| author | wenzelm | 
| Fri, 19 Aug 1994 15:35:56 +0200 | |
| changeset 551 | 4c139c37dbaf | 
| parent 129 | dc50a4b96d7b | 
| permissions | -rw-r--r-- | 
| 0 | 1  | 
(* Title: ZF/epsilon.ML  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1993 University of Cambridge  | 
|
5  | 
||
6  | 
For epsilon.thy. Epsilon induction and recursion  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
open Epsilon;  | 
|
10  | 
||
11  | 
(*** Basic closure properties ***)  | 
|
12  | 
||
13  | 
goalw Epsilon.thy [eclose_def] "A <= eclose(A)";  | 
|
14  | 
by (rtac (nat_rec_0 RS equalityD2 RS subset_trans) 1);  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
15  | 
by (rtac (nat_0I RS UN_upper) 1);  | 
| 0 | 16  | 
val arg_subset_eclose = result();  | 
17  | 
||
18  | 
val arg_into_eclose = arg_subset_eclose RS subsetD;  | 
|
19  | 
||
20  | 
goalw Epsilon.thy [eclose_def,Transset_def] "Transset(eclose(A))";  | 
|
21  | 
by (rtac (subsetI RS ballI) 1);  | 
|
22  | 
by (etac UN_E 1);  | 
|
23  | 
by (rtac (nat_succI RS UN_I) 1);  | 
|
24  | 
by (assume_tac 1);  | 
|
25  | 
by (etac (nat_rec_succ RS ssubst) 1);  | 
|
26  | 
by (etac UnionI 1);  | 
|
27  | 
by (assume_tac 1);  | 
|
28  | 
val Transset_eclose = result();  | 
|
29  | 
||
30  | 
(* x : eclose(A) ==> x <= eclose(A) *)  | 
|
31  | 
val eclose_subset =  | 
|
32  | 
standard (rewrite_rule [Transset_def] Transset_eclose RS bspec);  | 
|
33  | 
||
34  | 
(* [| A : eclose(B); c : A |] ==> c : eclose(B) *)  | 
|
35  | 
val ecloseD = standard (eclose_subset RS subsetD);  | 
|
36  | 
||
37  | 
val arg_in_eclose_sing = arg_subset_eclose RS singleton_subsetD;  | 
|
38  | 
val arg_into_eclose_sing = arg_in_eclose_sing RS ecloseD;  | 
|
39  | 
||
40  | 
(* This is epsilon-induction for eclose(A); see also eclose_induct_down...  | 
|
41  | 
[| a: eclose(A); !!x. [| x: eclose(A); ALL y:x. P(y) |] ==> P(x)  | 
|
42  | 
|] ==> P(a)  | 
|
43  | 
*)  | 
|
44  | 
val eclose_induct = standard (Transset_eclose RSN (2, Transset_induct));  | 
|
45  | 
||
46  | 
(*Epsilon induction*)  | 
|
47  | 
val prems = goal Epsilon.thy  | 
|
48  | 
"[| !!x. ALL y:x. P(y) ==> P(x) |] ==> P(a)";  | 
|
49  | 
by (rtac (arg_in_eclose_sing RS eclose_induct) 1);  | 
|
50  | 
by (eresolve_tac prems 1);  | 
|
51  | 
val eps_induct = result();  | 
|
52  | 
||
53  | 
(*Perform epsilon-induction on i. *)  | 
|
54  | 
fun eps_ind_tac a =  | 
|
55  | 
    EVERY' [res_inst_tac [("a",a)] eps_induct,
 | 
|
56  | 
rename_last_tac a ["1"]];  | 
|
57  | 
||
58  | 
||
59  | 
(*** Leastness of eclose ***)  | 
|
60  | 
||
61  | 
(** eclose(A) is the least transitive set including A as a subset. **)  | 
|
62  | 
||
63  | 
goalw Epsilon.thy [Transset_def]  | 
|
64  | 
"!!X A n. [| Transset(X); A<=X; n: nat |] ==> \  | 
|
65  | 
\ nat_rec(n, A, %m r. Union(r)) <= X";  | 
|
66  | 
by (etac nat_induct 1);  | 
|
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
67  | 
by (asm_simp_tac (ZF_ss addsimps [nat_rec_0]) 1);  | 
| 
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
68  | 
by (asm_simp_tac (ZF_ss addsimps [nat_rec_succ]) 1);  | 
| 0 | 69  | 
by (fast_tac ZF_cs 1);  | 
70  | 
val eclose_least_lemma = result();  | 
|
71  | 
||
72  | 
goalw Epsilon.thy [eclose_def]  | 
|
73  | 
"!!X A. [| Transset(X); A<=X |] ==> eclose(A) <= X";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
74  | 
by (rtac (eclose_least_lemma RS UN_least) 1);  | 
| 0 | 75  | 
by (REPEAT (assume_tac 1));  | 
76  | 
val eclose_least = result();  | 
|
77  | 
||
78  | 
(*COMPLETELY DIFFERENT induction principle from eclose_induct!!*)  | 
|
79  | 
val [major,base,step] = goal Epsilon.thy  | 
|
80  | 
"[| a: eclose(b); \  | 
|
81  | 
\ !!y. [| y: b |] ==> P(y); \  | 
|
82  | 
\ !!y z. [| y: eclose(b); P(y); z: y |] ==> P(z) \  | 
|
83  | 
\ |] ==> P(a)";  | 
|
84  | 
by (rtac (major RSN (3, eclose_least RS subsetD RS CollectD2)) 1);  | 
|
85  | 
by (rtac (CollectI RS subsetI) 2);  | 
|
86  | 
by (etac (arg_subset_eclose RS subsetD) 2);  | 
|
87  | 
by (etac base 2);  | 
|
88  | 
by (rewtac Transset_def);  | 
|
89  | 
by (fast_tac (ZF_cs addEs [step,ecloseD]) 1);  | 
|
90  | 
val eclose_induct_down = result();  | 
|
91  | 
||
92  | 
goal Epsilon.thy "!!X. Transset(X) ==> eclose(X) = X";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
93  | 
by (etac ([eclose_least, arg_subset_eclose] MRS equalityI) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
94  | 
by (rtac subset_refl 1);  | 
| 0 | 95  | 
val Transset_eclose_eq_arg = result();  | 
96  | 
||
97  | 
||
98  | 
(*** Epsilon recursion ***)  | 
|
99  | 
||
100  | 
(*Unused...*)  | 
|
101  | 
goal Epsilon.thy "!!A B C. [| A: eclose(B); B: eclose(C) |] ==> A: eclose(C)";  | 
|
102  | 
by (rtac ([Transset_eclose, eclose_subset] MRS eclose_least RS subsetD) 1);  | 
|
103  | 
by (REPEAT (assume_tac 1));  | 
|
104  | 
val mem_eclose_trans = result();  | 
|
105  | 
||
106  | 
(*Variant of the previous lemma in a useable form for the sequel*)  | 
|
107  | 
goal Epsilon.thy  | 
|
108  | 
    "!!A B C. [| A: eclose({B});  B: eclose({C}) |] ==> A: eclose({C})";
 | 
|
109  | 
by (rtac ([Transset_eclose, singleton_subsetI] MRS eclose_least RS subsetD) 1);  | 
|
110  | 
by (REPEAT (assume_tac 1));  | 
|
111  | 
val mem_eclose_sing_trans = result();  | 
|
112  | 
||
113  | 
goalw Epsilon.thy [Transset_def]  | 
|
114  | 
    "!!i j. [| Transset(i);  j:i |] ==> Memrel(i)-``{j} = j";
 | 
|
115  | 
by (fast_tac (eq_cs addSIs [MemrelI] addSEs [MemrelE]) 1);  | 
|
116  | 
val under_Memrel = result();  | 
|
117  | 
||
118  | 
(* j : eclose(A) ==> Memrel(eclose(A)) -`` j = j *)  | 
|
119  | 
val under_Memrel_eclose = Transset_eclose RS under_Memrel;  | 
|
120  | 
||
121  | 
val wfrec_ssubst = standard (wf_Memrel RS wfrec RS ssubst);  | 
|
122  | 
||
123  | 
val [kmemj,jmemi] = goal Epsilon.thy  | 
|
124  | 
    "[| k:eclose({j});  j:eclose({i}) |] ==> \
 | 
|
125  | 
\    wfrec(Memrel(eclose({i})), k, H) = wfrec(Memrel(eclose({j})), k, H)";
 | 
|
126  | 
by (rtac (kmemj RS eclose_induct) 1);  | 
|
127  | 
by (rtac wfrec_ssubst 1);  | 
|
128  | 
by (rtac wfrec_ssubst 1);  | 
|
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
129  | 
by (asm_simp_tac (ZF_ss addsimps [under_Memrel_eclose,  | 
| 
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
130  | 
jmemi RSN (2,mem_eclose_sing_trans)]) 1);  | 
| 0 | 131  | 
val wfrec_eclose_eq = result();  | 
132  | 
||
133  | 
val [prem] = goal Epsilon.thy  | 
|
134  | 
    "k: i ==> wfrec(Memrel(eclose({i})),k,H) = wfrec(Memrel(eclose({k})),k,H)";
 | 
|
135  | 
by (rtac (arg_in_eclose_sing RS wfrec_eclose_eq) 1);  | 
|
136  | 
by (rtac (prem RS arg_into_eclose_sing) 1);  | 
|
137  | 
val wfrec_eclose_eq2 = result();  | 
|
138  | 
||
139  | 
goalw Epsilon.thy [transrec_def]  | 
|
140  | 
"transrec(a,H) = H(a, lam x:a. transrec(x,H))";  | 
|
141  | 
by (rtac wfrec_ssubst 1);  | 
|
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
142  | 
by (simp_tac (ZF_ss addsimps [wfrec_eclose_eq2, arg_in_eclose_sing,  | 
| 
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
143  | 
under_Memrel_eclose]) 1);  | 
| 0 | 144  | 
val transrec = result();  | 
145  | 
||
146  | 
(*Avoids explosions in proofs; resolve it with a meta-level definition.*)  | 
|
147  | 
val rew::prems = goal Epsilon.thy  | 
|
148  | 
"[| !!x. f(x)==transrec(x,H) |] ==> f(a) = H(a, lam x:a. f(x))";  | 
|
149  | 
by (rewtac rew);  | 
|
150  | 
by (REPEAT (resolve_tac (prems@[transrec]) 1));  | 
|
151  | 
val def_transrec = result();  | 
|
152  | 
||
153  | 
val prems = goal Epsilon.thy  | 
|
154  | 
    "[| !!x u. [| x:eclose({a});  u: Pi(x,B) |] ==> H(x,u) : B(x)   \
 | 
|
155  | 
\ |] ==> transrec(a,H) : B(a)";  | 
|
156  | 
by (res_inst_tac [("i", "a")] (arg_in_eclose_sing RS eclose_induct) 1);
 | 
|
157  | 
by (rtac (transrec RS ssubst) 1);  | 
|
158  | 
by (REPEAT (ares_tac (prems @ [lam_type]) 1 ORELSE etac bspec 1));  | 
|
159  | 
val transrec_type = result();  | 
|
160  | 
||
161  | 
goal Epsilon.thy "!!i. Ord(i) ==> eclose({i}) <= succ(i)";
 | 
|
162  | 
by (etac (Ord_is_Transset RS Transset_succ RS eclose_least) 1);  | 
|
163  | 
by (rtac (succI1 RS singleton_subsetI) 1);  | 
|
164  | 
val eclose_sing_Ord = result();  | 
|
165  | 
||
166  | 
val prems = goal Epsilon.thy  | 
|
167  | 
"[| j: i; Ord(i); \  | 
|
168  | 
\ !!x u. [| x: i; u: Pi(x,B) |] ==> H(x,u) : B(x) \  | 
|
169  | 
\ |] ==> transrec(j,H) : B(j)";  | 
|
170  | 
by (rtac transrec_type 1);  | 
|
171  | 
by (resolve_tac prems 1);  | 
|
172  | 
by (rtac (Ord_in_Ord RS eclose_sing_Ord RS subsetD RS succE) 1);  | 
|
173  | 
by (DEPTH_SOLVE (ares_tac prems 1 ORELSE eresolve_tac [ssubst,Ord_trans] 1));  | 
|
174  | 
val Ord_transrec_type = result();  | 
|
175  | 
||
176  | 
(*** Rank ***)  | 
|
177  | 
||
178  | 
(*NOT SUITABLE FOR REWRITING -- RECURSIVE!*)  | 
|
179  | 
goal Epsilon.thy "rank(a) = (UN y:a. succ(rank(y)))";  | 
|
180  | 
by (rtac (rank_def RS def_transrec RS ssubst) 1);  | 
|
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
181  | 
by (simp_tac ZF_ss 1);  | 
| 0 | 182  | 
val rank = result();  | 
183  | 
||
184  | 
goal Epsilon.thy "Ord(rank(a))";  | 
|
185  | 
by (eps_ind_tac "a" 1);  | 
|
186  | 
by (rtac (rank RS ssubst) 1);  | 
|
187  | 
by (rtac (Ord_succ RS Ord_UN) 1);  | 
|
188  | 
by (etac bspec 1);  | 
|
189  | 
by (assume_tac 1);  | 
|
190  | 
val Ord_rank = result();  | 
|
191  | 
||
192  | 
val [major] = goal Epsilon.thy "Ord(i) ==> rank(i) = i";  | 
|
193  | 
by (rtac (major RS trans_induct) 1);  | 
|
194  | 
by (rtac (rank RS ssubst) 1);  | 
|
| 
6
 
8ce8c4d13d4d
Installation of new simplifier for ZF.  Deleted all congruence rules not
 
lcp 
parents: 
0 
diff
changeset
 | 
195  | 
by (asm_simp_tac (ZF_ss addsimps [Ord_equality]) 1);  | 
| 0 | 196  | 
val rank_of_Ord = result();  | 
197  | 
||
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
198  | 
goal Epsilon.thy "!!a b. a:b ==> rank(a) < rank(b)";  | 
| 0 | 199  | 
by (res_inst_tac [("a1","b")] (rank RS ssubst) 1);
 | 
| 129 | 200  | 
by (etac (UN_I RS ltI) 1);  | 
| 0 | 201  | 
by (rtac succI1 1);  | 
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
202  | 
by (REPEAT (ares_tac [Ord_UN, Ord_succ, Ord_rank] 1));  | 
| 0 | 203  | 
val rank_lt = result();  | 
204  | 
||
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
205  | 
val [major] = goal Epsilon.thy "a: eclose(b) ==> rank(a) < rank(b)";  | 
| 0 | 206  | 
by (rtac (major RS eclose_induct_down) 1);  | 
207  | 
by (etac rank_lt 1);  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
208  | 
by (etac (rank_lt RS lt_trans) 1);  | 
| 0 | 209  | 
by (assume_tac 1);  | 
210  | 
val eclose_rank_lt = result();  | 
|
211  | 
||
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
212  | 
goal Epsilon.thy "!!a b. a<=b ==> rank(a) le rank(b)";  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
213  | 
by (rtac subset_imp_le 1);  | 
| 0 | 214  | 
by (rtac (rank RS ssubst) 1);  | 
215  | 
by (rtac (rank RS ssubst) 1);  | 
|
216  | 
by (etac UN_mono 1);  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
217  | 
by (REPEAT (resolve_tac [subset_refl, Ord_rank] 1));  | 
| 0 | 218  | 
val rank_mono = result();  | 
219  | 
||
220  | 
goal Epsilon.thy "rank(Pow(a)) = succ(rank(a))";  | 
|
221  | 
by (rtac (rank RS trans) 1);  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
222  | 
by (rtac le_asym 1);  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
223  | 
by (DO_GOAL [rtac (Ord_rank RS Ord_succ RS UN_least_le),  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
224  | 
etac (PowD RS rank_mono RS succ_leI)] 1);  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
225  | 
by (DO_GOAL [rtac ([Pow_top, le_refl] MRS UN_upper_le),  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
226  | 
REPEAT o rtac (Ord_rank RS Ord_succ)] 1);  | 
| 0 | 227  | 
val rank_Pow = result();  | 
228  | 
||
229  | 
goal Epsilon.thy "rank(0) = 0";  | 
|
230  | 
by (rtac (rank RS trans) 1);  | 
|
231  | 
by (fast_tac (ZF_cs addSIs [equalityI]) 1);  | 
|
232  | 
val rank_0 = result();  | 
|
233  | 
||
234  | 
goal Epsilon.thy "rank(succ(x)) = succ(rank(x))";  | 
|
235  | 
by (rtac (rank RS trans) 1);  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
236  | 
by (rtac ([UN_least, succI1 RS UN_upper] MRS equalityI) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
237  | 
by (etac succE 1);  | 
| 0 | 238  | 
by (fast_tac ZF_cs 1);  | 
| 129 | 239  | 
by (etac (rank_lt RS leI RS succ_leI RS le_imp_subset) 1);  | 
| 0 | 240  | 
val rank_succ = result();  | 
241  | 
||
242  | 
goal Epsilon.thy "rank(Union(A)) = (UN x:A. rank(x))";  | 
|
243  | 
by (rtac equalityI 1);  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
244  | 
by (rtac (rank_mono RS le_imp_subset RS UN_least) 2);  | 
| 0 | 245  | 
by (etac Union_upper 2);  | 
246  | 
by (rtac (rank RS ssubst) 1);  | 
|
247  | 
by (rtac UN_least 1);  | 
|
248  | 
by (etac UnionE 1);  | 
|
249  | 
by (rtac subset_trans 1);  | 
|
250  | 
by (etac (RepFunI RS Union_upper) 2);  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
251  | 
by (etac (rank_lt RS succ_leI RS le_imp_subset) 1);  | 
| 0 | 252  | 
val rank_Union = result();  | 
253  | 
||
254  | 
goal Epsilon.thy "rank(eclose(a)) = rank(a)";  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
255  | 
by (rtac le_asym 1);  | 
| 0 | 256  | 
by (rtac (arg_subset_eclose RS rank_mono) 2);  | 
257  | 
by (res_inst_tac [("a1","eclose(a)")] (rank RS ssubst) 1);
 | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
258  | 
by (rtac (Ord_rank RS UN_least_le) 1);  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
259  | 
by (etac (eclose_rank_lt RS succ_leI) 1);  | 
| 0 | 260  | 
val rank_eclose = result();  | 
261  | 
||
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
262  | 
goalw Epsilon.thy [Pair_def] "rank(a) < rank(<a,b>)";  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
263  | 
by (rtac (consI1 RS rank_lt RS lt_trans) 1);  | 
| 0 | 264  | 
by (rtac (consI1 RS consI2 RS rank_lt) 1);  | 
265  | 
val rank_pair1 = result();  | 
|
266  | 
||
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
267  | 
goalw Epsilon.thy [Pair_def] "rank(b) < rank(<a,b>)";  | 
| 
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
268  | 
by (rtac (consI1 RS consI2 RS rank_lt RS lt_trans) 1);  | 
| 0 | 269  | 
by (rtac (consI1 RS consI2 RS rank_lt) 1);  | 
270  | 
val rank_pair2 = result();  | 
|
271  | 
||
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
272  | 
goalw (merge_theories(Epsilon.thy,Sum.thy)) [Inl_def] "rank(a) < rank(Inl(a))";  | 
| 0 | 273  | 
by (rtac rank_pair2 1);  | 
274  | 
val rank_Inl = result();  | 
|
275  | 
||
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
276  | 
goalw (merge_theories(Epsilon.thy,Sum.thy)) [Inr_def] "rank(a) < rank(Inr(a))";  | 
| 0 | 277  | 
by (rtac rank_pair2 1);  | 
278  | 
val rank_Inr = result();  | 
|
279  | 
||
280  | 
(*** Corollaries of leastness ***)  | 
|
281  | 
||
282  | 
goal Epsilon.thy "!!A B. A:B ==> eclose(A)<=eclose(B)";  | 
|
283  | 
by (rtac (Transset_eclose RS eclose_least) 1);  | 
|
284  | 
by (etac (arg_into_eclose RS eclose_subset) 1);  | 
|
285  | 
val mem_eclose_subset = result();  | 
|
286  | 
||
287  | 
goal Epsilon.thy "!!A B. A<=B ==> eclose(A) <= eclose(B)";  | 
|
288  | 
by (rtac (Transset_eclose RS eclose_least) 1);  | 
|
289  | 
by (etac subset_trans 1);  | 
|
290  | 
by (rtac arg_subset_eclose 1);  | 
|
291  | 
val eclose_mono = result();  | 
|
292  | 
||
293  | 
(** Idempotence of eclose **)  | 
|
294  | 
||
295  | 
goal Epsilon.thy "eclose(eclose(A)) = eclose(A)";  | 
|
296  | 
by (rtac equalityI 1);  | 
|
297  | 
by (rtac ([Transset_eclose, subset_refl] MRS eclose_least) 1);  | 
|
298  | 
by (rtac arg_subset_eclose 1);  | 
|
299  | 
val eclose_idem = result();  |