| 
0
 | 
     1  | 
(*  Title: 	ZF/trancl.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
For trancl.thy.  Transitive closure of a relation
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
open Trancl;
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
goal Trancl.thy "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))";
  | 
| 
 | 
    12  | 
by (rtac bnd_monoI 1);
  | 
| 
 | 
    13  | 
by (REPEAT (ares_tac [subset_refl, Un_mono, comp_mono] 2));
  | 
| 
 | 
    14  | 
by (fast_tac comp_cs 1);
  | 
| 
 | 
    15  | 
val rtrancl_bnd_mono = result();
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
val [prem] = goalw Trancl.thy [rtrancl_def] "r<=s ==> r^* <= s^*";
  | 
| 
 | 
    18  | 
by (rtac lfp_mono 1);
  | 
| 
 | 
    19  | 
by (REPEAT (resolve_tac [rtrancl_bnd_mono, prem, subset_refl, id_mono,
  | 
| 
 | 
    20  | 
			 comp_mono, Un_mono, field_mono, Sigma_mono] 1));
  | 
| 
 | 
    21  | 
val rtrancl_mono = result();
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
(* r^* = id(field(r)) Un ( r O r^* )    *)
  | 
| 
 | 
    24  | 
val rtrancl_unfold = rtrancl_bnd_mono RS (rtrancl_def RS def_lfp_Tarski);
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
(** The relation rtrancl **)
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
val rtrancl_type = standard (rtrancl_def RS def_lfp_subset);
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
(*Reflexivity of rtrancl*)
  | 
| 
 | 
    31  | 
val [prem] = goal Trancl.thy "[| a: field(r) |] ==> <a,a> : r^*";
  | 
| 
 | 
    32  | 
by (resolve_tac [rtrancl_unfold RS ssubst] 1);
  | 
| 
 | 
    33  | 
by (rtac (prem RS idI RS UnI1) 1);
  | 
| 
 | 
    34  | 
val rtrancl_refl = result();
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
(*Closure under composition with r  *)
  | 
| 
 | 
    37  | 
val prems = goal Trancl.thy
  | 
| 
 | 
    38  | 
    "[| <a,b> : r^*;  <b,c> : r |] ==> <a,c> : r^*";
  | 
| 
 | 
    39  | 
by (resolve_tac [rtrancl_unfold RS ssubst] 1);
  | 
| 
 | 
    40  | 
by (rtac (compI RS UnI2) 1);
  | 
| 
 | 
    41  | 
by (resolve_tac prems 1);
  | 
| 
 | 
    42  | 
by (resolve_tac prems 1);
  | 
| 
 | 
    43  | 
val rtrancl_into_rtrancl = result();
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
(*rtrancl of r contains all pairs in r  *)
  | 
| 
 | 
    46  | 
val prems = goal Trancl.thy "<a,b> : r ==> <a,b> : r^*";
  | 
| 
 | 
    47  | 
by (resolve_tac [rtrancl_refl RS rtrancl_into_rtrancl] 1);
  | 
| 
 | 
    48  | 
by (REPEAT (resolve_tac (prems@[fieldI1]) 1));
  | 
| 
 | 
    49  | 
val r_into_rtrancl = result();
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
(*The premise ensures that r consists entirely of pairs*)
  | 
| 
 | 
    52  | 
val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^*";
  | 
| 
 | 
    53  | 
by (cut_facts_tac prems 1);
  | 
| 
 | 
    54  | 
by (fast_tac (ZF_cs addIs [r_into_rtrancl]) 1);
  | 
| 
 | 
    55  | 
val r_subset_rtrancl = result();
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
goal Trancl.thy "field(r^*) = field(r)";
  | 
| 
 | 
    58  | 
by (fast_tac (eq_cs addIs [r_into_rtrancl] 
  | 
| 
 | 
    59  | 
		    addSDs [rtrancl_type RS subsetD]) 1);
  | 
| 
 | 
    60  | 
val rtrancl_field = result();
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
(** standard induction rule **)
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
val major::prems = goal Trancl.thy
  | 
| 
 | 
    66  | 
  "[| <a,b> : r^*; \
  | 
| 
 | 
    67  | 
\     !!x. x: field(r) ==> P(<x,x>); \
  | 
| 
 | 
    68  | 
\     !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |] \
  | 
| 
 | 
    69  | 
\  ==>  P(<a,b>)";
  | 
| 
 | 
    70  | 
by (rtac ([rtrancl_def, rtrancl_bnd_mono, major] MRS def_induct) 1);
  | 
| 
 | 
    71  | 
by (fast_tac (ZF_cs addIs prems addSEs [idE,compE]) 1);
  | 
| 
 | 
    72  | 
val rtrancl_full_induct = result();
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
(*nice induction rule.
  | 
| 
 | 
    75  | 
  Tried adding the typing hypotheses y,z:field(r), but these
  | 
| 
 | 
    76  | 
  caused expensive case splits!*)
  | 
| 
 | 
    77  | 
val major::prems = goal Trancl.thy
  | 
| 
 | 
    78  | 
  "[| <a,b> : r^*;   						\
  | 
| 
 | 
    79  | 
\     P(a); 							\
  | 
| 
 | 
    80  | 
\     !!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z) 	\
  | 
| 
 | 
    81  | 
\  |] ==> P(b)";
  | 
| 
 | 
    82  | 
(*by induction on this formula*)
  | 
| 
 | 
    83  | 
by (subgoal_tac "ALL y. <a,b> = <a,y> --> P(y)" 1);
  | 
| 
 | 
    84  | 
(*now solve first subgoal: this formula is sufficient*)
  | 
| 
 | 
    85  | 
by (EVERY1 [etac (spec RS mp), rtac refl]);
  | 
| 
 | 
    86  | 
(*now do the induction*)
  | 
| 
 | 
    87  | 
by (resolve_tac [major RS rtrancl_full_induct] 1);
  | 
| 
 | 
    88  | 
by (ALLGOALS (fast_tac (ZF_cs addIs prems)));
  | 
| 
 | 
    89  | 
val rtrancl_induct = result();
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
(*transitivity of transitive closure!! -- by induction.*)
  | 
| 
 | 
    92  | 
goalw Trancl.thy [trans_def] "trans(r^*)";
  | 
| 
 | 
    93  | 
by (REPEAT (resolve_tac [allI,impI] 1));
  | 
| 
 | 
    94  | 
by (eres_inst_tac [("b","z")] rtrancl_induct 1);
 | 
| 
 | 
    95  | 
by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
  | 
| 
 | 
    96  | 
val trans_rtrancl = result();
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
(*elimination of rtrancl -- by induction on a special formula*)
  | 
| 
 | 
    99  | 
val major::prems = goal Trancl.thy
  | 
| 
 | 
   100  | 
    "[| <a,b> : r^*;  (a=b) ==> P;			 \
  | 
| 
 | 
   101  | 
\	!!y.[| <a,y> : r^*;   <y,b> : r |] ==> P |]	 \
  | 
| 
 | 
   102  | 
\    ==> P";
  | 
| 
 | 
   103  | 
by (subgoal_tac "a = b  | (EX y. <a,y> : r^* & <y,b> : r)" 1);
  | 
| 
 | 
   104  | 
(*see HOL/trancl*)
  | 
| 
 | 
   105  | 
by (rtac (major RS rtrancl_induct) 2);
  | 
| 
 | 
   106  | 
by (ALLGOALS (fast_tac (ZF_cs addSEs prems)));
  | 
| 
 | 
   107  | 
val rtranclE = result();
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
(**** The relation trancl ****)
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
(*Transitivity of r^+ is proved by transitivity of r^*  *)
  | 
| 
 | 
   113  | 
goalw Trancl.thy [trans_def,trancl_def] "trans(r^+)";
  | 
| 
 | 
   114  | 
by (safe_tac comp_cs);
  | 
| 
 | 
   115  | 
by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1);
  | 
| 
 | 
   116  | 
by (REPEAT (assume_tac 1));
  | 
| 
 | 
   117  | 
val trans_trancl = result();
  | 
| 
 | 
   118  | 
  | 
| 
 | 
   119  | 
(** Conversions between trancl and rtrancl **)
  | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
val [major] = goalw Trancl.thy [trancl_def] "<a,b> : r^+ ==> <a,b> : r^*";
  | 
| 
 | 
   122  | 
by (resolve_tac [major RS compEpair] 1);
  | 
| 
 | 
   123  | 
by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1));
  | 
| 
 | 
   124  | 
val trancl_into_rtrancl = result();
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
(*r^+ contains all pairs in r  *)
  | 
| 
 | 
   127  | 
val [prem] = goalw Trancl.thy [trancl_def] "<a,b> : r ==> <a,b> : r^+";
  | 
| 
 | 
   128  | 
by (REPEAT (ares_tac [prem,compI,rtrancl_refl,fieldI1] 1));
  | 
| 
 | 
   129  | 
val r_into_trancl = result();
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
(*The premise ensures that r consists entirely of pairs*)
  | 
| 
 | 
   132  | 
val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^+";
  | 
| 
 | 
   133  | 
by (cut_facts_tac prems 1);
  | 
| 
 | 
   134  | 
by (fast_tac (ZF_cs addIs [r_into_trancl]) 1);
  | 
| 
 | 
   135  | 
val r_subset_trancl = result();
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
(*intro rule by definition: from r^* and r  *)
  | 
| 
 | 
   138  | 
val prems = goalw Trancl.thy [trancl_def]
  | 
| 
 | 
   139  | 
    "[| <a,b> : r^*;  <b,c> : r |]   ==>  <a,c> : r^+";
  | 
| 
 | 
   140  | 
by (REPEAT (resolve_tac ([compI]@prems) 1));
  | 
| 
 | 
   141  | 
val rtrancl_into_trancl1 = result();
  | 
| 
 | 
   142  | 
  | 
| 
 | 
   143  | 
(*intro rule from r and r^*  *)
  | 
| 
 | 
   144  | 
val prems = goal Trancl.thy
  | 
| 
 | 
   145  | 
    "[| <a,b> : r;  <b,c> : r^* |]   ==>  <a,c> : r^+";
  | 
| 
 | 
   146  | 
by (resolve_tac (prems RL [rtrancl_induct]) 1);
  | 
| 
 | 
   147  | 
by (resolve_tac (prems RL [r_into_trancl]) 1);
  | 
| 
 | 
   148  | 
by (etac (trans_trancl RS transD) 1);
  | 
| 
 | 
   149  | 
by (etac r_into_trancl 1);
  | 
| 
 | 
   150  | 
val rtrancl_into_trancl2 = result();
  | 
| 
 | 
   151  | 
  | 
| 
 | 
   152  | 
(*Nice induction rule for trancl*)
  | 
| 
 | 
   153  | 
val major::prems = goal Trancl.thy
  | 
| 
 | 
   154  | 
  "[| <a,b> : r^+;    					\
  | 
| 
 | 
   155  | 
\     !!y.  [| <a,y> : r |] ==> P(y); 			\
  | 
| 
 | 
   156  | 
\     !!y z.[| <a,y> : r^+;  <y,z> : r;  P(y) |] ==> P(z) 	\
  | 
| 
 | 
   157  | 
\  |] ==> P(b)";
  | 
| 
 | 
   158  | 
by (rtac (rewrite_rule [trancl_def] major  RS  compEpair) 1);
  | 
| 
 | 
   159  | 
(*by induction on this formula*)
  | 
| 
 | 
   160  | 
by (subgoal_tac "ALL z. <y,z> : r --> P(z)" 1);
  | 
| 
 | 
   161  | 
(*now solve first subgoal: this formula is sufficient*)
  | 
| 
 | 
   162  | 
by (fast_tac ZF_cs 1);
  | 
| 
 | 
   163  | 
by (etac rtrancl_induct 1);
  | 
| 
 | 
   164  | 
by (ALLGOALS (fast_tac (ZF_cs addIs (rtrancl_into_trancl1::prems))));
  | 
| 
 | 
   165  | 
val trancl_induct = result();
  | 
| 
 | 
   166  | 
  | 
| 
 | 
   167  | 
(*elimination of r^+ -- NOT an induction rule*)
  | 
| 
 | 
   168  | 
val major::prems = goal Trancl.thy
  | 
| 
 | 
   169  | 
    "[| <a,b> : r^+;  \
  | 
| 
 | 
   170  | 
\       <a,b> : r ==> P; \
  | 
| 
 | 
   171  | 
\	!!y.[| <a,y> : r^+; <y,b> : r |] ==> P  \
  | 
| 
 | 
   172  | 
\    |] ==> P";
  | 
| 
 | 
   173  | 
by (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+  &  <y,b> : r)" 1);
  | 
| 
 | 
   174  | 
by (fast_tac (ZF_cs addIs prems) 1);
  | 
| 
 | 
   175  | 
by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
  | 
| 
 | 
   176  | 
by (etac rtranclE 1);
  | 
| 
 | 
   177  | 
by (ALLGOALS (fast_tac (ZF_cs addIs [rtrancl_into_trancl1])));
  | 
| 
 | 
   178  | 
val tranclE = result();
  | 
| 
 | 
   179  | 
  | 
| 
 | 
   180  | 
goalw Trancl.thy [trancl_def] "r^+ <= field(r)*field(r)";
  | 
| 
 | 
   181  | 
by (fast_tac (ZF_cs addEs [compE, rtrancl_type RS subsetD RS SigmaE2]) 1);
  | 
| 
 | 
   182  | 
val trancl_type = result();
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
val [prem] = goalw Trancl.thy [trancl_def] "r<=s ==> r^+ <= s^+";
  | 
| 
 | 
   185  | 
by (REPEAT (resolve_tac [prem, comp_mono, rtrancl_mono] 1));
  | 
| 
 | 
   186  | 
val trancl_mono = result();
  | 
| 
 | 
   187  | 
  |