| 
23914
 | 
     1  | 
(*  Title:      FOL/ex/Propositional_Int.thy
  | 
| 
 | 
     2  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     3  | 
    Copyright   1991  University of Cambridge
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
header {* First-Order Logic: propositional examples (intuitionistic version) *}
 | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Propositional_Int
  | 
| 
 | 
     9  | 
imports IFOL
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
 | 
    12  | 
text {* commutative laws of @{text "&"} and @{text "|"} *}
 | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
lemma "P & Q  -->  Q & P"
  | 
| 
 | 
    15  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
lemma "P | Q  -->  Q | P"
  | 
| 
 | 
    18  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
text {* associative laws of @{text "&"} and @{text "|"} *}
 | 
| 
 | 
    22  | 
lemma "(P & Q) & R  -->  P & (Q & R)"
  | 
| 
 | 
    23  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
lemma "(P | Q) | R  -->  P | (Q | R)"
  | 
| 
 | 
    26  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
text {* distributive laws of @{text "&"} and @{text "|"} *}
 | 
| 
 | 
    30  | 
lemma "(P & Q) | R  --> (P | R) & (Q | R)"
  | 
| 
 | 
    31  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
lemma "(P | R) & (Q | R)  --> (P & Q) | R"
  | 
| 
 | 
    34  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
lemma "(P | Q) & R  --> (P & R) | (Q & R)"
  | 
| 
 | 
    37  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
lemma "(P & R) | (Q & R)  --> (P | Q) & R"
  | 
| 
 | 
    40  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
text {* Laws involving implication *}
 | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
lemma "(P-->R) & (Q-->R) <-> (P|Q --> R)"
  | 
| 
 | 
    46  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma "(P & Q --> R) <-> (P--> (Q-->R))"
  | 
| 
 | 
    49  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma "((P-->R)-->R) --> ((Q-->R)-->R) --> (P&Q-->R) --> R"
  | 
| 
 | 
    52  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma "~(P-->R) --> ~(Q-->R) --> ~(P&Q-->R)"
  | 
| 
 | 
    55  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lemma "(P --> Q & R) <-> (P-->Q)  &  (P-->R)"
  | 
| 
 | 
    58  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
text {* Propositions-as-types *}
 | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
-- {* The combinator K *}
 | 
| 
 | 
    64  | 
lemma "P --> (Q --> P)"
  | 
| 
 | 
    65  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
-- {* The combinator S *}
 | 
| 
 | 
    68  | 
lemma "(P-->Q-->R)  --> (P-->Q) --> (P-->R)"
  | 
| 
 | 
    69  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
-- {* Converse is classical *}
 | 
| 
 | 
    73  | 
lemma "(P-->Q) | (P-->R)  -->  (P --> Q | R)"
  | 
| 
 | 
    74  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
lemma "(P-->Q)  -->  (~Q --> ~P)"
  | 
| 
 | 
    77  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
text {* Schwichtenberg's examples (via T. Nipkow) *}
 | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
lemma stab_imp: "(((Q-->R)-->R)-->Q) --> (((P-->Q)-->R)-->R)-->P-->Q"
  | 
| 
 | 
    83  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
lemma stab_to_peirce:
  | 
| 
 | 
    86  | 
  "(((P --> R) --> R) --> P) --> (((Q --> R) --> R) --> Q)  
  | 
| 
 | 
    87  | 
                              --> ((P --> Q) --> P) --> P"
  | 
| 
 | 
    88  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
lemma peirce_imp1: "(((Q --> R) --> Q) --> Q)  
  | 
| 
 | 
    91  | 
                --> (((P --> Q) --> R) --> P --> Q) --> P --> Q"
  | 
| 
 | 
    92  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    93  | 
  
  | 
| 
 | 
    94  | 
lemma peirce_imp2: "(((P --> R) --> P) --> P) --> ((P --> Q --> R) --> P) --> P"
  | 
| 
 | 
    95  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
lemma mints: "((((P --> Q) --> P) --> P) --> Q) --> Q"
  | 
| 
 | 
    98  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
lemma mints_solovev: "(P --> (Q --> R) --> Q) --> ((P --> Q) --> R) --> R"
  | 
| 
 | 
   101  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
lemma tatsuta: "(((P7 --> P1) --> P10) --> P4 --> P5)  
  | 
| 
 | 
   104  | 
  --> (((P8 --> P2) --> P9) --> P3 --> P10)  
  | 
| 
 | 
   105  | 
  --> (P1 --> P8) --> P6 --> P7  
  | 
| 
 | 
   106  | 
  --> (((P3 --> P2) --> P9) --> P4)  
  | 
| 
 | 
   107  | 
  --> (P1 --> P3) --> (((P6 --> P1) --> P2) --> P9) --> P5"
  | 
| 
 | 
   108  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
lemma tatsuta1: "(((P8 --> P2) --> P9) --> P3 --> P10)  
  | 
| 
 | 
   111  | 
  --> (((P3 --> P2) --> P9) --> P4)  
  | 
| 
 | 
   112  | 
  --> (((P6 --> P1) --> P2) --> P9)  
  | 
| 
 | 
   113  | 
  --> (((P7 --> P1) --> P10) --> P4 --> P5)  
  | 
| 
 | 
   114  | 
  --> (P1 --> P3) --> (P1 --> P8) --> P6 --> P7 --> P5"
  | 
| 
 | 
   115  | 
  by (tactic "IntPr.fast_tac 1")
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
end
  |