src/HOL/HoareParallel/RG_Examples.thy
author chaieb
Fri, 06 Aug 2004 17:29:24 +0200
changeset 15123 4c49281dc9a8
parent 15102 04b0e943fcc9
child 15561 045a07ac35a7
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     1
header {* \section{Examples} *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     2
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     3
theory RG_Examples = RG_Syntax:
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     4
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     5
lemmas definitions [simp]= stable_def Pre_def Rely_def Guar_def Post_def Com_def 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     6
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     7
subsection {* Set Elements of an Array to Zero *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     8
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
     9
lemma le_less_trans2: "\<lbrakk>(j::nat)<k; i\<le> j\<rbrakk> \<Longrightarrow> i<k"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    10
by simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    11
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    12
lemma add_le_less_mono: "\<lbrakk> (a::nat) < c; b\<le>d \<rbrakk> \<Longrightarrow> a + b < c + d"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    13
by simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    14
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    15
record Example1 =
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    16
  A :: "nat list"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    17
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    18
lemma Example1: 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    19
 "\<turnstile> COBEGIN
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    20
      SCHEME [0 \<le> i < n]
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    21
     (\<acute>A := \<acute>A [i := 0], 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    22
     \<lbrace> n < length \<acute>A \<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    23
     \<lbrace> length \<ordmasculine>A = length \<ordfeminine>A \<and> \<ordmasculine>A ! i = \<ordfeminine>A ! i \<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    24
     \<lbrace> length \<ordmasculine>A = length \<ordfeminine>A \<and> (\<forall>j<n. i \<noteq> j \<longrightarrow> \<ordmasculine>A ! j = \<ordfeminine>A ! j) \<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    25
     \<lbrace> \<acute>A ! i = 0 \<rbrace>) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    26
    COEND
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    27
 SAT [\<lbrace> n < length \<acute>A \<rbrace>, \<lbrace> \<ordmasculine>A = \<ordfeminine>A \<rbrace>, \<lbrace> True \<rbrace>, \<lbrace> \<forall>i < n. \<acute>A ! i = 0 \<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    28
apply(rule Parallel)
15102
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    29
apply (auto intro!: Basic) 
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    30
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    31
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    32
lemma Example1_parameterized: 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    33
"k < t \<Longrightarrow>
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    34
  \<turnstile> COBEGIN 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    35
    SCHEME [k*n\<le>i<(Suc k)*n] (\<acute>A:=\<acute>A[i:=0], 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    36
   \<lbrace>t*n < length \<acute>A\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    37
   \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> \<ordmasculine>A!i = \<ordfeminine>A!i\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    38
   \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> (\<forall>j<length \<ordmasculine>A . i\<noteq>j \<longrightarrow> \<ordmasculine>A!j = \<ordfeminine>A!j)\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    39
   \<lbrace>\<acute>A!i=0\<rbrace>) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    40
   COEND  
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    41
 SAT [\<lbrace>t*n < length \<acute>A\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    42
      \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> (\<forall>i<n. \<ordmasculine>A!(k*n+i)=\<ordfeminine>A!(k*n+i))\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    43
      \<lbrace>t*n < length \<ordmasculine>A \<and> length \<ordmasculine>A=length \<ordfeminine>A \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    44
      (\<forall>i<length \<ordmasculine>A . (i<k*n \<longrightarrow> \<ordmasculine>A!i = \<ordfeminine>A!i) \<and> ((Suc k)*n \<le> i\<longrightarrow> \<ordmasculine>A!i = \<ordfeminine>A!i))\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    45
      \<lbrace>\<forall>i<n. \<acute>A!(k*n+i) = 0\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    46
apply(rule Parallel)
15102
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    47
    apply auto
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    48
  apply(erule_tac x="k*n +i" in allE)
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    49
  apply(subgoal_tac "k*n+i <length (A b)")
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    50
   apply force
15102
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    51
  apply(erule le_less_trans2) 
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    52
  apply(case_tac t,simp+)
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    53
  apply (simp add:add_commute)
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    54
  apply(simp add: add_le_mono)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    55
apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    56
   apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    57
   apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    58
   apply (subgoal_tac "k*n+i< length (A x)")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    59
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    60
   apply(erule le_less_trans2)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    61
   apply(case_tac t,simp+)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    62
   apply (simp add:add_commute)
15102
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    63
   apply(rule add_le_mono, auto)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    64
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    65
15102
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
    66
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    67
subsection {* Increment a Variable in Parallel *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    68
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    69
subsubsection {* Two components *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    70
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    71
record Example2 =
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    72
  x  :: nat
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    73
  c_0 :: nat
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    74
  c_1 :: nat
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    75
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    76
lemma Example2: 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    77
 "\<turnstile>  COBEGIN
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    78
    (\<langle> \<acute>x:=\<acute>x+1;; \<acute>c_0:=\<acute>c_0 + 1 \<rangle>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    79
     \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1  \<and> \<acute>c_0=0\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    80
     \<lbrace>\<ordmasculine>c_0 = \<ordfeminine>c_0 \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    81
        (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    82
        \<longrightarrow> \<ordfeminine>x = \<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,  
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    83
     \<lbrace>\<ordmasculine>c_1 = \<ordfeminine>c_1 \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    84
         (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    85
         \<longrightarrow> \<ordfeminine>x =\<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    86
     \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_0=1 \<rbrace>)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    87
  \<parallel>
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    88
      (\<langle> \<acute>x:=\<acute>x+1;; \<acute>c_1:=\<acute>c_1+1 \<rangle>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    89
     \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_1=0 \<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    90
     \<lbrace>\<ordmasculine>c_1 = \<ordfeminine>c_1 \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    91
        (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    92
        \<longrightarrow> \<ordfeminine>x = \<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,  
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    93
     \<lbrace>\<ordmasculine>c_0 = \<ordfeminine>c_0 \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    94
         (\<ordmasculine>x=\<ordmasculine>c_0 + \<ordmasculine>c_1 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    95
        \<longrightarrow> \<ordfeminine>x =\<ordfeminine>c_0 + \<ordfeminine>c_1)\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    96
     \<lbrace>\<acute>x=\<acute>c_0 + \<acute>c_1 \<and> \<acute>c_1=1\<rbrace>)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    97
 COEND
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    98
 SAT [\<lbrace>\<acute>x=0 \<and> \<acute>c_0=0 \<and> \<acute>c_1=0\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
    99
      \<lbrace>\<ordmasculine>x=\<ordfeminine>x \<and>  \<ordmasculine>c_0= \<ordfeminine>c_0 \<and> \<ordmasculine>c_1=\<ordfeminine>c_1\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   100
      \<lbrace>True\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   101
      \<lbrace>\<acute>x=2\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   102
apply(rule Parallel)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   103
   apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   104
   apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   105
   apply(case_tac i)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   106
    apply simp
15102
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
   107
    apply(rule conjI)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   108
     apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   109
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   110
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   111
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   112
    apply(case_tac j,simp)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   113
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   114
   apply simp
15102
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
   115
   apply(rule conjI)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   116
    apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   117
    apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   118
   apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   119
   apply simp
13187
e5434b822a96 Modifications due to enhanced linear arithmetic.
nipkow
parents: 13103
diff changeset
   120
   apply(subgoal_tac "j=0")
e5434b822a96 Modifications due to enhanced linear arithmetic.
nipkow
parents: 13103
diff changeset
   121
    apply (rotate_tac -1)
13601
fd3e3d6b37b2 Adapted to new simplifier.
berghofe
parents: 13517
diff changeset
   122
    apply (simp (asm_lr))
13187
e5434b822a96 Modifications due to enhanced linear arithmetic.
nipkow
parents: 13103
diff changeset
   123
   apply arith
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   124
  apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   125
  apply(case_tac i,simp,simp)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   126
 apply clarify   
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   127
 apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   128
 apply(erule_tac x=0 in all_dupE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   129
 apply(erule_tac x=1 in allE,simp)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   130
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   131
apply(case_tac i,simp)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   132
 apply(rule Await)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   133
  apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   134
 apply(clarify)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   135
 apply(rule Seq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   136
  prefer 2
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   137
  apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   138
   apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   139
  apply(rule subset_refl)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   140
 apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   141
 apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   142
 apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   143
 apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   144
apply(rule Await)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   145
 apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   146
apply(clarify)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   147
apply(rule Seq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   148
 prefer 2
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   149
 apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   150
  apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   151
 apply(rule subset_refl)
15102
04b0e943fcc9 new simprules Int_subset_iff and Un_subset_iff
paulson
parents: 15045
diff changeset
   152
apply(auto intro!: Basic)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   153
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   154
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   155
subsubsection {* Parameterized *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   156
15043
nipkow
parents: 15041
diff changeset
   157
lemma Example2_lemma1: "j<n \<Longrightarrow> (\<Sum>i::nat<n. b i) = (0::nat) \<Longrightarrow> b j = 0 "
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   158
apply(induct n)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   159
 apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   160
apply(force simp add: less_Suc_eq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   161
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   162
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   163
lemma Example2_lemma2_aux: 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   164
 "j<n \<Longrightarrow> (\<Sum>i<n. (b i::nat)) = (\<Sum>i<j. b i) + b j + (\<Sum>i<n-(Suc j) . b (Suc j + i))"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   165
apply(induct n)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   166
 apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   167
apply(simp add:less_Suc_eq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   168
 apply(auto)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   169
apply(subgoal_tac "n - j = Suc(n- Suc j)")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   170
  apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   171
apply arith
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   172
done 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   173
15043
nipkow
parents: 15041
diff changeset
   174
lemma Example2_lemma2_aux2: "j\<le> s \<Longrightarrow> (\<Sum>i::nat<j. (b (s:=t)) i) = (\<Sum>i<j. b i)"
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   175
apply(induct j)
15041
a6b1f0cef7b3 Got rid of Summation and made it a translation into setsum instead.
nipkow
parents: 14174
diff changeset
   176
 apply (simp_all cong:setsum_cong)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   177
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   178
15041
a6b1f0cef7b3 Got rid of Summation and made it a translation into setsum instead.
nipkow
parents: 14174
diff changeset
   179
lemma Example2_lemma2: 
15043
nipkow
parents: 15041
diff changeset
   180
 "!!b. \<lbrakk>j<n; b j=0\<rbrakk> \<Longrightarrow> Suc (\<Sum>i::nat< n. b i)=(\<Sum>i< n. (b (j := Suc 0)) i)"
15041
a6b1f0cef7b3 Got rid of Summation and made it a translation into setsum instead.
nipkow
parents: 14174
diff changeset
   181
apply(frule_tac b="(b (j:=(Suc 0)))" in Example2_lemma2_aux)
15045
d59f7e2e18d3 Moved to new m<..<n syntax for set intervals.
nipkow
parents: 15043
diff changeset
   182
apply(erule_tac  t="setsum (b(j := (Suc 0))) {..<n}" in ssubst)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   183
apply(frule_tac b=b in Example2_lemma2_aux)
15045
d59f7e2e18d3 Moved to new m<..<n syntax for set intervals.
nipkow
parents: 15043
diff changeset
   184
apply(erule_tac  t="setsum b {..<n}" in ssubst)
d59f7e2e18d3 Moved to new m<..<n syntax for set intervals.
nipkow
parents: 15043
diff changeset
   185
apply(subgoal_tac "Suc (setsum b {..<j} + b j + (\<Sum>i<n - Suc j. b (Suc j + i)))=(setsum b {..<j} + Suc (b j) + (\<Sum>i<n - Suc j. b (Suc j + i)))")
15041
a6b1f0cef7b3 Got rid of Summation and made it a translation into setsum instead.
nipkow
parents: 14174
diff changeset
   186
apply(rotate_tac -1)
a6b1f0cef7b3 Got rid of Summation and made it a translation into setsum instead.
nipkow
parents: 14174
diff changeset
   187
apply(erule ssubst)
a6b1f0cef7b3 Got rid of Summation and made it a translation into setsum instead.
nipkow
parents: 14174
diff changeset
   188
apply(subgoal_tac "j\<le>j")
a6b1f0cef7b3 Got rid of Summation and made it a translation into setsum instead.
nipkow
parents: 14174
diff changeset
   189
 apply(drule_tac b="b" and t="(Suc 0)" in Example2_lemma2_aux2)
a6b1f0cef7b3 Got rid of Summation and made it a translation into setsum instead.
nipkow
parents: 14174
diff changeset
   190
apply(rotate_tac -1)
a6b1f0cef7b3 Got rid of Summation and made it a translation into setsum instead.
nipkow
parents: 14174
diff changeset
   191
apply(erule ssubst)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   192
apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   193
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   194
15043
nipkow
parents: 15041
diff changeset
   195
lemma Example2_lemma2_Suc0: "\<lbrakk>j<n; b j=0\<rbrakk> \<Longrightarrow> Suc (\<Sum>i::nat< n. b i)=(\<Sum>i< n. (b (j:=Suc 0)) i)"
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   196
by(simp add:Example2_lemma2)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   197
15043
nipkow
parents: 15041
diff changeset
   198
lemma Example2_lemma3: "\<forall>i< n. b i = 1 \<Longrightarrow> (\<Sum>i::nat<n. b i)= n"
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   199
apply (induct n)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   200
apply auto
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   201
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   202
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   203
record Example2_parameterized =   
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   204
  C :: "nat \<Rightarrow> nat"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   205
  y  :: nat
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   206
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   207
lemma Example2_parameterized: "0<n \<Longrightarrow> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   208
  \<turnstile> COBEGIN SCHEME  [0\<le>i<n]
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   209
     (\<langle> \<acute>y:=\<acute>y+1;; \<acute>C:=\<acute>C (i:=1) \<rangle>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   210
     \<lbrace>\<acute>y=(\<Sum>i<n. \<acute>C i) \<and> \<acute>C i=0\<rbrace>, 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   211
     \<lbrace>\<ordmasculine>C i = \<ordfeminine>C i \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   212
      (\<ordmasculine>y=(\<Sum>i<n. \<ordmasculine>C i) \<longrightarrow> \<ordfeminine>y =(\<Sum>i<n. \<ordfeminine>C i))\<rbrace>,  
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   213
     \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>C j = \<ordfeminine>C j) \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   214
       (\<ordmasculine>y=(\<Sum>i<n. \<ordmasculine>C i) \<longrightarrow> \<ordfeminine>y =(\<Sum>i<n. \<ordfeminine>C i))\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   215
     \<lbrace>\<acute>y=(\<Sum>i<n. \<acute>C i) \<and> \<acute>C i=1\<rbrace>) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   216
    COEND
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   217
 SAT [\<lbrace>\<acute>y=0 \<and> (\<Sum>i<n. \<acute>C i)=0 \<rbrace>, \<lbrace>\<ordmasculine>C=\<ordfeminine>C \<and> \<ordmasculine>y=\<ordfeminine>y\<rbrace>, \<lbrace>True\<rbrace>, \<lbrace>\<acute>y=n\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   218
apply(rule Parallel)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   219
apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   220
apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   221
apply(force elim:Example2_lemma1)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   222
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   223
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   224
apply(force intro:Example2_lemma3)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   225
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   226
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   227
apply(rule Await)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   228
apply simp_all
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   229
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   230
apply(rule Seq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   231
prefer 2
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   232
apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   233
apply(rule subset_refl)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   234
apply simp+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   235
apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   236
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   237
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   238
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   239
apply(force elim:Example2_lemma2_Suc0)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   240
apply simp+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   241
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   242
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   243
subsection {* Find Least Element *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   244
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   245
text {* A previous lemma: *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   246
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   247
lemma mod_aux :"\<lbrakk>i < (n::nat); a mod n = i;  j < a + n; j mod n = i; a < j\<rbrakk> \<Longrightarrow> False"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   248
apply(subgoal_tac "a=a div n*n + a mod n" )
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13187
diff changeset
   249
 prefer 2 apply (simp (no_asm_use))
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   250
apply(subgoal_tac "j=j div n*n + j mod n")
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13187
diff changeset
   251
 prefer 2 apply (simp (no_asm_use))
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   252
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   253
apply(subgoal_tac "a div n*n < j div n*n")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   254
prefer 2 apply arith
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   255
apply(subgoal_tac "j div n*n < (a div n + 1)*n")
13517
42efec18f5b2 Added div+mod cancelling simproc
nipkow
parents: 13187
diff changeset
   256
prefer 2 apply simp
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   257
apply (simp only:mult_less_cancel2)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   258
apply arith
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   259
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   260
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   261
record Example3 =
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   262
  X :: "nat \<Rightarrow> nat"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   263
  Y :: "nat \<Rightarrow> nat"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   264
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   265
lemma Example3: "m mod n=0 \<Longrightarrow> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   266
 \<turnstile> COBEGIN 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   267
 SCHEME [0\<le>i<n]
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   268
 (WHILE (\<forall>j<n. \<acute>X i < \<acute>Y j)  DO 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   269
   IF P(B!(\<acute>X i)) THEN \<acute>Y:=\<acute>Y (i:=\<acute>X i) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   270
   ELSE \<acute>X:= \<acute>X (i:=(\<acute>X i)+ n) FI 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   271
  OD,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   272
 \<lbrace>(\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i)\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   273
 \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordfeminine>Y j \<le> \<ordmasculine>Y j) \<and> \<ordmasculine>X i = \<ordfeminine>X i \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   274
   \<ordmasculine>Y i = \<ordfeminine>Y i\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   275
 \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>X j = \<ordfeminine>X j \<and> \<ordmasculine>Y j = \<ordfeminine>Y j) \<and>   
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   276
   \<ordfeminine>Y i \<le> \<ordmasculine>Y i\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   277
 \<lbrace>(\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y j \<le> \<acute>X i) \<rbrace>) 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   278
 COEND
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   279
 SAT [\<lbrace> \<forall>i<n. \<acute>X i=i \<and> \<acute>Y i=m+i \<rbrace>,\<lbrace>\<ordmasculine>X=\<ordfeminine>X \<and> \<ordmasculine>Y=\<ordfeminine>Y\<rbrace>,\<lbrace>True\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   280
  \<lbrace>\<forall>i<n. (\<acute>X i) mod n=i \<and> (\<forall>j<\<acute>X i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   281
    (\<acute>Y i<m \<longrightarrow> P(B!(\<acute>Y i)) \<and> \<acute>Y i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y j \<le> \<acute>X i)\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   282
apply(rule Parallel)
13099
4bb592cdde0e added abstract;corrected RG_Basic Hoare rule.
prensani
parents: 13020
diff changeset
   283
--{*5 subgoals left *}
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   284
apply force+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   285
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   286
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   287
apply(rule While)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   288
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   289
   apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   290
  apply force
14174
f3cafd2929d5 Methods rule_tac etc support static (Isar) contexts.
ballarin
parents: 13601
diff changeset
   291
 apply(rule_tac pre'="\<lbrace> \<acute>X i mod n = i \<and> (\<forall>j. j<\<acute>X i \<longrightarrow> j mod n = i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y i < n * q \<longrightarrow> P (B!(\<acute>Y i))) \<and> \<acute>X i<\<acute>Y i\<rbrace>" in Conseq)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   292
     apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   293
    apply(rule subset_refl)+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   294
 apply(rule Cond)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   295
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   296
   apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   297
      apply force
13187
e5434b822a96 Modifications due to enhanced linear arithmetic.
nipkow
parents: 13103
diff changeset
   298
     apply fastsimp
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   299
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   300
   apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   301
  apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   302
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   303
     apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   304
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   305
     apply(case_tac "X x (j mod n)\<le> j")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   306
      apply(drule le_imp_less_or_eq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   307
      apply(erule disjE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   308
       apply(drule_tac j=j and n=n and i="j mod n" and a="X x (j mod n)" in mod_aux)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   309
        apply assumption+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   310
       apply simp+
13103
66659a4b16f6 Added insert_disjoint and disjoint_insert [simp], and simplified proofs
nipkow
parents: 13099
diff changeset
   311
    apply clarsimp
13187
e5434b822a96 Modifications due to enhanced linear arithmetic.
nipkow
parents: 13103
diff changeset
   312
    apply fastsimp
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   313
apply force+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   314
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   315
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   316
text {* Same but with a list as auxiliary variable: *}
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   317
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   318
record Example3_list =
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   319
  X :: "nat list"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   320
  Y :: "nat list"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   321
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   322
lemma Example3_list: "m mod n=0 \<Longrightarrow> \<turnstile> (COBEGIN SCHEME [0\<le>i<n]
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   323
 (WHILE (\<forall>j<n. \<acute>X!i < \<acute>Y!j)  DO 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   324
     IF P(B!(\<acute>X!i)) THEN \<acute>Y:=\<acute>Y[i:=\<acute>X!i] ELSE \<acute>X:= \<acute>X[i:=(\<acute>X!i)+ n] FI 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   325
  OD,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   326
 \<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> (\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i)\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   327
 \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordfeminine>Y!j \<le> \<ordmasculine>Y!j) \<and> \<ordmasculine>X!i = \<ordfeminine>X!i \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   328
   \<ordmasculine>Y!i = \<ordfeminine>Y!i \<and> length \<ordmasculine>X = length \<ordfeminine>X \<and> length \<ordmasculine>Y = length \<ordfeminine>Y\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   329
 \<lbrace>(\<forall>j<n. i\<noteq>j \<longrightarrow> \<ordmasculine>X!j = \<ordfeminine>X!j \<and> \<ordmasculine>Y!j = \<ordfeminine>Y!j) \<and>   
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   330
   \<ordfeminine>Y!i \<le> \<ordmasculine>Y!i \<and> length \<ordmasculine>X = length \<ordfeminine>X \<and> length \<ordmasculine>Y = length \<ordfeminine>Y\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   331
 \<lbrace>(\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y!j \<le> \<acute>X!i) \<rbrace>) COEND)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   332
 SAT [\<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> (\<forall>i<n. \<acute>X!i=i \<and> \<acute>Y!i=m+i) \<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   333
      \<lbrace>\<ordmasculine>X=\<ordfeminine>X \<and> \<ordmasculine>Y=\<ordfeminine>Y\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   334
      \<lbrace>True\<rbrace>,
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   335
      \<lbrace>\<forall>i<n. (\<acute>X!i) mod n=i \<and> (\<forall>j<\<acute>X!i. j mod n=i \<longrightarrow> \<not>P(B!j)) \<and> 
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   336
        (\<acute>Y!i<m \<longrightarrow> P(B!(\<acute>Y!i)) \<and> \<acute>Y!i\<le> m+i) \<and> (\<exists>j<n. \<acute>Y!j \<le> \<acute>X!i)\<rbrace>]"
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   337
apply(rule Parallel)
13099
4bb592cdde0e added abstract;corrected RG_Basic Hoare rule.
prensani
parents: 13020
diff changeset
   338
--{* 5 subgoals left *}
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   339
apply force+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   340
apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   341
apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   342
apply(rule While)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   343
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   344
   apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   345
  apply force
14174
f3cafd2929d5 Methods rule_tac etc support static (Isar) contexts.
ballarin
parents: 13601
diff changeset
   346
 apply(rule_tac pre'="\<lbrace>n<length \<acute>X \<and> n<length \<acute>Y \<and> \<acute>X ! i mod n = i \<and> (\<forall>j. j < \<acute>X ! i \<longrightarrow> j mod n = i \<longrightarrow> \<not> P (B ! j)) \<and> (\<acute>Y ! i < n * q \<longrightarrow> P (B ! (\<acute>Y ! i))) \<and> \<acute>X!i<\<acute>Y!i\<rbrace>" in Conseq)
13020
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   347
     apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   348
    apply(rule subset_refl)+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   349
 apply(rule Cond)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   350
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   351
   apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   352
      apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   353
     apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   354
    apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   355
   apply force
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   356
  apply(rule Basic)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   357
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   358
     apply clarify
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   359
     apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   360
     apply(rule allI)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   361
     apply(rule impI)+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   362
     apply(case_tac "X x ! i\<le> j")
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   363
      apply(drule le_imp_less_or_eq)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   364
      apply(erule disjE)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   365
       apply(drule_tac j=j and n=n and i=i and a="X x ! i" in mod_aux)
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   366
        apply assumption+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   367
       apply simp
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   368
apply force+
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   369
done
791e3b4c4039 HoareParallel Theories
prensani
parents:
diff changeset
   370
13187
e5434b822a96 Modifications due to enhanced linear arithmetic.
nipkow
parents: 13103
diff changeset
   371
end