq) | |
| 32988 | 155 | |
| 63612 | 156 | lemma inj_imp_inv_eq: "inj f \<Longrightarrow> \<forall>x. f (g x) = x \<Longrightarrow> inv f = g" | 
| 44921 | 157 | by (blast intro: inv_into_f_eq) | 
| 14760 | 158 | |
| 63612 | 159 | text \<open>But is it useful?\<close> | 
| 14760 | 160 | lemma inj_transfer: | 
| 63612 | 161 | assumes inj: "inj f" | 
| 162 | and minor: "\<And>y. y \<in> range f \<Longrightarrow> P (inv f y)" | |
| 14760 | 163 | shows "P x" | 
| 164 | proof - | |
| 165 | have "f x \<in> range f" by auto | |
| 63612 | 166 | then have "P(inv f (f x))" by (rule minor) | 
| 167 | then show "P x" by (simp add: inv_into_f_f [OF inj]) | |
| 14760 | 168 | qed | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 169 | |
| 63612 | 170 | lemma inj_iff: "inj f \<longleftrightarrow> inv f \<circ> f = id" | 
| 171 | by (simp add: o_def fun_eq_iff) (blast intro: inj_on_inverseI inv_into_f_f) | |
| 14760 | 172 | |
| 63612 | 173 | lemma inv_o_cancel[simp]: "inj f \<Longrightarrow> inv f \<circ> f = id" | 
| 174 | by (simp add: inj_iff) | |
| 175 | ||
| 176 | lemma o_inv_o_cancel[simp]: "inj f \<Longrightarrow> g \<circ> inv f \<circ> f = g" | |
| 177 | by (simp add: comp_assoc) | |
| 23433 | 178 | |
| 63612 | 179 | lemma inv_into_image_cancel[simp]: "inj_on f A \<Longrightarrow> S \<subseteq> A \<Longrightarrow> inv_into A f ` f ` S = S" | 
| 180 | by (fastforce simp: image_def) | |
| 23433 | 181 | |
| 63612 | 182 | lemma inj_imp_surj_inv: "inj f \<Longrightarrow> surj (inv f)" | 
| 183 | by (blast intro!: surjI inv_into_f_f) | |
| 32988 | 184 | |
| 63612 | 185 | lemma surj_f_inv_f: "surj f \<Longrightarrow> f (inv f y) = y" | 
| 186 | by (simp add: f_inv_into_f) | |
| 14760 | 187 | |
| 33057 | 188 | lemma inv_into_injective: | 
| 189 | assumes eq: "inv_into A f x = inv_into A f y" | |
| 63612 | 190 | and x: "x \<in> f`A" | 
| 191 | and y: "y \<in> f`A" | |
| 192 | shows "x = y" | |
| 14760 | 193 | proof - | 
| 63612 | 194 | from eq have "f (inv_into A f x) = f (inv_into A f y)" | 
| 195 | by simp | |
| 196 | with x y show ?thesis | |
| 197 | by (simp add: f_inv_into_f) | |
| 14760 | 198 | qed | 
| 199 | ||
| 63612 | 200 | lemma inj_on_inv_into: "B \<subseteq> f`A \<Longrightarrow> inj_on (inv_into A f) B" | 
| 201 | by (blast intro: inj_onI dest: inv_into_injective injD) | |
| 32988 | 202 | |
| 63612 | 203 | lemma bij_betw_inv_into: "bij_betw f A B \<Longrightarrow> bij_betw (inv_into A f) B A" | 
| 204 | by (auto simp add: bij_betw_def inj_on_inv_into) | |
| 14760 | 205 | |
| 63612 | 206 | lemma surj_imp_inj_inv: "surj f \<Longrightarrow> inj (inv f)" | 
| 207 | by (simp add: inj_on_inv_into) | |
| 14760 | 208 | |
| 63612 | 209 | lemma surj_iff: "surj f \<longleftrightarrow> f \<circ> inv f = id" | 
| 210 | by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a]) | |
| 40702 | 211 | |
| 212 | lemma surj_iff_all: "surj f \<longleftrightarrow> (\<forall>x. f (inv f x) = x)" | |
| 63612 | 213 | by (simp add: o_def surj_iff fun_eq_iff) | 
| 14760 | 214 | |
| 63612 | 215 | lemma surj_imp_inv_eq: "surj f \<Longrightarrow> \<forall>x. g (f x) = x \<Longrightarrow> inv f = g" | 
| 216 | apply (rule ext) | |
| 217 | apply (drule_tac x = "inv f x" in spec) | |
| 218 | apply (simp add: surj_f_inv_f) | |
| 219 | done | |
| 14760 | 220 | |
| 63612 | 221 | lemma bij_imp_bij_inv: "bij f \<Longrightarrow> bij (inv f)" | 
| 222 | by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv) | |
| 12372 | 223 | |
| 63612 | 224 | lemma inv_equality: "(\<And>x. g (f x) = x) \<Longrightarrow> (\<And>y. f (g y) = y) \<Longrightarrow> inv f = g" | 
| 225 | by (rule ext) (auto simp add: inv_into_def) | |
| 226 | ||
| 227 | lemma inv_inv_eq: "bij f \<Longrightarrow> inv (inv f) = f" | |
| 228 | by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f) | |
| 14760 | 229 | |
| 63612 | 230 | text \<open> | 
| 231 | \<open>bij (inv f)\<close> implies little about \<open>f\<close>. Consider \<open>f :: bool \<Rightarrow> bool\<close> such | |
| 232 | that \<open>f True = f False = True\<close>. Then it ia consistent with axiom \<open>someI\<close> | |
| 233 | that \<open>inv f\<close> could be any function at all, including the identity function. | |
| 234 | If \<open>inv f = id\<close> then \<open>inv f\<close> is a bijection, but \<open>inj f\<close>, \<open>surj f\<close> and \<open>inv | |
| 235 | (inv f) = f\<close> all fail. | |
| 236 | \<close> | |
| 14760 | 237 | |
| 33057 | 238 | lemma inv_into_comp: | 
| 63612 | 239 | "inj_on f (g ` A) \<Longrightarrow> inj_on g A \<Longrightarrow> x \<in> f ` g ` A \<Longrightarrow> | 
| 240 | inv_into A (f \<circ> g) x = (inv_into A g \<circ> inv_into (g ` A) f) x" | |
| 241 | apply (rule inv_into_f_eq) | |
| 242 | apply (fast intro: comp_inj_on) | |
| 243 | apply (simp add: inv_into_into) | |
| 244 | apply (simp add: f_inv_into_f inv_into_into) | |
| 245 | done | |
| 32988 | 246 | |
| 63612 | 247 | lemma o_inv_distrib: "bij f \<Longrightarrow> bij g \<Longrightarrow> inv (f \<circ> g) = inv g \<circ> inv f" | 
| 248 | by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f) | |
| 14760 | 249 | |
| 63807 | 250 | lemma image_f_inv_f: "surj f \<Longrightarrow> f ` (inv f ` A) = A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61859diff
changeset | 251 | by (simp add: surj_f_inv_f image_comp comp_def) | 
| 14760 | 252 | |
| 63612 | 253 | lemma image_inv_f_f: "inj f \<Longrightarrow> inv f ` (f ` A) = A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61859diff
changeset | 254 | by simp | 
| 14760 | 255 | |
| 63612 | 256 | lemma bij_image_Collect_eq: "bij f \<Longrightarrow> f ` Collect P = {y. P (inv f y)}"
 | 
| 257 | apply auto | |
| 258 | apply (force simp add: bij_is_inj) | |
| 259 | apply (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric]) | |
| 260 | done | |
| 14760 | 261 | |
| 63612 | 262 | lemma bij_vimage_eq_inv_image: "bij f \<Longrightarrow> f -` A = inv f ` A" | 
| 263 | apply (auto simp add: bij_is_surj [THEN surj_f_inv_f]) | |
| 264 | apply (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric]) | |
| 265 | done | |
| 14760 | 266 | |
| 31380 | 267 | lemma finite_fun_UNIVD1: | 
| 268 |   assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
 | |
| 63612 | 269 | and card: "card (UNIV :: 'b set) \<noteq> Suc 0" | 
| 31380 | 270 | shows "finite (UNIV :: 'a set)" | 
| 271 | proof - | |
| 63630 | 272 | let ?UNIV_b = "UNIV :: 'b set" | 
| 273 | from fin have "finite ?UNIV_b" | |
| 63612 | 274 | by (rule finite_fun_UNIVD2) | 
| 63630 | 275 | with card have "card ?UNIV_b \<ge> Suc (Suc 0)" | 
| 276 | by (cases "card ?UNIV_b") (auto simp: card_eq_0_iff) | |
| 277 | then have "card ?UNIV_b = Suc (Suc (card ?UNIV_b - Suc (Suc 0)))" | |
| 278 | by simp | |
| 63629 | 279 | then obtain b1 b2 :: 'b where b1b2: "b1 \<noteq> b2" | 
| 280 | by (auto simp: card_Suc_eq) | |
| 63630 | 281 | from fin have fin': "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" | 
| 63612 | 282 | by (rule finite_imageI) | 
| 63630 | 283 | have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)" | 
| 31380 | 284 | proof (rule UNIV_eq_I) | 
| 285 | fix x :: 'a | |
| 63612 | 286 | from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" | 
| 287 | by (simp add: inv_into_def) | |
| 288 | then show "x \<in> range (\<lambda>f::'a \<Rightarrow> 'b. inv f b1)" | |
| 289 | by blast | |
| 31380 | 290 | qed | 
| 63630 | 291 | with fin' show ?thesis | 
| 63612 | 292 | by simp | 
| 31380 | 293 | qed | 
| 14760 | 294 | |
| 60758 | 295 | text \<open> | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 296 | Every infinite set contains a countable subset. More precisely we | 
| 61799 | 297 | show that a set \<open>S\<close> is infinite if and only if there exists an | 
| 298 | injective function from the naturals into \<open>S\<close>. | |
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 299 | |
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 300 | The ``only if'' direction is harder because it requires the | 
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 301 | construction of a sequence of pairwise different elements of an | 
| 61799 | 302 | infinite set \<open>S\<close>. The idea is to construct a sequence of | 
| 303 | non-empty and infinite subsets of \<open>S\<close> obtained by successively | |
| 304 | removing elements of \<open>S\<close>. | |
| 60758 | 305 | \<close> | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 306 | |
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 307 | lemma infinite_countable_subset: | 
| 63629 | 308 | assumes inf: "\<not> finite S" | 
| 309 | shows "\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S" | |
| 61799 | 310 | \<comment> \<open>Courtesy of Stephan Merz\<close> | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 311 | proof - | 
| 63040 | 312 |   define Sseq where "Sseq = rec_nat S (\<lambda>n T. T - {SOME e. e \<in> T})"
 | 
| 313 | define pick where "pick n = (SOME e. e \<in> Sseq n)" for n | |
| 63540 | 314 | have *: "Sseq n \<subseteq> S" "\<not> finite (Sseq n)" for n | 
| 63612 | 315 | by (induct n) (auto simp: Sseq_def inf) | 
| 63540 | 316 | then have **: "\<And>n. pick n \<in> Sseq n" | 
| 55811 | 317 | unfolding pick_def by (subst (asm) finite.simps) (auto simp add: ex_in_conv intro: someI_ex) | 
| 63540 | 318 | with * have "range pick \<subseteq> S" by auto | 
| 63612 | 319 | moreover have "pick n \<noteq> pick (n + Suc m)" for m n | 
| 320 | proof - | |
| 63540 | 321 | have "pick n \<notin> Sseq (n + Suc m)" | 
| 322 | by (induct m) (auto simp add: Sseq_def pick_def) | |
| 63612 | 323 | with ** show ?thesis by auto | 
| 324 | qed | |
| 325 | then have "inj pick" | |
| 326 | by (intro linorder_injI) (auto simp add: less_iff_Suc_add) | |
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 327 | ultimately show ?thesis by blast | 
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 328 | qed | 
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 329 | |
| 63629 | 330 | lemma infinite_iff_countable_subset: "\<not> finite S \<longleftrightarrow> (\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S)" | 
| 61799 | 331 | \<comment> \<open>Courtesy of Stephan Merz\<close> | 
| 55811 | 332 | using finite_imageD finite_subset infinite_UNIV_char_0 infinite_countable_subset by auto | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 333 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 334 | lemma image_inv_into_cancel: | 
| 63612 | 335 | assumes surj: "f`A = A'" | 
| 336 | and sub: "B' \<subseteq> A'" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 337 | shows "f `((inv_into A f)`B') = B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 338 | using assms | 
| 63612 | 339 | proof (auto simp: f_inv_into_f) | 
| 340 | let ?f' = "inv_into A f" | |
| 341 | fix a' | |
| 342 | assume *: "a' \<in> B'" | |
| 343 | with sub have "a' \<in> A'" by auto | |
| 344 | with surj have "a' = f (?f' a')" | |
| 345 | by (auto simp: f_inv_into_f) | |
| 346 | with * show "a' \<in> f ` (?f' ` B')" by blast | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 347 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 348 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 349 | lemma inv_into_inv_into_eq: | 
| 63612 | 350 | assumes "bij_betw f A A'" | 
| 351 | and a: "a \<in> A" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 352 | shows "inv_into A' (inv_into A f) a = f a" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 353 | proof - | 
| 63612 | 354 | let ?f' = "inv_into A f" | 
| 355 | let ?f'' = "inv_into A' ?f'" | |
| 356 | from assms have *: "bij_betw ?f' A' A" | |
| 357 | by (auto simp: bij_betw_inv_into) | |
| 358 | with a obtain a' where a': "a' \<in> A'" "?f' a' = a" | |
| 359 | unfolding bij_betw_def by force | |
| 360 | with a * have "?f'' a = a'" | |
| 361 | by (auto simp: f_inv_into_f bij_betw_def) | |
| 362 | moreover from assms a' have "f a = a'" | |
| 363 | by (auto simp: bij_betw_def) | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 364 | ultimately show "?f'' a = f a" by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 365 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 366 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 367 | lemma inj_on_iff_surj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 368 |   assumes "A \<noteq> {}"
 | 
| 63629 | 369 | shows "(\<exists>f. inj_on f A \<and> f ` A \<subseteq> A') \<longleftrightarrow> (\<exists>g. g ` A' = A)" | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 370 | proof safe | 
| 63612 | 371 | fix f | 
| 372 | assume inj: "inj_on f A" and incl: "f ` A \<subseteq> A'" | |
| 373 | let ?phi = "\<lambda>a' a. a \<in> A \<and> f a = a'" | |
| 374 | let ?csi = "\<lambda>a. a \<in> A" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 375 | let ?g = "\<lambda>a'. if a' \<in> f ` A then (SOME a. ?phi a' a) else (SOME a. ?csi a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 376 | have "?g ` A' = A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 377 | proof | 
| 63612 | 378 | show "?g ` A' \<subseteq> A" | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 379 | proof clarify | 
| 63612 | 380 | fix a' | 
| 381 | assume *: "a' \<in> A'" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 382 | show "?g a' \<in> A" | 
| 63612 | 383 | proof (cases "a' \<in> f ` A") | 
| 384 | case True | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 385 | then obtain a where "?phi a' a" by blast | 
| 63612 | 386 | then have "?phi a' (SOME a. ?phi a' a)" | 
| 387 | using someI[of "?phi a'" a] by blast | |
| 388 | with True show ?thesis by auto | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 389 | next | 
| 63612 | 390 | case False | 
| 391 | with assms have "?csi (SOME a. ?csi a)" | |
| 392 | using someI_ex[of ?csi] by blast | |
| 393 | with False show ?thesis by auto | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 394 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 395 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 396 | next | 
| 63612 | 397 | show "A \<subseteq> ?g ` A'" | 
| 398 | proof - | |
| 399 | have "?g (f a) = a \<and> f a \<in> A'" if a: "a \<in> A" for a | |
| 400 | proof - | |
| 401 | let ?b = "SOME aa. ?phi (f a) aa" | |
| 402 | from a have "?phi (f a) a" by auto | |
| 403 | then have *: "?phi (f a) ?b" | |
| 404 | using someI[of "?phi(f a)" a] by blast | |
| 405 | then have "?g (f a) = ?b" using a by auto | |
| 406 | moreover from inj * a have "a = ?b" | |
| 407 | by (auto simp add: inj_on_def) | |
| 408 | ultimately have "?g(f a) = a" by simp | |
| 409 | with incl a show ?thesis by auto | |
| 410 | qed | |
| 411 | then show ?thesis by force | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 412 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 413 | qed | 
| 63612 | 414 | then show "\<exists>g. g ` A' = A" by blast | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 415 | next | 
| 63612 | 416 | fix g | 
| 417 | let ?f = "inv_into A' g" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 418 | have "inj_on ?f (g ` A')" | 
| 63612 | 419 | by (auto simp: inj_on_inv_into) | 
| 420 | moreover have "?f (g a') \<in> A'" if a': "a' \<in> A'" for a' | |
| 421 | proof - | |
| 422 | let ?phi = "\<lambda> b'. b' \<in> A' \<and> g b' = g a'" | |
| 423 | from a' have "?phi a'" by auto | |
| 424 | then have "?phi (SOME b'. ?phi b')" | |
| 425 | using someI[of ?phi] by blast | |
| 426 | then show ?thesis by (auto simp: inv_into_def) | |
| 427 | qed | |
| 428 | ultimately show "\<exists>f. inj_on f (g ` A') \<and> f ` g ` A' \<subseteq> A'" | |
| 429 | by auto | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 430 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 431 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 432 | lemma Ex_inj_on_UNION_Sigma: | 
| 63629 | 433 | "\<exists>f. (inj_on f (\<Union>i \<in> I. A i) \<and> f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i))" | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 434 | proof | 
| 63612 | 435 | let ?phi = "\<lambda>a i. i \<in> I \<and> a \<in> A i" | 
| 436 | let ?sm = "\<lambda>a. SOME i. ?phi a i" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 437 | let ?f = "\<lambda>a. (?sm a, a)" | 
| 63612 | 438 | have "inj_on ?f (\<Union>i \<in> I. A i)" | 
| 439 | by (auto simp: inj_on_def) | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 440 | moreover | 
| 63612 | 441 | have "?sm a \<in> I \<and> a \<in> A(?sm a)" if "i \<in> I" and "a \<in> A i" for i a | 
| 442 | using that someI[of "?phi a" i] by auto | |
| 63629 | 443 | then have "?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)" | 
| 63612 | 444 | by auto | 
| 63629 | 445 | ultimately show "inj_on ?f (\<Union>i \<in> I. A i) \<and> ?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)" | 
| 63612 | 446 | by auto | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 447 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 448 | |
| 56608 | 449 | lemma inv_unique_comp: | 
| 450 | assumes fg: "f \<circ> g = id" | |
| 451 | and gf: "g \<circ> f = id" | |
| 452 | shows "inv f = g" | |
| 453 | using fg gf inv_equality[of g f] by (auto simp add: fun_eq_iff) | |
| 454 | ||
| 455 | ||
| 60758 | 456 | subsection \<open>Other Consequences of Hilbert's Epsilon\<close> | 
| 14760 | 457 | |
| 60758 | 458 | text \<open>Hilbert's Epsilon and the @{term split} Operator\<close>
 | 
| 14760 | 459 | |
| 63612 | 460 | text \<open>Looping simprule!\<close> | 
| 461 | lemma split_paired_Eps: "(SOME x. P x) = (SOME (a, b). P (a, b))" | |
| 26347 | 462 | by simp | 
| 14760 | 463 | |
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61076diff
changeset | 464 | lemma Eps_case_prod: "Eps (case_prod P) = (SOME xy. P (fst xy) (snd xy))" | 
| 26347 | 465 | by (simp add: split_def) | 
| 14760 | 466 | |
| 63612 | 467 | lemma Eps_case_prod_eq [simp]: "(SOME (x', y'). x = x' \<and> y = y') = (x, y)" | 
| 26347 | 468 | by blast | 
| 14760 | 469 | |
| 470 | ||
| 63612 | 471 | text \<open>A relation is wellfounded iff it has no infinite descending chain.\<close> | 
| 63981 | 472 | lemma wf_iff_no_infinite_down_chain: "wf r \<longleftrightarrow> (\<nexists>f. \<forall>i. (f (Suc i), f i) \<in> r)" | 
| 473 | (is "_ \<longleftrightarrow> \<not> ?ex") | |
| 474 | proof | |
| 475 | assume "wf r" | |
| 476 | show "\<not> ?ex" | |
| 477 | proof | |
| 478 | assume ?ex | |
| 479 | then obtain f where f: "(f (Suc i), f i) \<in> r" for i | |
| 480 | by blast | |
| 481 | from \<open>wf r\<close> have minimal: "x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q" for x Q | |
| 482 | by (auto simp: wf_eq_minimal) | |
| 483 |     let ?Q = "{w. \<exists>i. w = f i}"
 | |
| 484 | fix n | |
| 485 | have "f n \<in> ?Q" by blast | |
| 486 | from minimal [OF this] obtain j where "(y, f j) \<in> r \<Longrightarrow> y \<notin> ?Q" for y by blast | |
| 487 | with this [OF \<open>(f (Suc j), f j) \<in> r\<close>] have "f (Suc j) \<notin> ?Q" by simp | |
| 488 | then show False by blast | |
| 489 | qed | |
| 490 | next | |
| 491 | assume "\<not> ?ex" | |
| 492 | then show "wf r" | |
| 493 | proof (rule contrapos_np) | |
| 494 | assume "\<not> wf r" | |
| 495 | then obtain Q x where x: "x \<in> Q" and rec: "z \<in> Q \<Longrightarrow> \<exists>y. (y, z) \<in> r \<and> y \<in> Q" for z | |
| 496 | by (auto simp add: wf_eq_minimal) | |
| 497 | obtain descend :: "nat \<Rightarrow> 'a" | |
| 498 | where descend_0: "descend 0 = x" | |
| 499 | and descend_Suc: "descend (Suc n) = (SOME y. y \<in> Q \<and> (y, descend n) \<in> r)" for n | |
| 500 | by (rule that [of "rec_nat x (\<lambda>_ rec. (SOME y. y \<in> Q \<and> (y, rec) \<in> r))"]) simp_all | |
| 501 | have descend_Q: "descend n \<in> Q" for n | |
| 502 | proof (induct n) | |
| 503 | case 0 | |
| 504 | with x show ?case by (simp only: descend_0) | |
| 505 | next | |
| 506 | case Suc | |
| 507 | then show ?case by (simp only: descend_Suc) (rule someI2_ex; use rec in blast) | |
| 508 | qed | |
| 509 | have "(descend (Suc i), descend i) \<in> r" for i | |
| 510 | by (simp only: descend_Suc) (rule someI2_ex; use descend_Q rec in blast) | |
| 511 | then show "\<exists>f. \<forall>i. (f (Suc i), f i) \<in> r" by blast | |
| 512 | qed | |
| 513 | qed | |
| 14760 | 514 | |
| 27760 | 515 | lemma wf_no_infinite_down_chainE: | 
| 63612 | 516 | assumes "wf r" | 
| 517 | obtains k where "(f (Suc k), f k) \<notin> r" | |
| 518 | using assms wf_iff_no_infinite_down_chain[of r] by blast | |
| 27760 | 519 | |
| 520 | ||
| 63612 | 521 | text \<open>A dynamically-scoped fact for TFL\<close> | 
| 522 | lemma tfl_some: "\<forall>P x. P x \<longrightarrow> P (Eps P)" | |
| 12298 | 523 | by (blast intro: someI) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 524 | |
| 12298 | 525 | |
| 60758 | 526 | subsection \<open>An aside: bounded accessible part\<close> | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 527 | |
| 60758 | 528 | text \<open>Finite monotone eventually stable sequences\<close> | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 529 | |
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 530 | lemma finite_mono_remains_stable_implies_strict_prefix: | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 531 | fixes f :: "nat \<Rightarrow> 'a::order" | 
| 63612 | 532 | assumes S: "finite (range f)" "mono f" | 
| 533 | and eq: "\<forall>n. f n = f (Suc n) \<longrightarrow> f (Suc n) = f (Suc (Suc n))" | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 534 | shows "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m < f n) \<and> (\<forall>n\<ge>N. f N = f n)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 535 | using assms | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 536 | proof - | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 537 | have "\<exists>n. f n = f (Suc n)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 538 | proof (rule ccontr) | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 539 | assume "\<not> ?thesis" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 540 | then have "\<And>n. f n \<noteq> f (Suc n)" by auto | 
| 63612 | 541 | with \<open>mono f\<close> have "\<And>n. f n < f (Suc n)" | 
| 542 | by (auto simp: le_less mono_iff_le_Suc) | |
| 543 | with lift_Suc_mono_less_iff[of f] have *: "\<And>n m. n < m \<Longrightarrow> f n < f m" | |
| 544 | by auto | |
| 55811 | 545 | have "inj f" | 
| 546 | proof (intro injI) | |
| 547 | fix x y | |
| 548 | assume "f x = f y" | |
| 63612 | 549 | then show "x = y" | 
| 550 | by (cases x y rule: linorder_cases) (auto dest: *) | |
| 55811 | 551 | qed | 
| 60758 | 552 | with \<open>finite (range f)\<close> have "finite (UNIV::nat set)" | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 553 | by (rule finite_imageD) | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 554 | then show False by simp | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 555 | qed | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 556 | then obtain n where n: "f n = f (Suc n)" .. | 
| 63040 | 557 | define N where "N = (LEAST n. f n = f (Suc n))" | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 558 | have N: "f N = f (Suc N)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 559 | unfolding N_def using n by (rule LeastI) | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 560 | show ?thesis | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 561 | proof (intro exI[of _ N] conjI allI impI) | 
| 63612 | 562 | fix n | 
| 563 | assume "N \<le> n" | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 564 | then have "\<And>m. N \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m = f N" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 565 | proof (induct rule: dec_induct) | 
| 63612 | 566 | case base | 
| 567 | then show ?case by simp | |
| 568 | next | |
| 569 | case (step n) | |
| 570 | then show ?case | |
| 571 | using eq [rule_format, of "n - 1"] N | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 572 | by (cases n) (auto simp add: le_Suc_eq) | 
| 63612 | 573 | qed | 
| 60758 | 574 | from this[of n] \<open>N \<le> n\<close> show "f N = f n" by auto | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 575 | next | 
| 63612 | 576 | fix n m :: nat | 
| 577 | assume "m < n" "n \<le> N" | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 578 | then show "f m < f n" | 
| 62683 | 579 | proof (induct rule: less_Suc_induct) | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 580 | case (1 i) | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 581 | then have "i < N" by simp | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 582 | then have "f i \<noteq> f (Suc i)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 583 | unfolding N_def by (rule not_less_Least) | 
| 60758 | 584 | with \<open>mono f\<close> show ?case by (simp add: mono_iff_le_Suc less_le) | 
| 63612 | 585 | next | 
| 586 | case 2 | |
| 587 | then show ?case by simp | |
| 588 | qed | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 589 | qed | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 590 | qed | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 591 | |
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 592 | lemma finite_mono_strict_prefix_implies_finite_fixpoint: | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 593 | fixes f :: "nat \<Rightarrow> 'a set" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 594 | assumes S: "\<And>i. f i \<subseteq> S" "finite S" | 
| 63612 | 595 | and ex: "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m \<subset> f n) \<and> (\<forall>n\<ge>N. f N = f n)" | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 596 | shows "f (card S) = (\<Union>n. f n)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 597 | proof - | 
| 63612 | 598 | from ex obtain N where inj: "\<And>n m. n \<le> N \<Longrightarrow> m \<le> N \<Longrightarrow> m < n \<Longrightarrow> f m \<subset> f n" | 
| 599 | and eq: "\<forall>n\<ge>N. f N = f n" | |
| 600 | by atomize auto | |
| 601 | have "i \<le> N \<Longrightarrow> i \<le> card (f i)" for i | |
| 602 | proof (induct i) | |
| 603 | case 0 | |
| 604 | then show ?case by simp | |
| 605 | next | |
| 606 | case (Suc i) | |
| 607 | with inj [of "Suc i" i] have "(f i) \<subset> (f (Suc i))" by auto | |
| 608 | moreover have "finite (f (Suc i))" using S by (rule finite_subset) | |
| 609 | ultimately have "card (f i) < card (f (Suc i))" by (intro psubset_card_mono) | |
| 610 | with Suc inj show ?case by auto | |
| 611 | qed | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 612 | then have "N \<le> card (f N)" by simp | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 613 | also have "\<dots> \<le> card S" using S by (intro card_mono) | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 614 | finally have "f (card S) = f N" using eq by auto | 
| 63612 | 615 | then show ?thesis | 
| 616 | using eq inj [of N] | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 617 | apply auto | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 618 | apply (case_tac "n < N") | 
| 63612 | 619 | apply (auto simp: not_less) | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 620 | done | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 621 | qed | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 622 | |
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 623 | |
| 60758 | 624 | subsection \<open>More on injections, bijections, and inverses\<close> | 
| 55020 | 625 | |
| 63374 | 626 | locale bijection = | 
| 627 | fixes f :: "'a \<Rightarrow> 'a" | |
| 628 | assumes bij: "bij f" | |
| 629 | begin | |
| 630 | ||
| 63612 | 631 | lemma bij_inv: "bij (inv f)" | 
| 63374 | 632 | using bij by (rule bij_imp_bij_inv) | 
| 633 | ||
| 63612 | 634 | lemma surj [simp]: "surj f" | 
| 63374 | 635 | using bij by (rule bij_is_surj) | 
| 636 | ||
| 63612 | 637 | lemma inj: "inj f" | 
| 63374 | 638 | using bij by (rule bij_is_inj) | 
| 639 | ||
| 63612 | 640 | lemma surj_inv [simp]: "surj (inv f)" | 
| 63374 | 641 | using inj by (rule inj_imp_surj_inv) | 
| 642 | ||
| 63612 | 643 | lemma inj_inv: "inj (inv f)" | 
| 63374 | 644 | using surj by (rule surj_imp_inj_inv) | 
| 645 | ||
| 63612 | 646 | lemma eqI: "f a = f b \<Longrightarrow> a = b" | 
| 63374 | 647 | using inj by (rule injD) | 
| 648 | ||
| 63612 | 649 | lemma eq_iff [simp]: "f a = f b \<longleftrightarrow> a = b" | 
| 63374 | 650 | by (auto intro: eqI) | 
| 651 | ||
| 63612 | 652 | lemma eq_invI: "inv f a = inv f b \<Longrightarrow> a = b" | 
| 63374 | 653 | using inj_inv by (rule injD) | 
| 654 | ||
| 63612 | 655 | lemma eq_inv_iff [simp]: "inv f a = inv f b \<longleftrightarrow> a = b" | 
| 63374 | 656 | by (auto intro: eq_invI) | 
| 657 | ||
| 63612 | 658 | lemma inv_left [simp]: "inv f (f a) = a" | 
| 63374 | 659 | using inj by (simp add: inv_f_eq) | 
| 660 | ||
| 63612 | 661 | lemma inv_comp_left [simp]: "inv f \<circ> f = id" | 
| 63374 | 662 | by (simp add: fun_eq_iff) | 
| 663 | ||
| 63612 | 664 | lemma inv_right [simp]: "f (inv f a) = a" | 
| 63374 | 665 | using surj by (simp add: surj_f_inv_f) | 
| 666 | ||
| 63612 | 667 | lemma inv_comp_right [simp]: "f \<circ> inv f = id" | 
| 63374 | 668 | by (simp add: fun_eq_iff) | 
| 669 | ||
| 63612 | 670 | lemma inv_left_eq_iff [simp]: "inv f a = b \<longleftrightarrow> f b = a" | 
| 63374 | 671 | by auto | 
| 672 | ||
| 63612 | 673 | lemma inv_right_eq_iff [simp]: "b = inv f a \<longleftrightarrow> f b = a" | 
| 63374 | 674 | by auto | 
| 675 | ||
| 676 | end | |
| 677 | ||
| 55020 | 678 | lemma infinite_imp_bij_betw: | 
| 63612 | 679 | assumes infinite: "\<not> finite A" | 
| 680 |   shows "\<exists>h. bij_betw h A (A - {a})"
 | |
| 681 | proof (cases "a \<in> A") | |
| 682 | case False | |
| 683 |   then have "A - {a} = A" by blast
 | |
| 684 | then show ?thesis | |
| 685 | using bij_betw_id[of A] by auto | |
| 55020 | 686 | next | 
| 63612 | 687 | case True | 
| 688 |   with infinite have "\<not> finite (A - {a})" by auto
 | |
| 689 |   with infinite_iff_countable_subset[of "A - {a}"]
 | |
| 690 |   obtain f :: "nat \<Rightarrow> 'a" where 1: "inj f" and 2: "f ` UNIV \<subseteq> A - {a}" by blast
 | |
| 691 | define g where "g n = (if n = 0 then a else f (Suc n))" for n | |
| 692 | define A' where "A' = g ` UNIV" | |
| 693 | have *: "\<forall>y. f y \<noteq> a" using 2 by blast | |
| 694 | have 3: "inj_on g UNIV \<and> g ` UNIV \<subseteq> A \<and> a \<in> g ` UNIV" | |
| 695 | apply (auto simp add: True g_def [abs_def]) | |
| 696 | apply (unfold inj_on_def) | |
| 697 | apply (intro ballI impI) | |
| 698 | apply (case_tac "x = 0") | |
| 699 | apply (auto simp add: 2) | |
| 700 | proof - | |
| 701 | fix y | |
| 702 | assume "a = (if y = 0 then a else f (Suc y))" | |
| 703 | then show "y = 0" by (cases "y = 0") (use * in auto) | |
| 55020 | 704 | next | 
| 705 | fix x y | |
| 706 | assume "f (Suc x) = (if y = 0 then a else f (Suc y))" | |
| 63612 | 707 | with 1 * show "x = y" by (cases "y = 0") (auto simp: inj_on_def) | 
| 55020 | 708 | next | 
| 63612 | 709 | fix n | 
| 710 | from 2 show "f (Suc n) \<in> A" by blast | |
| 55020 | 711 | qed | 
| 63612 | 712 | then have 4: "bij_betw g UNIV A' \<and> a \<in> A' \<and> A' \<subseteq> A" | 
| 713 | using inj_on_imp_bij_betw[of g] by (auto simp: A'_def) | |
| 714 | then have 5: "bij_betw (inv g) A' UNIV" | |
| 715 | by (auto simp add: bij_betw_inv_into) | |
| 716 | from 3 obtain n where n: "g n = a" by auto | |
| 717 |   have 6: "bij_betw g (UNIV - {n}) (A' - {a})"
 | |
| 718 | by (rule bij_betw_subset) (use 3 4 n in \<open>auto simp: image_set_diff A'_def\<close>) | |
| 719 | define v where "v m = (if m < n then m else Suc m)" for m | |
| 55020 | 720 |   have 7: "bij_betw v UNIV (UNIV - {n})"
 | 
| 63612 | 721 | proof (unfold bij_betw_def inj_on_def, intro conjI, clarify) | 
| 722 | fix m1 m2 | |
| 723 | assume "v m1 = v m2" | |
| 724 | then show "m1 = m2" | |
| 725 | apply (cases "m1 < n") | |
| 726 | apply (cases "m2 < n") | |
| 727 | apply (auto simp: inj_on_def v_def [abs_def]) | |
| 728 | apply (cases "m2 < n") | |
| 729 | apply auto | |
| 730 | done | |
| 55020 | 731 | next | 
| 732 |     show "v ` UNIV = UNIV - {n}"
 | |
| 63612 | 733 | proof (auto simp: v_def [abs_def]) | 
| 734 | fix m | |
| 735 | assume "m \<noteq> n" | |
| 736 |       assume *: "m \<notin> Suc ` {m'. \<not> m' < n}"
 | |
| 737 | have False if "n \<le> m" | |
| 738 | proof - | |
| 739 | from \<open>m \<noteq> n\<close> that have **: "Suc n \<le> m" by auto | |
| 740 | from Suc_le_D [OF this] obtain m' where m': "m = Suc m'" .. | |
| 741 | with ** have "n \<le> m'" by auto | |
| 742 | with m' * show ?thesis by auto | |
| 743 | qed | |
| 744 | then show "m < n" by force | |
| 55020 | 745 | qed | 
| 746 | qed | |
| 63612 | 747 | define h' where "h' = g \<circ> v \<circ> (inv g)" | 
| 748 |   with 5 6 7 have 8: "bij_betw h' A' (A' - {a})"
 | |
| 749 | by (auto simp add: bij_betw_trans) | |
| 750 | define h where "h b = (if b \<in> A' then h' b else b)" for b | |
| 751 | then have "\<forall>b \<in> A'. h b = h' b" by simp | |
| 752 |   with 8 have "bij_betw h  A' (A' - {a})"
 | |
| 753 | using bij_betw_cong[of A' h] by auto | |
| 55020 | 754 | moreover | 
| 63612 | 755 | have "\<forall>b \<in> A - A'. h b = b" by (auto simp: h_def) | 
| 756 | then have "bij_betw h (A - A') (A - A')" | |
| 757 | using bij_betw_cong[of "A - A'" h id] bij_betw_id[of "A - A'"] by auto | |
| 55020 | 758 | moreover | 
| 63612 | 759 |   from 4 have "(A' \<inter> (A - A') = {} \<and> A' \<union> (A - A') = A) \<and>
 | 
| 760 |     ((A' - {a}) \<inter> (A - A') = {} \<and> (A' - {a}) \<union> (A - A') = A - {a})"
 | |
| 761 | by blast | |
| 55020 | 762 |   ultimately have "bij_betw h A (A - {a})"
 | 
| 63612 | 763 |     using bij_betw_combine[of h A' "A' - {a}" "A - A'" "A - A'"] by simp
 | 
| 764 | then show ?thesis by blast | |
| 55020 | 765 | qed | 
| 766 | ||
| 767 | lemma infinite_imp_bij_betw2: | |
| 63612 | 768 | assumes "\<not> finite A" | 
| 769 |   shows "\<exists>h. bij_betw h A (A \<union> {a})"
 | |
| 770 | proof (cases "a \<in> A") | |
| 771 | case True | |
| 772 |   then have "A \<union> {a} = A" by blast
 | |
| 773 | then show ?thesis using bij_betw_id[of A] by auto | |
| 55020 | 774 | next | 
| 63612 | 775 | case False | 
| 55020 | 776 |   let ?A' = "A \<union> {a}"
 | 
| 63612 | 777 |   from False have "A = ?A' - {a}" by blast
 | 
| 778 | moreover from assms have "\<not> finite ?A'" by auto | |
| 55020 | 779 | ultimately obtain f where "bij_betw f ?A' A" | 
| 63612 | 780 | using infinite_imp_bij_betw[of ?A' a] by auto | 
| 781 | then have "bij_betw (inv_into ?A' f) A ?A'" by (rule bij_betw_inv_into) | |
| 782 | then show ?thesis by auto | |
| 55020 | 783 | qed | 
| 784 | ||
| 63612 | 785 | lemma bij_betw_inv_into_left: "bij_betw f A A' \<Longrightarrow> a \<in> A \<Longrightarrow> inv_into A f (f a) = a" | 
| 786 | unfolding bij_betw_def by clarify (rule inv_into_f_f) | |
| 55020 | 787 | |
| 63612 | 788 | lemma bij_betw_inv_into_right: "bij_betw f A A' \<Longrightarrow> a' \<in> A' \<Longrightarrow> f (inv_into A f a') = a'" | 
| 789 | unfolding bij_betw_def using f_inv_into_f by force | |
| 55020 | 790 | |
| 791 | lemma bij_betw_inv_into_subset: | |
| 63612 | 792 | "bij_betw f A A' \<Longrightarrow> B \<subseteq> A \<Longrightarrow> f ` B = B' \<Longrightarrow> bij_betw (inv_into A f) B' B" | 
| 793 | by (auto simp: bij_betw_def intro: inj_on_inv_into) | |
| 55020 | 794 | |
| 795 | ||
| 60758 | 796 | subsection \<open>Specification package -- Hilbertized version\<close> | 
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 797 | |
| 63612 | 798 | lemma exE_some: "Ex P \<Longrightarrow> c \<equiv> Eps P \<Longrightarrow> P c" | 
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 799 | by (simp only: someI_ex) | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 800 | |
| 48891 | 801 | ML_file "Tools/choice_specification.ML" | 
| 14115 | 802 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 803 | end |