| author | wenzelm | 
| Sun, 07 Feb 2016 19:43:40 +0100 | |
| changeset 62271 | 4cfe65cfd369 | 
| parent 62087 | 44841d07ef1d | 
| child 62390 | 842917225d56 | 
| permissions | -rw-r--r-- | 
| 32139 | 1 | (* Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel *) | 
| 923 | 2 | |
| 60758 | 3 | section \<open>Set theory for higher-order logic\<close> | 
| 11979 | 4 | |
| 15131 | 5 | theory Set | 
| 30304 
d8e4cd2ac2a1
set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
 haftmann parents: 
29901diff
changeset | 6 | imports Lattices | 
| 15131 | 7 | begin | 
| 11979 | 8 | |
| 60758 | 9 | subsection \<open>Sets as predicates\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 10 | |
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 11 | typedecl 'a set | 
| 3820 | 12 | |
| 61799 | 13 | axiomatization Collect :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set" \<comment> "comprehension"
 | 
| 14 | and member :: "'a \<Rightarrow> 'a set \<Rightarrow> bool" \<comment> "membership" | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 15 | where mem_Collect_eq [iff, code_unfold]: "member a (Collect P) = P a" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 16 | and Collect_mem_eq [simp]: "Collect (\<lambda>x. member x A) = A" | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 17 | |
| 21210 | 18 | notation | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 19 |   member  ("op \<in>") and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 20 |   member  ("(_/ \<in> _)" [51, 51] 50)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 21 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 22 | abbreviation not_member | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 23 | where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> "non-membership" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 24 | notation | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 25 |   not_member  ("op \<notin>") and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 26 |   not_member  ("(_/ \<notin> _)" [51, 51] 50)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 27 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 28 | notation (ASCII) | 
| 37677 | 29 |   member  ("op :") and
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 30 |   member  ("(_/ : _)" [51, 51] 50) and
 | 
| 37677 | 31 |   not_member  ("op ~:") and
 | 
| 50580 
fbb973a53106
made element and subset relations non-associative (just like all orderings)
 nipkow parents: 
49757diff
changeset | 32 |   not_member  ("(_/ ~: _)" [51, 51] 50)
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 33 | |
| 41107 | 34 | |
| 60758 | 35 | text \<open>Set comprehensions\<close> | 
| 32081 | 36 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 37 | syntax | 
| 35115 | 38 |   "_Coll" :: "pttrn => bool => 'a set"    ("(1{_./ _})")
 | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 39 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 40 |   "{x. P}" \<rightleftharpoons> "CONST Collect (\<lambda>x. P)"
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 41 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 42 | syntax (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 43 |   "_Collect" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a set"  ("(1{_ :/ _./ _})")
 | 
| 32081 | 44 | syntax | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 45 |   "_Collect" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> bool \<Rightarrow> 'a set"  ("(1{_ \<in>/ _./ _})")
 | 
| 32081 | 46 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 47 |   "{p:A. P}" \<rightharpoonup> "CONST Collect (\<lambda>p. p \<in> A \<and> P)"
 | 
| 32081 | 48 | |
| 41107 | 49 | lemma CollectI: "P a \<Longrightarrow> a \<in> {x. P x}"
 | 
| 32081 | 50 | by simp | 
| 51 | ||
| 41107 | 52 | lemma CollectD: "a \<in> {x. P x} \<Longrightarrow> P a"
 | 
| 32081 | 53 | by simp | 
| 54 | ||
| 41107 | 55 | lemma Collect_cong: "(\<And>x. P x = Q x) ==> {x. P x} = {x. Q x}"
 | 
| 32081 | 56 | by simp | 
| 57 | ||
| 60758 | 58 | text \<open> | 
| 61799 | 59 | Simproc for pulling \<open>x=t\<close> in \<open>{x. \<dots> & x=t & \<dots>}\<close>
 | 
| 60 | to the front (and similarly for \<open>t=x\<close>): | |
| 60758 | 61 | \<close> | 
| 62 | ||
| 63 | simproc_setup defined_Collect ("{x. P x & Q x}") = \<open>
 | |
| 54998 | 64 | fn _ => Quantifier1.rearrange_Collect | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59000diff
changeset | 65 | (fn ctxt => | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59000diff
changeset | 66 |       resolve_tac ctxt @{thms Collect_cong} 1 THEN
 | 
| 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59000diff
changeset | 67 |       resolve_tac ctxt @{thms iffI} 1 THEN
 | 
| 42459 | 68 | ALLGOALS | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59000diff
changeset | 69 |         (EVERY' [REPEAT_DETERM o eresolve_tac ctxt @{thms conjE},
 | 
| 59499 | 70 |           DEPTH_SOLVE_1 o (assume_tac ctxt ORELSE' resolve_tac ctxt @{thms conjI})]))
 | 
| 60758 | 71 | \<close> | 
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 72 | |
| 32081 | 73 | lemmas CollectE = CollectD [elim_format] | 
| 74 | ||
| 41107 | 75 | lemma set_eqI: | 
| 76 | assumes "\<And>x. x \<in> A \<longleftrightarrow> x \<in> B" | |
| 77 | shows "A = B" | |
| 78 | proof - | |
| 79 |   from assms have "{x. x \<in> A} = {x. x \<in> B}" by simp
 | |
| 80 | then show ?thesis by simp | |
| 81 | qed | |
| 82 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 83 | lemma set_eq_iff: | 
| 41107 | 84 | "A = B \<longleftrightarrow> (\<forall>x. x \<in> A \<longleftrightarrow> x \<in> B)" | 
| 85 | by (auto intro:set_eqI) | |
| 86 | ||
| 60758 | 87 | text \<open>Lifting of predicate class instances\<close> | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 88 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 89 | instantiation set :: (type) boolean_algebra | 
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 90 | begin | 
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 91 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 92 | definition less_eq_set where | 
| 46853 | 93 | "A \<le> B \<longleftrightarrow> (\<lambda>x. member x A) \<le> (\<lambda>x. member x B)" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 94 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 95 | definition less_set where | 
| 46853 | 96 | "A < B \<longleftrightarrow> (\<lambda>x. member x A) < (\<lambda>x. member x B)" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 97 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 98 | definition inf_set where | 
| 46853 | 99 | "A \<sqinter> B = Collect ((\<lambda>x. member x A) \<sqinter> (\<lambda>x. member x B))" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 100 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 101 | definition sup_set where | 
| 46853 | 102 | "A \<squnion> B = Collect ((\<lambda>x. member x A) \<squnion> (\<lambda>x. member x B))" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 103 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 104 | definition bot_set where | 
| 46853 | 105 | "\<bottom> = Collect \<bottom>" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 106 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 107 | definition top_set where | 
| 46853 | 108 | "\<top> = Collect \<top>" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 109 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 110 | definition uminus_set where | 
| 46853 | 111 | "- A = Collect (- (\<lambda>x. member x A))" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 112 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 113 | definition minus_set where | 
| 46853 | 114 | "A - B = Collect ((\<lambda>x. member x A) - (\<lambda>x. member x B))" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 115 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 116 | instance proof | 
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 117 | qed (simp_all add: less_eq_set_def less_set_def inf_set_def sup_set_def | 
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 118 | bot_set_def top_set_def uminus_set_def minus_set_def | 
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 119 | less_le_not_le inf_compl_bot sup_compl_top sup_inf_distrib1 diff_eq | 
| 46882 | 120 | set_eqI fun_eq_iff | 
| 121 | del: inf_apply sup_apply bot_apply top_apply minus_apply uminus_apply) | |
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 122 | |
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 123 | end | 
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 124 | |
| 60758 | 125 | text \<open>Set enumerations\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 126 | |
| 32264 
0be31453f698
Set.UNIV and Set.empty are mere abbreviations for top and bot
 haftmann parents: 
32139diff
changeset | 127 | abbreviation empty :: "'a set" ("{}") where
 | 
| 
0be31453f698
Set.UNIV and Set.empty are mere abbreviations for top and bot
 haftmann parents: 
32139diff
changeset | 128 |   "{} \<equiv> bot"
 | 
| 31456 | 129 | |
| 130 | definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where | |
| 32081 | 131 |   insert_compr: "insert a B = {x. x = a \<or> x \<in> B}"
 | 
| 31456 | 132 | |
| 133 | syntax | |
| 35115 | 134 |   "_Finset" :: "args => 'a set"    ("{(_)}")
 | 
| 31456 | 135 | translations | 
| 35115 | 136 |   "{x, xs}" == "CONST insert x {xs}"
 | 
| 137 |   "{x}" == "CONST insert x {}"
 | |
| 31456 | 138 | |
| 32081 | 139 | |
| 60758 | 140 | subsection \<open>Subsets and bounded quantifiers\<close> | 
| 32081 | 141 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 142 | abbreviation subset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 143 | where "subset \<equiv> less" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 144 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 145 | abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 146 | where "subset_eq \<equiv> less_eq" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 147 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 148 | notation | 
| 32081 | 149 |   subset  ("op \<subset>") and
 | 
| 50580 
fbb973a53106
made element and subset relations non-associative (just like all orderings)
 nipkow parents: 
49757diff
changeset | 150 |   subset  ("(_/ \<subset> _)" [51, 51] 50) and
 | 
| 32081 | 151 |   subset_eq  ("op \<subseteq>") and
 | 
| 50580 
fbb973a53106
made element and subset relations non-associative (just like all orderings)
 nipkow parents: 
49757diff
changeset | 152 |   subset_eq  ("(_/ \<subseteq> _)" [51, 51] 50)
 | 
| 32081 | 153 | |
| 154 | abbreviation (input) | |
| 155 | supset :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
| 156 | "supset \<equiv> greater" | |
| 157 | ||
| 158 | abbreviation (input) | |
| 159 | supset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where | |
| 160 | "supset_eq \<equiv> greater_eq" | |
| 161 | ||
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 162 | notation | 
| 32081 | 163 |   supset  ("op \<supset>") and
 | 
| 50580 
fbb973a53106
made element and subset relations non-associative (just like all orderings)
 nipkow parents: 
49757diff
changeset | 164 |   supset  ("(_/ \<supset> _)" [51, 51] 50) and
 | 
| 32081 | 165 |   supset_eq  ("op \<supseteq>") and
 | 
| 50580 
fbb973a53106
made element and subset relations non-associative (just like all orderings)
 nipkow parents: 
49757diff
changeset | 166 |   supset_eq  ("(_/ \<supseteq> _)" [51, 51] 50)
 | 
| 32081 | 167 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 168 | notation (ASCII output) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 169 |   subset  ("op <") and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 170 |   subset  ("(_/ < _)" [51, 51] 50) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 171 |   subset_eq  ("op <=") and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 172 |   subset_eq  ("(_/ <= _)" [51, 51] 50)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 173 | |
| 37387 
3581483cca6c
qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
 haftmann parents: 
36009diff
changeset | 174 | definition Ball :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 61799 | 175 | "Ball A P \<longleftrightarrow> (\<forall>x. x \<in> A \<longrightarrow> P x)" \<comment> "bounded universal quantifiers" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 176 | |
| 37387 
3581483cca6c
qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
 haftmann parents: 
36009diff
changeset | 177 | definition Bex :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
 | 
| 61799 | 178 | "Bex A P \<longleftrightarrow> (\<exists>x. x \<in> A \<and> P x)" \<comment> "bounded existential quantifiers" | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 179 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 180 | syntax (ASCII) | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 181 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3ALL _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 182 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3EX _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 183 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3EX! _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 184 |   "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 185 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 186 | syntax (HOL) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 187 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3! _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 188 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3? _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 189 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3?! _:_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 190 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 191 | syntax | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 192 |   "_Ball"       :: "pttrn => 'a set => bool => bool"      ("(3\<forall>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 193 |   "_Bex"        :: "pttrn => 'a set => bool => bool"      ("(3\<exists>_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 194 |   "_Bex1"       :: "pttrn => 'a set => bool => bool"      ("(3\<exists>!_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 195 |   "_Bleast"     :: "id => 'a set => bool => 'a"           ("(3LEAST_\<in>_./ _)" [0, 0, 10] 10)
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 196 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 197 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 198 | "\<forall>x\<in>A. P" \<rightleftharpoons> "CONST Ball A (\<lambda>x. P)" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 199 | "\<exists>x\<in>A. P" \<rightleftharpoons> "CONST Bex A (\<lambda>x. P)" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 200 | "\<exists>!x\<in>A. P" \<rightharpoonup> "\<exists>!x. x \<in> A \<and> P" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 201 | "LEAST x:A. P" \<rightharpoonup> "LEAST x. x \<in> A \<and> P" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 202 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 203 | syntax (ASCII output) | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 204 |   "_setlessAll" :: "[idt, 'a, bool] => bool"  ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 205 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"  ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 206 |   "_setleAll"   :: "[idt, 'a, bool] => bool"  ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 207 |   "_setleEx"    :: "[idt, 'a, bool] => bool"  ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 208 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"  ("(3EX! _<=_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 209 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19637diff
changeset | 210 | syntax (HOL output) | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 211 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 212 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 213 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 214 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19870diff
changeset | 215 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3?! _<=_./ _)" [0, 0, 10] 10)
 | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 216 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 217 | syntax | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 218 |   "_setlessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 219 |   "_setlessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subset>_./ _)"  [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 220 |   "_setleAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 221 |   "_setleEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 222 |   "_setleEx1"   :: "[idt, 'a, bool] => bool"   ("(3\<exists>!_\<subseteq>_./ _)" [0, 0, 10] 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 223 | |
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 224 | translations | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 225 | "\<forall>A\<subset>B. P" \<rightharpoonup> "\<forall>A. A \<subset> B \<longrightarrow> P" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 226 | "\<exists>A\<subset>B. P" \<rightharpoonup> "\<exists>A. A \<subset> B \<and> P" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 227 | "\<forall>A\<subseteq>B. P" \<rightharpoonup> "\<forall>A. A \<subseteq> B \<longrightarrow> P" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 228 | "\<exists>A\<subseteq>B. P" \<rightharpoonup> "\<exists>A. A \<subseteq> B \<and> P" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 229 | "\<exists>!A\<subseteq>B. P" \<rightharpoonup> "\<exists>!A. A \<subseteq> B \<and> P" | 
| 14804 
8de39d3e8eb6
Corrected printer bug for bounded quantifiers Q x<=y. P
 nipkow parents: 
14752diff
changeset | 230 | |
| 60758 | 231 | print_translation \<open> | 
| 52143 | 232 | let | 
| 233 |     val All_binder = Mixfix.binder_name @{const_syntax All};
 | |
| 234 |     val Ex_binder = Mixfix.binder_name @{const_syntax Ex};
 | |
| 235 |     val impl = @{const_syntax HOL.implies};
 | |
| 236 |     val conj = @{const_syntax HOL.conj};
 | |
| 237 |     val sbset = @{const_syntax subset};
 | |
| 238 |     val sbset_eq = @{const_syntax subset_eq};
 | |
| 239 | ||
| 240 | val trans = | |
| 241 |      [((All_binder, impl, sbset), @{syntax_const "_setlessAll"}),
 | |
| 242 |       ((All_binder, impl, sbset_eq), @{syntax_const "_setleAll"}),
 | |
| 243 |       ((Ex_binder, conj, sbset), @{syntax_const "_setlessEx"}),
 | |
| 244 |       ((Ex_binder, conj, sbset_eq), @{syntax_const "_setleEx"})];
 | |
| 245 | ||
| 246 | fun mk v (v', T) c n P = | |
| 247 | if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n) | |
| 248 | then Syntax.const c $ Syntax_Trans.mark_bound_body (v', T) $ n $ P | |
| 249 | else raise Match; | |
| 250 | ||
| 251 | fun tr' q = (q, fn _ => | |
| 252 |       (fn [Const (@{syntax_const "_bound"}, _) $ Free (v, Type (@{type_name set}, _)),
 | |
| 253 | Const (c, _) $ | |
| 254 |             (Const (d, _) $ (Const (@{syntax_const "_bound"}, _) $ Free (v', T)) $ n) $ P] =>
 | |
| 255 | (case AList.lookup (op =) trans (q, c, d) of | |
| 256 | NONE => raise Match | |
| 257 | | SOME l => mk v (v', T) l n P) | |
| 258 | | _ => raise Match)); | |
| 259 | in | |
| 260 | [tr' All_binder, tr' Ex_binder] | |
| 261 | end | |
| 60758 | 262 | \<close> | 
| 263 | ||
| 264 | ||
| 265 | text \<open> | |
| 61799 | 266 |   \medskip Translate between \<open>{e | x1...xn. P}\<close> and \<open>{u. EX x1..xn. u = e & P}\<close>; \<open>{y. EX x1..xn. y = e & P}\<close> is
 | 
| 267 | only translated if \<open>[0..n] subset bvs(e)\<close>. | |
| 60758 | 268 | \<close> | 
| 11979 | 269 | |
| 35115 | 270 | syntax | 
| 271 |   "_Setcompr" :: "'a => idts => bool => 'a set"    ("(1{_ |/_./ _})")
 | |
| 272 | ||
| 60758 | 273 | parse_translation \<open> | 
| 11979 | 274 | let | 
| 42284 | 275 |     val ex_tr = snd (Syntax_Trans.mk_binder_tr ("EX ", @{const_syntax Ex}));
 | 
| 3947 | 276 | |
| 35115 | 277 |     fun nvars (Const (@{syntax_const "_idts"}, _) $ _ $ idts) = nvars idts + 1
 | 
| 11979 | 278 | | nvars _ = 1; | 
| 279 | ||
| 52143 | 280 | fun setcompr_tr ctxt [e, idts, b] = | 
| 11979 | 281 | let | 
| 38864 
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
 haftmann parents: 
38795diff
changeset | 282 |         val eq = Syntax.const @{const_syntax HOL.eq} $ Bound (nvars idts) $ e;
 | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 283 |         val P = Syntax.const @{const_syntax HOL.conj} $ eq $ b;
 | 
| 52143 | 284 | val exP = ex_tr ctxt [idts, P]; | 
| 44241 | 285 |       in Syntax.const @{const_syntax Collect} $ absdummy dummyT exP end;
 | 
| 11979 | 286 | |
| 35115 | 287 |   in [(@{syntax_const "_Setcompr"}, setcompr_tr)] end;
 | 
| 60758 | 288 | \<close> | 
| 289 | ||
| 290 | print_translation \<open> | |
| 42284 | 291 |  [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
 | 
| 292 |   Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"}]
 | |
| 61799 | 293 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | 
| 60758 | 294 | |
| 295 | print_translation \<open> | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 296 | let | 
| 42284 | 297 |   val ex_tr' = snd (Syntax_Trans.mk_binder_tr' (@{const_syntax Ex}, "DUMMY"));
 | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 298 | |
| 52143 | 299 | fun setcompr_tr' ctxt [Abs (abs as (_, _, P))] = | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 300 | let | 
| 35115 | 301 |       fun check (Const (@{const_syntax Ex}, _) $ Abs (_, _, P), n) = check (P, n + 1)
 | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 302 |         | check (Const (@{const_syntax HOL.conj}, _) $
 | 
| 38864 
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
 haftmann parents: 
38795diff
changeset | 303 |               (Const (@{const_syntax HOL.eq}, _) $ Bound m $ e) $ P, n) =
 | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 304 | n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso | 
| 33038 | 305 | subset (op =) (0 upto (n - 1), add_loose_bnos (e, 0, [])) | 
| 35115 | 306 | | check _ = false; | 
| 923 | 307 | |
| 11979 | 308 | fun tr' (_ $ abs) = | 
| 52143 | 309 | let val _ $ idts $ (_ $ (_ $ _ $ e) $ Q) = ex_tr' ctxt [abs] | 
| 35115 | 310 |           in Syntax.const @{syntax_const "_Setcompr"} $ e $ idts $ Q end;
 | 
| 311 | in | |
| 312 | if check (P, 0) then tr' P | |
| 313 | else | |
| 314 | let | |
| 42284 | 315 | val (x as _ $ Free(xN, _), t) = Syntax_Trans.atomic_abs_tr' abs; | 
| 35115 | 316 |           val M = Syntax.const @{syntax_const "_Coll"} $ x $ t;
 | 
| 317 | in | |
| 318 | case t of | |
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 319 |             Const (@{const_syntax HOL.conj}, _) $
 | 
| 37677 | 320 |               (Const (@{const_syntax Set.member}, _) $
 | 
| 35115 | 321 |                 (Const (@{syntax_const "_bound"}, _) $ Free (yN, _)) $ A) $ P =>
 | 
| 322 |             if xN = yN then Syntax.const @{syntax_const "_Collect"} $ x $ A $ P else M
 | |
| 323 | | _ => M | |
| 324 | end | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13653diff
changeset | 325 | end; | 
| 35115 | 326 |   in [(@{const_syntax Collect}, setcompr_tr')] end;
 | 
| 60758 | 327 | \<close> | 
| 328 | ||
| 329 | simproc_setup defined_Bex ("EX x:A. P x & Q x") = \<open>
 | |
| 54998 | 330 | fn _ => Quantifier1.rearrange_bex | 
| 331 | (fn ctxt => | |
| 332 |       unfold_tac ctxt @{thms Bex_def} THEN
 | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59000diff
changeset | 333 | Quantifier1.prove_one_point_ex_tac ctxt) | 
| 60758 | 334 | \<close> | 
| 335 | ||
| 336 | simproc_setup defined_All ("ALL x:A. P x --> Q x") = \<open>
 | |
| 54998 | 337 | fn _ => Quantifier1.rearrange_ball | 
| 338 | (fn ctxt => | |
| 339 |       unfold_tac ctxt @{thms Ball_def} THEN
 | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59000diff
changeset | 340 | Quantifier1.prove_one_point_all_tac ctxt) | 
| 60758 | 341 | \<close> | 
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 342 | |
| 11979 | 343 | lemma ballI [intro!]: "(!!x. x:A ==> P x) ==> ALL x:A. P x" | 
| 344 | by (simp add: Ball_def) | |
| 345 | ||
| 346 | lemmas strip = impI allI ballI | |
| 347 | ||
| 348 | lemma bspec [dest?]: "ALL x:A. P x ==> x:A ==> P x" | |
| 349 | by (simp add: Ball_def) | |
| 350 | ||
| 60758 | 351 | text \<open> | 
| 11979 | 352 | Gives better instantiation for bound: | 
| 60758 | 353 | \<close> | 
| 354 | ||
| 355 | setup \<open> | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51703diff
changeset | 356 | map_theory_claset (fn ctxt => | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59000diff
changeset | 357 |     ctxt addbefore ("bspec", fn ctxt' => dresolve_tac ctxt' @{thms bspec} THEN' assume_tac ctxt'))
 | 
| 60758 | 358 | \<close> | 
| 359 | ||
| 360 | ML \<open> | |
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 361 | structure Simpdata = | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 362 | struct | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 363 | |
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 364 | open Simpdata; | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 365 | |
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 366 | val mksimps_pairs = [(@{const_name Ball}, @{thms bspec})] @ mksimps_pairs;
 | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 367 | |
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 368 | end; | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 369 | |
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 370 | open Simpdata; | 
| 60758 | 371 | \<close> | 
| 372 | ||
| 373 | declaration \<open>fn _ => | |
| 45625 
750c5a47400b
modernized some old-style infix operations, which were left over from the time of ML proof scripts;
 wenzelm parents: 
45607diff
changeset | 374 | Simplifier.map_ss (Simplifier.set_mksimps (mksimps mksimps_pairs)) | 
| 60758 | 375 | \<close> | 
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 376 | |
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 377 | lemma ballE [elim]: "ALL x:A. P x ==> (P x ==> Q) ==> (x ~: A ==> Q) ==> Q" | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 378 | by (unfold Ball_def) blast | 
| 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 379 | |
| 11979 | 380 | lemma bexI [intro]: "P x ==> x:A ==> EX x:A. P x" | 
| 61799 | 381 |   \<comment> \<open>Normally the best argument order: @{prop "P x"} constrains the
 | 
| 60758 | 382 |     choice of @{prop "x:A"}.\<close>
 | 
| 11979 | 383 | by (unfold Bex_def) blast | 
| 384 | ||
| 13113 | 385 | lemma rev_bexI [intro?]: "x:A ==> P x ==> EX x:A. P x" | 
| 61799 | 386 |   \<comment> \<open>The best argument order when there is only one @{prop "x:A"}.\<close>
 | 
| 11979 | 387 | by (unfold Bex_def) blast | 
| 388 | ||
| 389 | lemma bexCI: "(ALL x:A. ~P x ==> P a) ==> a:A ==> EX x:A. P x" | |
| 390 | by (unfold Bex_def) blast | |
| 391 | ||
| 392 | lemma bexE [elim!]: "EX x:A. P x ==> (!!x. x:A ==> P x ==> Q) ==> Q" | |
| 393 | by (unfold Bex_def) blast | |
| 394 | ||
| 395 | lemma ball_triv [simp]: "(ALL x:A. P) = ((EX x. x:A) --> P)" | |
| 61799 | 396 | \<comment> \<open>Trival rewrite rule.\<close> | 
| 11979 | 397 | by (simp add: Ball_def) | 
| 398 | ||
| 399 | lemma bex_triv [simp]: "(EX x:A. P) = ((EX x. x:A) & P)" | |
| 61799 | 400 | \<comment> \<open>Dual form for existentials.\<close> | 
| 11979 | 401 | by (simp add: Bex_def) | 
| 402 | ||
| 403 | lemma bex_triv_one_point1 [simp]: "(EX x:A. x = a) = (a:A)" | |
| 404 | by blast | |
| 405 | ||
| 406 | lemma bex_triv_one_point2 [simp]: "(EX x:A. a = x) = (a:A)" | |
| 407 | by blast | |
| 408 | ||
| 409 | lemma bex_one_point1 [simp]: "(EX x:A. x = a & P x) = (a:A & P a)" | |
| 410 | by blast | |
| 411 | ||
| 412 | lemma bex_one_point2 [simp]: "(EX x:A. a = x & P x) = (a:A & P a)" | |
| 413 | by blast | |
| 414 | ||
| 415 | lemma ball_one_point1 [simp]: "(ALL x:A. x = a --> P x) = (a:A --> P a)" | |
| 416 | by blast | |
| 417 | ||
| 418 | lemma ball_one_point2 [simp]: "(ALL x:A. a = x --> P x) = (a:A --> P a)" | |
| 419 | by blast | |
| 420 | ||
| 43818 | 421 | lemma ball_conj_distrib: | 
| 422 | "(\<forall>x\<in>A. P x \<and> Q x) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<and> (\<forall>x\<in>A. Q x))" | |
| 423 | by blast | |
| 424 | ||
| 425 | lemma bex_disj_distrib: | |
| 426 | "(\<exists>x\<in>A. P x \<or> Q x) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<or> (\<exists>x\<in>A. Q x))" | |
| 427 | by blast | |
| 428 | ||
| 11979 | 429 | |
| 60758 | 430 | text \<open>Congruence rules\<close> | 
| 11979 | 431 | |
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 432 | lemma ball_cong: | 
| 11979 | 433 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | 
| 434 | (ALL x:A. P x) = (ALL x:B. Q x)" | |
| 435 | by (simp add: Ball_def) | |
| 436 | ||
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 437 | lemma strong_ball_cong [cong]: | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 438 | "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 439 | (ALL x:A. P x) = (ALL x:B. Q x)" | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 440 | by (simp add: simp_implies_def Ball_def) | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 441 | |
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 442 | lemma bex_cong: | 
| 11979 | 443 | "A = B ==> (!!x. x:B ==> P x = Q x) ==> | 
| 444 | (EX x:A. P x) = (EX x:B. Q x)" | |
| 445 | by (simp add: Bex_def cong: conj_cong) | |
| 1273 | 446 | |
| 16636 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 447 | lemma strong_bex_cong [cong]: | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 448 | "A = B ==> (!!x. x:B =simp=> P x = Q x) ==> | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 449 | (EX x:A. P x) = (EX x:B. Q x)" | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 450 | by (simp add: simp_implies_def Bex_def cong: conj_cong) | 
| 
1ed737a98198
Added strong_ball_cong and strong_bex_cong (these are now the standard
 berghofe parents: 
15950diff
changeset | 451 | |
| 59000 | 452 | lemma bex1_def: "(\<exists>!x\<in>X. P x) \<longleftrightarrow> (\<exists>x\<in>X. P x) \<and> (\<forall>x\<in>X. \<forall>y\<in>X. P x \<longrightarrow> P y \<longrightarrow> x = y)" | 
| 453 | by auto | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 454 | |
| 60758 | 455 | subsection \<open>Basic operations\<close> | 
| 456 | ||
| 457 | subsubsection \<open>Subsets\<close> | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 458 | |
| 33022 
c95102496490
 Removal of the unused atpset concept, the atp attribute and some related code.
 paulson parents: 
32888diff
changeset | 459 | lemma subsetI [intro!]: "(\<And>x. x \<in> A \<Longrightarrow> x \<in> B) \<Longrightarrow> A \<subseteq> B" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 460 | by (simp add: less_eq_set_def le_fun_def) | 
| 30352 | 461 | |
| 60758 | 462 | text \<open> | 
| 61799 | 463 |   \medskip Map the type \<open>'a set => anything\<close> to just @{typ
 | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 464 |   'a}; for overloading constants whose first argument has type @{typ
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 465 | "'a set"}. | 
| 60758 | 466 | \<close> | 
| 11979 | 467 | |
| 30596 | 468 | lemma subsetD [elim, intro?]: "A \<subseteq> B ==> c \<in> A ==> c \<in> B" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 469 | by (simp add: less_eq_set_def le_fun_def) | 
| 61799 | 470 | \<comment> \<open>Rule in Modus Ponens style.\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 471 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 472 | lemma rev_subsetD [intro?]: "c \<in> A ==> A \<subseteq> B ==> c \<in> B" | 
| 61799 | 473 | \<comment> \<open>The same, with reversed premises for use with \<open>erule\<close> -- | 
| 474 | cf \<open>rev_mp\<close>.\<close> | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 475 | by (rule subsetD) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 476 | |
| 60758 | 477 | text \<open> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 478 |   \medskip Converts @{prop "A \<subseteq> B"} to @{prop "x \<in> A ==> x \<in> B"}.
 | 
| 60758 | 479 | \<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 480 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 481 | lemma subsetCE [elim]: "A \<subseteq> B ==> (c \<notin> A ==> P) ==> (c \<in> B ==> P) ==> P" | 
| 61799 | 482 | \<comment> \<open>Classical elimination rule.\<close> | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 483 | by (auto simp add: less_eq_set_def le_fun_def) | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 484 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 485 | lemma subset_eq: "A \<le> B = (\<forall>x\<in>A. x \<in> B)" by blast | 
| 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 486 | |
| 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 487 | lemma contra_subsetD: "A \<subseteq> B ==> c \<notin> B ==> c \<notin> A" | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 488 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 489 | |
| 45121 | 490 | lemma subset_refl: "A \<subseteq> A" | 
| 491 | by (fact order_refl) (* already [iff] *) | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 492 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 493 | lemma subset_trans: "A \<subseteq> B ==> B \<subseteq> C ==> A \<subseteq> C" | 
| 32081 | 494 | by (fact order_trans) | 
| 495 | ||
| 496 | lemma set_rev_mp: "x:A ==> A \<subseteq> B ==> x:B" | |
| 497 | by (rule subsetD) | |
| 498 | ||
| 499 | lemma set_mp: "A \<subseteq> B ==> x:A ==> x:B" | |
| 500 | by (rule subsetD) | |
| 501 | ||
| 46146 
6baea4fca6bd
incorporated various theorems from theory More_Set into corpus
 haftmann parents: 
46137diff
changeset | 502 | lemma subset_not_subset_eq [code]: | 
| 
6baea4fca6bd
incorporated various theorems from theory More_Set into corpus
 haftmann parents: 
46137diff
changeset | 503 | "A \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> \<not> B \<subseteq> A" | 
| 
6baea4fca6bd
incorporated various theorems from theory More_Set into corpus
 haftmann parents: 
46137diff
changeset | 504 | by (fact less_le_not_le) | 
| 
6baea4fca6bd
incorporated various theorems from theory More_Set into corpus
 haftmann parents: 
46137diff
changeset | 505 | |
| 33044 | 506 | lemma eq_mem_trans: "a=b ==> b \<in> A ==> a \<in> A" | 
| 507 | by simp | |
| 508 | ||
| 32081 | 509 | lemmas basic_trans_rules [trans] = | 
| 33044 | 510 | order_trans_rules set_rev_mp set_mp eq_mem_trans | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 511 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 512 | |
| 60758 | 513 | subsubsection \<open>Equality\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 514 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 515 | lemma subset_antisym [intro!]: "A \<subseteq> B ==> B \<subseteq> A ==> A = B" | 
| 61799 | 516 | \<comment> \<open>Anti-symmetry of the subset relation.\<close> | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39213diff
changeset | 517 | by (iprover intro: set_eqI subsetD) | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 518 | |
| 60758 | 519 | text \<open> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 520 | \medskip Equality rules from ZF set theory -- are they appropriate | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 521 | here? | 
| 60758 | 522 | \<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 523 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 524 | lemma equalityD1: "A = B ==> A \<subseteq> B" | 
| 34209 | 525 | by simp | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 526 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 527 | lemma equalityD2: "A = B ==> B \<subseteq> A" | 
| 34209 | 528 | by simp | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 529 | |
| 60758 | 530 | text \<open> | 
| 61799 | 531 |   \medskip Be careful when adding this to the claset as \<open>subset_empty\<close> is in the simpset: @{prop "A = {}"} goes to @{prop "{}
 | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 532 |   \<subseteq> A"} and @{prop "A \<subseteq> {}"} and then back to @{prop "A = {}"}!
 | 
| 60758 | 533 | \<close> | 
| 30352 | 534 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 535 | lemma equalityE: "A = B ==> (A \<subseteq> B ==> B \<subseteq> A ==> P) ==> P" | 
| 34209 | 536 | by simp | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 537 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 538 | lemma equalityCE [elim]: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 539 | "A = B ==> (c \<in> A ==> c \<in> B ==> P) ==> (c \<notin> A ==> c \<notin> B ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 540 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 541 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 542 | lemma eqset_imp_iff: "A = B ==> (x : A) = (x : B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 543 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 544 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 545 | lemma eqelem_imp_iff: "x = y ==> (x : A) = (y : A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 546 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 547 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 548 | |
| 60758 | 549 | subsubsection \<open>The empty set\<close> | 
| 41082 | 550 | |
| 551 | lemma empty_def: | |
| 552 |   "{} = {x. False}"
 | |
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 553 | by (simp add: bot_set_def bot_fun_def) | 
| 41082 | 554 | |
| 555 | lemma empty_iff [simp]: "(c : {}) = False"
 | |
| 556 | by (simp add: empty_def) | |
| 557 | ||
| 558 | lemma emptyE [elim!]: "a : {} ==> P"
 | |
| 559 | by simp | |
| 560 | ||
| 561 | lemma empty_subsetI [iff]: "{} \<subseteq> A"
 | |
| 61799 | 562 |     \<comment> \<open>One effect is to delete the ASSUMPTION @{prop "{} <= A"}\<close>
 | 
| 41082 | 563 | by blast | 
| 564 | ||
| 565 | lemma equals0I: "(!!y. y \<in> A ==> False) ==> A = {}"
 | |
| 566 | by blast | |
| 567 | ||
| 568 | lemma equals0D: "A = {} ==> a \<notin> A"
 | |
| 61799 | 569 |     \<comment> \<open>Use for reasoning about disjointness: \<open>A Int B = {}\<close>\<close>
 | 
| 41082 | 570 | by blast | 
| 571 | ||
| 572 | lemma ball_empty [simp]: "Ball {} P = True"
 | |
| 573 | by (simp add: Ball_def) | |
| 574 | ||
| 575 | lemma bex_empty [simp]: "Bex {} P = False"
 | |
| 576 | by (simp add: Bex_def) | |
| 577 | ||
| 578 | ||
| 60758 | 579 | subsubsection \<open>The universal set -- UNIV\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 580 | |
| 32264 
0be31453f698
Set.UNIV and Set.empty are mere abbreviations for top and bot
 haftmann parents: 
32139diff
changeset | 581 | abbreviation UNIV :: "'a set" where | 
| 
0be31453f698
Set.UNIV and Set.empty are mere abbreviations for top and bot
 haftmann parents: 
32139diff
changeset | 582 | "UNIV \<equiv> top" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 583 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 584 | lemma UNIV_def: | 
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 585 |   "UNIV = {x. True}"
 | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 586 | by (simp add: top_set_def top_fun_def) | 
| 32081 | 587 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 588 | lemma UNIV_I [simp]: "x : UNIV" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 589 | by (simp add: UNIV_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 590 | |
| 61799 | 591 | declare UNIV_I [intro] \<comment> \<open>unsafe makes it less likely to cause problems\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 592 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 593 | lemma UNIV_witness [intro?]: "EX x. x : UNIV" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 594 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 595 | |
| 45121 | 596 | lemma subset_UNIV: "A \<subseteq> UNIV" | 
| 597 | by (fact top_greatest) (* already simp *) | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 598 | |
| 60758 | 599 | text \<open> | 
| 61799 | 600 | \medskip Eta-contracting these two rules (to remove \<open>P\<close>) | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 601 | causes them to be ignored because of their interaction with | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 602 | congruence rules. | 
| 60758 | 603 | \<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 604 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 605 | lemma ball_UNIV [simp]: "Ball UNIV P = All P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 606 | by (simp add: Ball_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 607 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 608 | lemma bex_UNIV [simp]: "Bex UNIV P = Ex P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 609 | by (simp add: Bex_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 610 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 611 | lemma UNIV_eq_I: "(\<And>x. x \<in> A) \<Longrightarrow> UNIV = A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 612 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 613 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 614 | lemma UNIV_not_empty [iff]: "UNIV ~= {}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 615 | by (blast elim: equalityE) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 616 | |
| 51334 | 617 | lemma empty_not_UNIV[simp]: "{} \<noteq> UNIV"
 | 
| 618 | by blast | |
| 619 | ||
| 60758 | 620 | subsubsection \<open>The Powerset operator -- Pow\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 621 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 622 | definition Pow :: "'a set => 'a set set" where | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 623 |   Pow_def: "Pow A = {B. B \<le> A}"
 | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 624 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 625 | lemma Pow_iff [iff]: "(A \<in> Pow B) = (A \<subseteq> B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 626 | by (simp add: Pow_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 627 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 628 | lemma PowI: "A \<subseteq> B ==> A \<in> Pow B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 629 | by (simp add: Pow_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 630 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 631 | lemma PowD: "A \<in> Pow B ==> A \<subseteq> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 632 | by (simp add: Pow_def) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 633 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 634 | lemma Pow_bottom: "{} \<in> Pow B"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 635 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 636 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 637 | lemma Pow_top: "A \<in> Pow A" | 
| 34209 | 638 | by simp | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 639 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39910diff
changeset | 640 | lemma Pow_not_empty: "Pow A \<noteq> {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39910diff
changeset | 641 | using Pow_top by blast | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 642 | |
| 41076 
a7fba340058c
primitive definitions of bot/top/inf/sup for bool and fun are named with canonical suffix `_def` rather than `_eq`;
 haftmann parents: 
40872diff
changeset | 643 | |
| 60758 | 644 | subsubsection \<open>Set complement\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 645 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 646 | lemma Compl_iff [simp]: "(c \<in> -A) = (c \<notin> A)" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 647 | by (simp add: fun_Compl_def uminus_set_def) | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 648 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 649 | lemma ComplI [intro!]: "(c \<in> A ==> False) ==> c \<in> -A" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 650 | by (simp add: fun_Compl_def uminus_set_def) blast | 
| 923 | 651 | |
| 60758 | 652 | text \<open> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 653 | \medskip This form, with negated conclusion, works well with the | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 654 | Classical prover. Negated assumptions behave like formulae on the | 
| 60758 | 655 | right side of the notional turnstile ...\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 656 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 657 | lemma ComplD [dest!]: "c : -A ==> c~:A" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 658 | by simp | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 659 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 660 | lemmas ComplE = ComplD [elim_format] | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 661 | |
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 662 | lemma Compl_eq: "- A = {x. ~ x : A}"
 | 
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 663 | by blast | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 664 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 665 | |
| 60758 | 666 | subsubsection \<open>Binary intersection\<close> | 
| 41082 | 667 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 668 | abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 669 | where "op \<inter> \<equiv> inf" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 670 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 671 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 672 | inter (infixl "Int" 70) | 
| 41082 | 673 | |
| 674 | lemma Int_def: | |
| 675 |   "A \<inter> B = {x. x \<in> A \<and> x \<in> B}"
 | |
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 676 | by (simp add: inf_set_def inf_fun_def) | 
| 41082 | 677 | |
| 678 | lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" | |
| 679 | by (unfold Int_def) blast | |
| 680 | ||
| 681 | lemma IntI [intro!]: "c:A ==> c:B ==> c : A Int B" | |
| 682 | by simp | |
| 683 | ||
| 684 | lemma IntD1: "c : A Int B ==> c:A" | |
| 685 | by simp | |
| 686 | ||
| 687 | lemma IntD2: "c : A Int B ==> c:B" | |
| 688 | by simp | |
| 689 | ||
| 690 | lemma IntE [elim!]: "c : A Int B ==> (c:A ==> c:B ==> P) ==> P" | |
| 691 | by simp | |
| 692 | ||
| 693 | lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B" | |
| 694 | by (fact mono_inf) | |
| 695 | ||
| 696 | ||
| 60758 | 697 | subsubsection \<open>Binary union\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 698 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 699 | abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<union>" 65) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 700 | where "union \<equiv> sup" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 701 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 702 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 703 | union (infixl "Un" 65) | 
| 32081 | 704 | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 705 | lemma Un_def: | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 706 |   "A \<union> B = {x. x \<in> A \<or> x \<in> B}"
 | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 707 | by (simp add: sup_set_def sup_fun_def) | 
| 32081 | 708 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 709 | lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 710 | by (unfold Un_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 711 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 712 | lemma UnI1 [elim?]: "c:A ==> c : A Un B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 713 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 714 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 715 | lemma UnI2 [elim?]: "c:B ==> c : A Un B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 716 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 717 | |
| 60758 | 718 | text \<open> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 719 |   \medskip Classical introduction rule: no commitment to @{prop A} vs
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 720 |   @{prop B}.
 | 
| 60758 | 721 | \<close> | 
| 11979 | 722 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 723 | lemma UnCI [intro!]: "(c~:B ==> c:A) ==> c : A Un B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 724 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 725 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 726 | lemma UnE [elim!]: "c : A Un B ==> (c:A ==> P) ==> (c:B ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 727 | by (unfold Un_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 728 | |
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 729 | lemma insert_def: "insert a B = {x. x = a} \<union> B"
 | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 730 | by (simp add: insert_compr Un_def) | 
| 32081 | 731 | |
| 732 | lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)" | |
| 32683 
7c1fe854ca6a
inter and union are mere abbreviations for inf and sup
 haftmann parents: 
32456diff
changeset | 733 | by (fact mono_sup) | 
| 32081 | 734 | |
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 735 | |
| 60758 | 736 | subsubsection \<open>Set difference\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 737 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 738 | lemma Diff_iff [simp]: "(c : A - B) = (c:A & c~:B)" | 
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 739 | by (simp add: minus_set_def fun_diff_def) | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 740 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 741 | lemma DiffI [intro!]: "c : A ==> c ~: B ==> c : A - B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 742 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 743 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 744 | lemma DiffD1: "c : A - B ==> c : A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 745 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 746 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 747 | lemma DiffD2: "c : A - B ==> c : B ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 748 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 749 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 750 | lemma DiffE [elim!]: "c : A - B ==> (c:A ==> c~:B ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 751 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 752 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 753 | lemma set_diff_eq: "A - B = {x. x : A & ~ x : B}" by blast
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 754 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 755 | lemma Compl_eq_Diff_UNIV: "-A = (UNIV - A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 756 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 757 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 758 | |
| 60758 | 759 | subsubsection \<open>Augmenting a set -- @{const insert}\<close>
 | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 760 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 761 | lemma insert_iff [simp]: "(a : insert b A) = (a = b | a:A)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 762 | by (unfold insert_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 763 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 764 | lemma insertI1: "a : insert a B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 765 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 766 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 767 | lemma insertI2: "a : B ==> a : insert b B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 768 | by simp | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 769 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 770 | lemma insertE [elim!]: "a : insert b A ==> (a = b ==> P) ==> (a:A ==> P) ==> P" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 771 | by (unfold insert_def) blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 772 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 773 | lemma insertCI [intro!]: "(a~:B ==> a = b) ==> a: insert b B" | 
| 61799 | 774 | \<comment> \<open>Classical introduction rule.\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 775 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 776 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 777 | lemma subset_insert_iff: "(A \<subseteq> insert x B) = (if x:A then A - {x} \<subseteq> B else A \<subseteq> B)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 778 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 779 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 780 | lemma set_insert: | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 781 | assumes "x \<in> A" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 782 | obtains B where "A = insert x B" and "x \<notin> B" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 783 | proof | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 784 |   from assms show "A = insert x (A - {x})" by blast
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 785 | next | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 786 |   show "x \<notin> A - {x}" by blast
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 787 | qed | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 788 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 789 | lemma insert_ident: "x ~: A ==> x ~: B ==> (insert x A = insert x B) = (A = B)" | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 790 | by auto | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 791 | |
| 44744 | 792 | lemma insert_eq_iff: assumes "a \<notin> A" "b \<notin> B" | 
| 793 | shows "insert a A = insert b B \<longleftrightarrow> | |
| 794 | (if a=b then A=B else \<exists>C. A = insert b C \<and> b \<notin> C \<and> B = insert a C \<and> a \<notin> C)" | |
| 795 | (is "?L \<longleftrightarrow> ?R") | |
| 796 | proof | |
| 797 | assume ?L | |
| 798 | show ?R | |
| 799 | proof cases | |
| 60758 | 800 | assume "a=b" with assms \<open>?L\<close> show ?R by (simp add: insert_ident) | 
| 44744 | 801 | next | 
| 802 | assume "a\<noteq>b" | |
| 803 |     let ?C = "A - {b}"
 | |
| 804 | have "A = insert b ?C \<and> b \<notin> ?C \<and> B = insert a ?C \<and> a \<notin> ?C" | |
| 60758 | 805 | using assms \<open>?L\<close> \<open>a\<noteq>b\<close> by auto | 
| 806 | thus ?R using \<open>a\<noteq>b\<close> by auto | |
| 44744 | 807 | qed | 
| 808 | next | |
| 46128 
53e7cc599f58
interaction of set operations for execution and membership predicate
 haftmann parents: 
46127diff
changeset | 809 | assume ?R thus ?L by (auto split: if_splits) | 
| 44744 | 810 | qed | 
| 811 | ||
| 60057 | 812 | lemma insert_UNIV: "insert x UNIV = UNIV" | 
| 813 | by auto | |
| 814 | ||
| 60758 | 815 | subsubsection \<open>Singletons, using insert\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 816 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 817 | lemma singletonI [intro!]: "a : {a}"
 | 
| 61799 | 818 | \<comment> \<open>Redundant? But unlike \<open>insertCI\<close>, it proves the subgoal immediately!\<close> | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 819 | by (rule insertI1) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 820 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 821 | lemma singletonD [dest!]: "b : {a} ==> b = a"
 | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 822 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 823 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 824 | lemmas singletonE = singletonD [elim_format] | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 825 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 826 | lemma singleton_iff: "(b : {a}) = (b = a)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 827 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 828 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 829 | lemma singleton_inject [dest!]: "{a} = {b} ==> a = b"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 830 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 831 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 832 | lemma singleton_insert_inj_eq [iff]: | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 833 |      "({b} = insert a A) = (a = b & A \<subseteq> {b})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 834 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 835 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 836 | lemma singleton_insert_inj_eq' [iff]: | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 837 |      "(insert a A = {b}) = (a = b & A \<subseteq> {b})"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 838 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 839 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 840 | lemma subset_singletonD: "A \<subseteq> {x} ==> A = {} | A = {x}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 841 | by fast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 842 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 843 | lemma singleton_conv [simp]: "{x. x = a} = {a}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 844 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 845 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 846 | lemma singleton_conv2 [simp]: "{x. a = x} = {a}"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 847 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 848 | |
| 62087 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
62083diff
changeset | 849 | lemma Diff_single_insert: "A - {x} \<subseteq> B ==> A \<subseteq> insert x B"
 | 
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
62083diff
changeset | 850 | by blast | 
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
62083diff
changeset | 851 | |
| 
44841d07ef1d
revisions to limits and derivatives, plus new lemmas
 paulson parents: 
62083diff
changeset | 852 | lemma subset_Diff_insert: "A \<subseteq> B - (insert x C) \<longleftrightarrow> A \<subseteq> B - C \<and> x \<notin> A" | 
| 30531 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 853 | by blast | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 854 | |
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 855 | lemma doubleton_eq_iff: "({a,b} = {c,d}) = (a=c & b=d | a=d & b=c)"
 | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 856 | by (blast elim: equalityE) | 
| 
ab3d61baf66a
reverted to old version of Set.thy -- strange effects have to be traced first
 haftmann parents: 
30352diff
changeset | 857 | |
| 53364 | 858 | lemma Un_singleton_iff: | 
| 859 |   "(A \<union> B = {x}) = (A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x})"
 | |
| 860 | by auto | |
| 861 | ||
| 862 | lemma singleton_Un_iff: | |
| 863 |   "({x} = A \<union> B) = (A = {} \<and> B = {x} \<or> A = {x} \<and> B = {} \<or> A = {x} \<and> B = {x})"
 | |
| 864 | by auto | |
| 11979 | 865 | |
| 56014 | 866 | |
| 60758 | 867 | subsubsection \<open>Image of a set under a function\<close> | 
| 868 | ||
| 869 | text \<open> | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 870 |   Frequently @{term b} does not have the syntactic form of @{term "f x"}.
 | 
| 60758 | 871 | \<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 872 | |
| 56014 | 873 | definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90)
 | 
| 874 | where | |
| 875 |   "f ` A = {y. \<exists>x\<in>A. y = f x}"
 | |
| 876 | ||
| 877 | lemma image_eqI [simp, intro]: | |
| 878 | "b = f x \<Longrightarrow> x \<in> A \<Longrightarrow> b \<in> f ` A" | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 879 | by (unfold image_def) blast | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 880 | |
| 56014 | 881 | lemma imageI: | 
| 882 | "x \<in> A \<Longrightarrow> f x \<in> f ` A" | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 883 | by (rule image_eqI) (rule refl) | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 884 | |
| 56014 | 885 | lemma rev_image_eqI: | 
| 886 | "x \<in> A \<Longrightarrow> b = f x \<Longrightarrow> b \<in> f ` A" | |
| 61799 | 887 | \<comment> \<open>This version's more effective when we already have the | 
| 60758 | 888 |     required @{term x}.\<close>
 | 
| 56014 | 889 | by (rule image_eqI) | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 890 | |
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 891 | lemma imageE [elim!]: | 
| 61799 | 892 | assumes "b \<in> (\<lambda>x. f x) ` A" \<comment> \<open>The eta-expansion gives variable-name preservation.\<close> | 
| 56014 | 893 | obtains x where "b = f x" and "x \<in> A" | 
| 894 | using assms by (unfold image_def) blast | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 895 | |
| 51173 | 896 | lemma Compr_image_eq: | 
| 897 |   "{x \<in> f ` A. P x} = f ` {x \<in> A. P (f x)}"
 | |
| 898 | by auto | |
| 899 | ||
| 56014 | 900 | lemma image_Un: | 
| 901 | "f ` (A \<union> B) = f ` A \<union> f ` B" | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 902 | by blast | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 903 | |
| 56014 | 904 | lemma image_iff: | 
| 905 | "z \<in> f ` A \<longleftrightarrow> (\<exists>x\<in>A. z = f x)" | |
| 906 | by blast | |
| 907 | ||
| 908 | lemma image_subsetI: | |
| 909 | "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` A \<subseteq> B" | |
| 61799 | 910 | \<comment> \<open>Replaces the three steps \<open>subsetI\<close>, \<open>imageE\<close>, | 
| 911 | \<open>hypsubst\<close>, but breaks too many existing proofs.\<close> | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 912 | by blast | 
| 11979 | 913 | |
| 56014 | 914 | lemma image_subset_iff: | 
| 915 | "f ` A \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. f x \<in> B)" | |
| 61799 | 916 | \<comment> \<open>This rewrite rule would confuse users if made default.\<close> | 
| 56014 | 917 | by blast | 
| 918 | ||
| 919 | lemma subset_imageE: | |
| 920 | assumes "B \<subseteq> f ` A" | |
| 921 | obtains C where "C \<subseteq> A" and "B = f ` C" | |
| 922 | proof - | |
| 923 |   from assms have "B = f ` {a \<in> A. f a \<in> B}" by fast
 | |
| 924 |   moreover have "{a \<in> A. f a \<in> B} \<subseteq> A" by blast
 | |
| 925 | ultimately show thesis by (blast intro: that) | |
| 926 | qed | |
| 927 | ||
| 928 | lemma subset_image_iff: | |
| 929 | "B \<subseteq> f ` A \<longleftrightarrow> (\<exists>AA\<subseteq>A. B = f ` AA)" | |
| 930 | by (blast elim: subset_imageE) | |
| 931 | ||
| 932 | lemma image_ident [simp]: | |
| 933 | "(\<lambda>x. x) ` Y = Y" | |
| 934 | by blast | |
| 935 | ||
| 936 | lemma image_empty [simp]: | |
| 937 |   "f ` {} = {}"
 | |
| 938 | by blast | |
| 939 | ||
| 940 | lemma image_insert [simp]: | |
| 941 | "f ` insert a B = insert (f a) (f ` B)" | |
| 942 | by blast | |
| 943 | ||
| 944 | lemma image_constant: | |
| 945 |   "x \<in> A \<Longrightarrow> (\<lambda>x. c) ` A = {c}"
 | |
| 946 | by auto | |
| 947 | ||
| 948 | lemma image_constant_conv: | |
| 949 |   "(\<lambda>x. c) ` A = (if A = {} then {} else {c})"
 | |
| 950 | by auto | |
| 951 | ||
| 952 | lemma image_image: | |
| 953 | "f ` (g ` A) = (\<lambda>x. f (g x)) ` A" | |
| 954 | by blast | |
| 955 | ||
| 956 | lemma insert_image [simp]: | |
| 957 | "x \<in> A ==> insert (f x) (f ` A) = f ` A" | |
| 958 | by blast | |
| 959 | ||
| 960 | lemma image_is_empty [iff]: | |
| 961 |   "f ` A = {} \<longleftrightarrow> A = {}"
 | |
| 962 | by blast | |
| 963 | ||
| 964 | lemma empty_is_image [iff]: | |
| 965 |   "{} = f ` A \<longleftrightarrow> A = {}"
 | |
| 966 | by blast | |
| 967 | ||
| 968 | lemma image_Collect: | |
| 969 |   "f ` {x. P x} = {f x | x. P x}"
 | |
| 61799 | 970 | \<comment> \<open>NOT suitable as a default simprule: the RHS isn't simpler than the LHS, | 
| 56014 | 971 | with its implicit quantifier and conjunction. Also image enjoys better | 
| 60758 | 972 | equational properties than does the RHS.\<close> | 
| 56014 | 973 | by blast | 
| 974 | ||
| 975 | lemma if_image_distrib [simp]: | |
| 976 | "(\<lambda>x. if P x then f x else g x) ` S | |
| 977 |     = (f ` (S \<inter> {x. P x})) \<union> (g ` (S \<inter> {x. \<not> P x}))"
 | |
| 56077 | 978 | by auto | 
| 56014 | 979 | |
| 980 | lemma image_cong: | |
| 981 | "M = N \<Longrightarrow> (\<And>x. x \<in> N \<Longrightarrow> f x = g x) \<Longrightarrow> f ` M = g ` N" | |
| 982 | by (simp add: image_def) | |
| 983 | ||
| 984 | lemma image_Int_subset: | |
| 985 | "f ` (A \<inter> B) \<subseteq> f ` A \<inter> f ` B" | |
| 986 | by blast | |
| 987 | ||
| 988 | lemma image_diff_subset: | |
| 989 | "f ` A - f ` B \<subseteq> f ` (A - B)" | |
| 990 | by blast | |
| 991 | ||
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 992 | lemma Setcompr_eq_image: "{f x | x. x \<in> A} = f ` A"
 | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 993 | by blast | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 994 | |
| 62083 | 995 | lemma setcompr_eq_image: "{f x |x. P x} = f ` {x. P x}"
 | 
| 996 | by auto | |
| 997 | ||
| 56014 | 998 | lemma ball_imageD: | 
| 999 | assumes "\<forall>x\<in>f ` A. P x" | |
| 1000 | shows "\<forall>x\<in>A. P (f x)" | |
| 1001 | using assms by simp | |
| 1002 | ||
| 1003 | lemma bex_imageD: | |
| 1004 | assumes "\<exists>x\<in>f ` A. P x" | |
| 1005 | shows "\<exists>x\<in>A. P (f x)" | |
| 1006 | using assms by auto | |
| 1007 | ||
| 1008 | ||
| 60758 | 1009 | text \<open> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1010 | \medskip Range of a function -- just a translation for image! | 
| 60758 | 1011 | \<close> | 
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1012 | |
| 56014 | 1013 | abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set"
 | 
| 61799 | 1014 | where \<comment> "of function" | 
| 56014 | 1015 | "range f \<equiv> f ` UNIV" | 
| 1016 | ||
| 1017 | lemma range_eqI: | |
| 1018 | "b = f x \<Longrightarrow> b \<in> range f" | |
| 1019 | by simp | |
| 1020 | ||
| 1021 | lemma rangeI: | |
| 1022 | "f x \<in> range f" | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1023 | by simp | 
| 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1024 | |
| 56014 | 1025 | lemma rangeE [elim?]: | 
| 1026 | "b \<in> range (\<lambda>x. f x) \<Longrightarrow> (\<And>x. b = f x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1027 | by (rule imageE) | |
| 1028 | ||
| 1029 | lemma full_SetCompr_eq: | |
| 1030 |   "{u. \<exists>x. u = f x} = range f"
 | |
| 1031 | by auto | |
| 1032 | ||
| 59506 
4af607652318
Not a simprule, as it complicates proofs
 paulson <lp15@cam.ac.uk> parents: 
59504diff
changeset | 1033 | lemma range_composition: | 
| 56014 | 1034 | "range (\<lambda>x. f (g x)) = f ` range g" | 
| 56077 | 1035 | by auto | 
| 56014 | 1036 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1037 | |
| 61799 | 1038 | subsubsection \<open>Some rules with \<open>if\<close>\<close> | 
| 1039 | ||
| 1040 | text\<open>Elimination of \<open>{x. \<dots> & x=t & \<dots>}\<close>.\<close>
 | |
| 32081 | 1041 | |
| 1042 | lemma Collect_conv_if: "{x. x=a & P x} = (if P a then {a} else {})"
 | |
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 1043 | by auto | 
| 32081 | 1044 | |
| 1045 | lemma Collect_conv_if2: "{x. a=x & P x} = (if P a then {a} else {})"
 | |
| 32117 
0762b9ad83df
Set.thy: prefer = over == where possible; tuned ML setup; dropped (moved) ML legacy
 haftmann parents: 
32115diff
changeset | 1046 | by auto | 
| 32081 | 1047 | |
| 60758 | 1048 | text \<open> | 
| 61799 | 1049 | Rewrite rules for boolean case-splitting: faster than \<open>split_if [split]\<close>. | 
| 60758 | 1050 | \<close> | 
| 32081 | 1051 | |
| 1052 | lemma split_if_eq1: "((if Q then x else y) = b) = ((Q --> x = b) & (~ Q --> y = b))" | |
| 1053 | by (rule split_if) | |
| 1054 | ||
| 1055 | lemma split_if_eq2: "(a = (if Q then x else y)) = ((Q --> a = x) & (~ Q --> a = y))" | |
| 1056 | by (rule split_if) | |
| 1057 | ||
| 60758 | 1058 | text \<open> | 
| 61799 | 1059 | Split ifs on either side of the membership relation. Not for \<open>[simp]\<close> -- can cause goals to blow up! | 
| 60758 | 1060 | \<close> | 
| 32081 | 1061 | |
| 1062 | lemma split_if_mem1: "((if Q then x else y) : b) = ((Q --> x : b) & (~ Q --> y : b))" | |
| 1063 | by (rule split_if) | |
| 1064 | ||
| 1065 | lemma split_if_mem2: "(a : (if Q then x else y)) = ((Q --> a : x) & (~ Q --> a : y))" | |
| 1066 | by (rule split_if [where P="%S. a : S"]) | |
| 1067 | ||
| 1068 | lemmas split_ifs = if_bool_eq_conj split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2 | |
| 1069 | ||
| 1070 | (*Would like to add these, but the existing code only searches for the | |
| 37677 | 1071 | outer-level constant, which in this case is just Set.member; we instead need | 
| 32081 | 1072 | to use term-nets to associate patterns with rules. Also, if a rule fails to | 
| 1073 | apply, then the formula should be kept. | |
| 34974 
18b41bba42b5
new theory Algebras.thy for generic algebraic structures
 haftmann parents: 
34209diff
changeset | 1074 |   [("uminus", Compl_iff RS iffD1), ("minus", [Diff_iff RS iffD1]),
 | 
| 32081 | 1075 |    ("Int", [IntD1,IntD2]),
 | 
| 1076 |    ("Collect", [CollectD]), ("Inter", [InterD]), ("INTER", [INT_D])]
 | |
| 1077 | *) | |
| 1078 | ||
| 1079 | ||
| 60758 | 1080 | subsection \<open>Further operations and lemmas\<close> | 
| 1081 | ||
| 1082 | subsubsection \<open>The ``proper subset'' relation\<close> | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1083 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1084 | lemma psubsetI [intro!]: "A \<subseteq> B ==> A \<noteq> B ==> A \<subset> B" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1085 | by (unfold less_le) blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1086 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1087 | lemma psubsetE [elim!]: | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1088 | "[|A \<subset> B; [|A \<subseteq> B; ~ (B\<subseteq>A)|] ==> R|] ==> R" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1089 | by (unfold less_le) blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1090 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1091 | lemma psubset_insert_iff: | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1092 |   "(A \<subset> insert x B) = (if x \<in> B then A \<subset> B else if x \<in> A then A - {x} \<subset> B else A \<subseteq> B)"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1093 | by (auto simp add: less_le subset_insert_iff) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1094 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1095 | lemma psubset_eq: "(A \<subset> B) = (A \<subseteq> B & A \<noteq> B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1096 | by (simp only: less_le) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1097 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1098 | lemma psubset_imp_subset: "A \<subset> B ==> A \<subseteq> B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1099 | by (simp add: psubset_eq) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1100 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1101 | lemma psubset_trans: "[| A \<subset> B; B \<subset> C |] ==> A \<subset> C" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1102 | apply (unfold less_le) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1103 | apply (auto dest: subset_antisym) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1104 | done | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1105 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1106 | lemma psubsetD: "[| A \<subset> B; c \<in> A |] ==> c \<in> B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1107 | apply (unfold less_le) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1108 | apply (auto dest: subsetD) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1109 | done | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1110 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1111 | lemma psubset_subset_trans: "A \<subset> B ==> B \<subseteq> C ==> A \<subset> C" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1112 | by (auto simp add: psubset_eq) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1113 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1114 | lemma subset_psubset_trans: "A \<subseteq> B ==> B \<subset> C ==> A \<subset> C" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1115 | by (auto simp add: psubset_eq) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1116 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1117 | lemma psubset_imp_ex_mem: "A \<subset> B ==> \<exists>b. b \<in> (B - A)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1118 | by (unfold less_le) blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1119 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1120 | lemma atomize_ball: | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1121 | "(!!x. x \<in> A ==> P x) == Trueprop (\<forall>x\<in>A. P x)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1122 | by (simp only: Ball_def atomize_all atomize_imp) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1123 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1124 | lemmas [symmetric, rulify] = atomize_ball | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1125 | and [symmetric, defn] = atomize_ball | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1126 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39910diff
changeset | 1127 | lemma image_Pow_mono: | 
| 56014 | 1128 | assumes "f ` A \<subseteq> B" | 
| 1129 | shows "image f ` Pow A \<subseteq> Pow B" | |
| 1130 | using assms by blast | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39910diff
changeset | 1131 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39910diff
changeset | 1132 | lemma image_Pow_surj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39910diff
changeset | 1133 | assumes "f ` A = B" | 
| 56014 | 1134 | shows "image f ` Pow A = Pow B" | 
| 1135 | using assms by (blast elim: subset_imageE) | |
| 1136 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
39910diff
changeset | 1137 | |
| 60758 | 1138 | subsubsection \<open>Derived rules involving subsets.\<close> | 
| 1139 | ||
| 61799 | 1140 | text \<open>\<open>insert\<close>.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1141 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1142 | lemma subset_insertI: "B \<subseteq> insert a B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1143 | by (rule subsetI) (erule insertI2) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1144 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1145 | lemma subset_insertI2: "A \<subseteq> B \<Longrightarrow> A \<subseteq> insert b B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1146 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1147 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1148 | lemma subset_insert: "x \<notin> A ==> (A \<subseteq> insert x B) = (A \<subseteq> B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1149 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1150 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1151 | |
| 60758 | 1152 | text \<open>\medskip Finite Union -- the least upper bound of two sets.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1153 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1154 | lemma Un_upper1: "A \<subseteq> A \<union> B" | 
| 36009 | 1155 | by (fact sup_ge1) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1156 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1157 | lemma Un_upper2: "B \<subseteq> A \<union> B" | 
| 36009 | 1158 | by (fact sup_ge2) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1159 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1160 | lemma Un_least: "A \<subseteq> C ==> B \<subseteq> C ==> A \<union> B \<subseteq> C" | 
| 36009 | 1161 | by (fact sup_least) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1162 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1163 | |
| 60758 | 1164 | text \<open>\medskip Finite Intersection -- the greatest lower bound of two sets.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1165 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1166 | lemma Int_lower1: "A \<inter> B \<subseteq> A" | 
| 36009 | 1167 | by (fact inf_le1) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1168 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1169 | lemma Int_lower2: "A \<inter> B \<subseteq> B" | 
| 36009 | 1170 | by (fact inf_le2) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1171 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1172 | lemma Int_greatest: "C \<subseteq> A ==> C \<subseteq> B ==> C \<subseteq> A \<inter> B" | 
| 36009 | 1173 | by (fact inf_greatest) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1174 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1175 | |
| 60758 | 1176 | text \<open>\medskip Set difference.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1177 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1178 | lemma Diff_subset: "A - B \<subseteq> A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1179 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1180 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1181 | lemma Diff_subset_conv: "(A - B \<subseteq> C) = (A \<subseteq> B \<union> C)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1182 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1183 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1184 | |
| 60758 | 1185 | subsubsection \<open>Equalities involving union, intersection, inclusion, etc.\<close> | 
| 1186 | ||
| 61799 | 1187 | text \<open>\<open>{}\<close>.\<close>
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1188 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1189 | lemma Collect_const [simp]: "{s. P} = (if P then UNIV else {})"
 | 
| 61799 | 1190 | \<comment> \<open>supersedes \<open>Collect_False_empty\<close>\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1191 | by auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1192 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1193 | lemma subset_empty [simp]: "(A \<subseteq> {}) = (A = {})"
 | 
| 45121 | 1194 | by (fact bot_unique) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1195 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1196 | lemma not_psubset_empty [iff]: "\<not> (A < {})"
 | 
| 45121 | 1197 | by (fact not_less_bot) (* FIXME: already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1198 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1199 | lemma Collect_empty_eq [simp]: "(Collect P = {}) = (\<forall>x. \<not> P x)"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1200 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1201 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1202 | lemma empty_Collect_eq [simp]: "({} = Collect P) = (\<forall>x. \<not> P x)"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1203 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1204 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1205 | lemma Collect_neg_eq: "{x. \<not> P x} = - {x. P x}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1206 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1207 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1208 | lemma Collect_disj_eq: "{x. P x | Q x} = {x. P x} \<union> {x. Q x}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1209 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1210 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1211 | lemma Collect_imp_eq: "{x. P x --> Q x} = -{x. P x} \<union> {x. Q x}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1212 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1213 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1214 | lemma Collect_conj_eq: "{x. P x & Q x} = {x. P x} \<inter> {x. Q x}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1215 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1216 | |
| 59506 
4af607652318
Not a simprule, as it complicates proofs
 paulson <lp15@cam.ac.uk> parents: 
59504diff
changeset | 1217 | lemma Collect_mono_iff: "Collect P \<subseteq> Collect Q \<longleftrightarrow> (\<forall>x. P x \<longrightarrow> Q x)" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 1218 | by blast | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59000diff
changeset | 1219 | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1220 | |
| 61799 | 1221 | text \<open>\medskip \<open>insert\<close>.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1222 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1223 | lemma insert_is_Un: "insert a A = {a} Un A"
 | 
| 61799 | 1224 |   \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} == insert a {}\<close>\<close>
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1225 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1226 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1227 | lemma insert_not_empty [simp]: "insert a A \<noteq> {}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1228 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1229 | |
| 45607 | 1230 | lemmas empty_not_insert = insert_not_empty [symmetric] | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1231 | declare empty_not_insert [simp] | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1232 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1233 | lemma insert_absorb: "a \<in> A ==> insert a A = A" | 
| 61799 | 1234 | \<comment> \<open>\<open>[simp]\<close> causes recursive calls when there are nested inserts\<close> | 
| 1235 |   \<comment> \<open>with \emph{quadratic} running time\<close>
 | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1236 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1237 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1238 | lemma insert_absorb2 [simp]: "insert x (insert x A) = insert x A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1239 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1240 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1241 | lemma insert_commute: "insert x (insert y A) = insert y (insert x A)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1242 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1243 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1244 | lemma insert_subset [simp]: "(insert x A \<subseteq> B) = (x \<in> B & A \<subseteq> B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1245 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1246 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1247 | lemma mk_disjoint_insert: "a \<in> A ==> \<exists>B. A = insert a B & a \<notin> B" | 
| 61799 | 1248 |   \<comment> \<open>use new \<open>B\<close> rather than \<open>A - {a}\<close> to avoid infinite unfolding\<close>
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1249 |   apply (rule_tac x = "A - {a}" in exI, blast)
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1250 | done | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1251 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1252 | lemma insert_Collect: "insert a (Collect P) = {u. u \<noteq> a --> P u}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1253 | by auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1254 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1255 | lemma insert_inter_insert[simp]: "insert a A \<inter> insert a B = insert a (A \<inter> B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1256 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1257 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1258 | lemma insert_disjoint [simp]: | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1259 |  "(insert a A \<inter> B = {}) = (a \<notin> B \<and> A \<inter> B = {})"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1260 |  "({} = insert a A \<inter> B) = (a \<notin> B \<and> {} = A \<inter> B)"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1261 | by auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1262 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1263 | lemma disjoint_insert [simp]: | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1264 |  "(B \<inter> insert a A = {}) = (a \<notin> B \<and> B \<inter> A = {})"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1265 |  "({} = A \<inter> insert b B) = (b \<notin> A \<and> {} = A \<inter> B)"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1266 | by auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1267 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1268 | |
| 61799 | 1269 | text \<open>\medskip \<open>Int\<close>\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1270 | |
| 45121 | 1271 | lemma Int_absorb: "A \<inter> A = A" | 
| 1272 | by (fact inf_idem) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1273 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1274 | lemma Int_left_absorb: "A \<inter> (A \<inter> B) = A \<inter> B" | 
| 36009 | 1275 | by (fact inf_left_idem) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1276 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1277 | lemma Int_commute: "A \<inter> B = B \<inter> A" | 
| 36009 | 1278 | by (fact inf_commute) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1279 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1280 | lemma Int_left_commute: "A \<inter> (B \<inter> C) = B \<inter> (A \<inter> C)" | 
| 36009 | 1281 | by (fact inf_left_commute) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1282 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1283 | lemma Int_assoc: "(A \<inter> B) \<inter> C = A \<inter> (B \<inter> C)" | 
| 36009 | 1284 | by (fact inf_assoc) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1285 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1286 | lemmas Int_ac = Int_assoc Int_left_absorb Int_commute Int_left_commute | 
| 61799 | 1287 | \<comment> \<open>Intersection is an AC-operator\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1288 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1289 | lemma Int_absorb1: "B \<subseteq> A ==> A \<inter> B = B" | 
| 36009 | 1290 | by (fact inf_absorb2) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1291 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1292 | lemma Int_absorb2: "A \<subseteq> B ==> A \<inter> B = A" | 
| 36009 | 1293 | by (fact inf_absorb1) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1294 | |
| 45121 | 1295 | lemma Int_empty_left: "{} \<inter> B = {}"
 | 
| 1296 | by (fact inf_bot_left) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1297 | |
| 45121 | 1298 | lemma Int_empty_right: "A \<inter> {} = {}"
 | 
| 1299 | by (fact inf_bot_right) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1300 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1301 | lemma disjoint_eq_subset_Compl: "(A \<inter> B = {}) = (A \<subseteq> -B)"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1302 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1303 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1304 | lemma disjoint_iff_not_equal: "(A \<inter> B = {}) = (\<forall>x\<in>A. \<forall>y\<in>B. x \<noteq> y)"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1305 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1306 | |
| 45121 | 1307 | lemma Int_UNIV_left: "UNIV \<inter> B = B" | 
| 1308 | by (fact inf_top_left) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1309 | |
| 45121 | 1310 | lemma Int_UNIV_right: "A \<inter> UNIV = A" | 
| 1311 | by (fact inf_top_right) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1312 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1313 | lemma Int_Un_distrib: "A \<inter> (B \<union> C) = (A \<inter> B) \<union> (A \<inter> C)" | 
| 36009 | 1314 | by (fact inf_sup_distrib1) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1315 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1316 | lemma Int_Un_distrib2: "(B \<union> C) \<inter> A = (B \<inter> A) \<union> (C \<inter> A)" | 
| 36009 | 1317 | by (fact inf_sup_distrib2) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1318 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1319 | lemma Int_UNIV [simp]: "(A \<inter> B = UNIV) = (A = UNIV & B = UNIV)" | 
| 45121 | 1320 | by (fact inf_eq_top_iff) (* already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1321 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1322 | lemma Int_subset_iff [simp]: "(C \<subseteq> A \<inter> B) = (C \<subseteq> A & C \<subseteq> B)" | 
| 36009 | 1323 | by (fact le_inf_iff) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1324 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1325 | lemma Int_Collect: "(x \<in> A \<inter> {x. P x}) = (x \<in> A & P x)"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1326 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1327 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1328 | |
| 61799 | 1329 | text \<open>\medskip \<open>Un\<close>.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1330 | |
| 45121 | 1331 | lemma Un_absorb: "A \<union> A = A" | 
| 1332 | by (fact sup_idem) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1333 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1334 | lemma Un_left_absorb: "A \<union> (A \<union> B) = A \<union> B" | 
| 36009 | 1335 | by (fact sup_left_idem) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1336 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1337 | lemma Un_commute: "A \<union> B = B \<union> A" | 
| 36009 | 1338 | by (fact sup_commute) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1339 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1340 | lemma Un_left_commute: "A \<union> (B \<union> C) = B \<union> (A \<union> C)" | 
| 36009 | 1341 | by (fact sup_left_commute) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1342 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1343 | lemma Un_assoc: "(A \<union> B) \<union> C = A \<union> (B \<union> C)" | 
| 36009 | 1344 | by (fact sup_assoc) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1345 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1346 | lemmas Un_ac = Un_assoc Un_left_absorb Un_commute Un_left_commute | 
| 61799 | 1347 | \<comment> \<open>Union is an AC-operator\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1348 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1349 | lemma Un_absorb1: "A \<subseteq> B ==> A \<union> B = B" | 
| 36009 | 1350 | by (fact sup_absorb2) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1351 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1352 | lemma Un_absorb2: "B \<subseteq> A ==> A \<union> B = A" | 
| 36009 | 1353 | by (fact sup_absorb1) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1354 | |
| 45121 | 1355 | lemma Un_empty_left: "{} \<union> B = B"
 | 
| 1356 | by (fact sup_bot_left) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1357 | |
| 45121 | 1358 | lemma Un_empty_right: "A \<union> {} = A"
 | 
| 1359 | by (fact sup_bot_right) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1360 | |
| 45121 | 1361 | lemma Un_UNIV_left: "UNIV \<union> B = UNIV" | 
| 1362 | by (fact sup_top_left) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1363 | |
| 45121 | 1364 | lemma Un_UNIV_right: "A \<union> UNIV = UNIV" | 
| 1365 | by (fact sup_top_right) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1366 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1367 | lemma Un_insert_left [simp]: "(insert a B) \<union> C = insert a (B \<union> C)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1368 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1369 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1370 | lemma Un_insert_right [simp]: "A \<union> (insert a B) = insert a (A \<union> B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1371 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1372 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1373 | lemma Int_insert_left: | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1374 | "(insert a B) Int C = (if a \<in> C then insert a (B \<inter> C) else B \<inter> C)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1375 | by auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1376 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1377 | lemma Int_insert_left_if0[simp]: | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1378 | "a \<notin> C \<Longrightarrow> (insert a B) Int C = B \<inter> C" | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1379 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1380 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1381 | lemma Int_insert_left_if1[simp]: | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1382 | "a \<in> C \<Longrightarrow> (insert a B) Int C = insert a (B Int C)" | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1383 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1384 | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1385 | lemma Int_insert_right: | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1386 | "A \<inter> (insert a B) = (if a \<in> A then insert a (A \<inter> B) else A \<inter> B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1387 | by auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1388 | |
| 32456 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1389 | lemma Int_insert_right_if0[simp]: | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1390 | "a \<notin> A \<Longrightarrow> A Int (insert a B) = A Int B" | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1391 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1392 | |
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1393 | lemma Int_insert_right_if1[simp]: | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1394 | "a \<in> A \<Longrightarrow> A Int (insert a B) = insert a (A Int B)" | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1395 | by auto | 
| 
341c83339aeb
tuned the simp rules for Int involving insert and intervals.
 nipkow parents: 
32264diff
changeset | 1396 | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1397 | lemma Un_Int_distrib: "A \<union> (B \<inter> C) = (A \<union> B) \<inter> (A \<union> C)" | 
| 36009 | 1398 | by (fact sup_inf_distrib1) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1399 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1400 | lemma Un_Int_distrib2: "(B \<inter> C) \<union> A = (B \<union> A) \<inter> (C \<union> A)" | 
| 36009 | 1401 | by (fact sup_inf_distrib2) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1402 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1403 | lemma Un_Int_crazy: | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1404 | "(A \<inter> B) \<union> (B \<inter> C) \<union> (C \<inter> A) = (A \<union> B) \<inter> (B \<union> C) \<inter> (C \<union> A)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1405 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1406 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1407 | lemma subset_Un_eq: "(A \<subseteq> B) = (A \<union> B = B)" | 
| 36009 | 1408 | by (fact le_iff_sup) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1409 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1410 | lemma Un_empty [iff]: "(A \<union> B = {}) = (A = {} & B = {})"
 | 
| 45121 | 1411 | by (fact sup_eq_bot_iff) (* FIXME: already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1412 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1413 | lemma Un_subset_iff [simp]: "(A \<union> B \<subseteq> C) = (A \<subseteq> C & B \<subseteq> C)" | 
| 36009 | 1414 | by (fact le_sup_iff) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1415 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1416 | lemma Un_Diff_Int: "(A - B) \<union> (A \<inter> B) = A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1417 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1418 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1419 | lemma Diff_Int2: "A \<inter> C - B \<inter> C = A \<inter> C - B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1420 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1421 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1422 | |
| 60758 | 1423 | text \<open>\medskip Set complement\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1424 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1425 | lemma Compl_disjoint [simp]: "A \<inter> -A = {}"
 | 
| 36009 | 1426 | by (fact inf_compl_bot) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1427 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1428 | lemma Compl_disjoint2 [simp]: "-A \<inter> A = {}"
 | 
| 36009 | 1429 | by (fact compl_inf_bot) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1430 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1431 | lemma Compl_partition: "A \<union> -A = UNIV" | 
| 36009 | 1432 | by (fact sup_compl_top) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1433 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1434 | lemma Compl_partition2: "-A \<union> A = UNIV" | 
| 36009 | 1435 | by (fact compl_sup_top) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1436 | |
| 45121 | 1437 | lemma double_complement: "- (-A) = (A::'a set)" | 
| 1438 | by (fact double_compl) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1439 | |
| 45121 | 1440 | lemma Compl_Un: "-(A \<union> B) = (-A) \<inter> (-B)" | 
| 1441 | by (fact compl_sup) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1442 | |
| 45121 | 1443 | lemma Compl_Int: "-(A \<inter> B) = (-A) \<union> (-B)" | 
| 1444 | by (fact compl_inf) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1445 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1446 | lemma subset_Compl_self_eq: "(A \<subseteq> -A) = (A = {})"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1447 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1448 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1449 | lemma Un_Int_assoc_eq: "((A \<inter> B) \<union> C = A \<inter> (B \<union> C)) = (C \<subseteq> A)" | 
| 61799 | 1450 | \<comment> \<open>Halmos, Naive Set Theory, page 16.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1451 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1452 | |
| 45121 | 1453 | lemma Compl_UNIV_eq: "-UNIV = {}"
 | 
| 1454 | by (fact compl_top_eq) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1455 | |
| 45121 | 1456 | lemma Compl_empty_eq: "-{} = UNIV"
 | 
| 1457 | by (fact compl_bot_eq) (* already simp *) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1458 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1459 | lemma Compl_subset_Compl_iff [iff]: "(-A \<subseteq> -B) = (B \<subseteq> A)" | 
| 45121 | 1460 | by (fact compl_le_compl_iff) (* FIXME: already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1461 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1462 | lemma Compl_eq_Compl_iff [iff]: "(-A = -B) = (A = (B::'a set))" | 
| 45121 | 1463 | by (fact compl_eq_compl_iff) (* FIXME: already simp *) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1464 | |
| 44490 | 1465 | lemma Compl_insert: "- insert x A = (-A) - {x}"
 | 
| 1466 | by blast | |
| 1467 | ||
| 60758 | 1468 | text \<open>\medskip Bounded quantifiers. | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1469 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1470 | The following are not added to the default simpset because | 
| 61799 | 1471 | (a) they duplicate the body and (b) there are no similar rules for \<open>Int\<close>.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1472 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1473 | lemma ball_Un: "(\<forall>x \<in> A \<union> B. P x) = ((\<forall>x\<in>A. P x) & (\<forall>x\<in>B. P x))" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1474 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1475 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1476 | lemma bex_Un: "(\<exists>x \<in> A \<union> B. P x) = ((\<exists>x\<in>A. P x) | (\<exists>x\<in>B. P x))" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1477 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1478 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1479 | |
| 60758 | 1480 | text \<open>\medskip Set difference.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1481 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1482 | lemma Diff_eq: "A - B = A \<inter> (-B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1483 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1484 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1485 | lemma Diff_eq_empty_iff [simp]: "(A - B = {}) = (A \<subseteq> B)"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1486 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1487 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1488 | lemma Diff_cancel [simp]: "A - A = {}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1489 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1490 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1491 | lemma Diff_idemp [simp]: "(A - B) - B = A - (B::'a set)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1492 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1493 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1494 | lemma Diff_triv: "A \<inter> B = {} ==> A - B = A"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1495 | by (blast elim: equalityE) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1496 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1497 | lemma empty_Diff [simp]: "{} - A = {}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1498 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1499 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1500 | lemma Diff_empty [simp]: "A - {} = A"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1501 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1502 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1503 | lemma Diff_UNIV [simp]: "A - UNIV = {}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1504 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1505 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1506 | lemma Diff_insert0 [simp]: "x \<notin> A ==> A - insert x B = A - B" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1507 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1508 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1509 | lemma Diff_insert: "A - insert a B = A - B - {a}"
 | 
| 61799 | 1510 |   \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} == insert a 0\<close>\<close>
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1511 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1512 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1513 | lemma Diff_insert2: "A - insert a B = A - {a} - B"
 | 
| 61799 | 1514 |   \<comment> \<open>NOT SUITABLE FOR REWRITING since \<open>{a} == insert a 0\<close>\<close>
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1515 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1516 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1517 | lemma insert_Diff_if: "insert x A - B = (if x \<in> B then A - B else insert x (A - B))" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1518 | by auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1519 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1520 | lemma insert_Diff1 [simp]: "x \<in> B ==> insert x A - B = A - B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1521 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1522 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1523 | lemma insert_Diff_single[simp]: "insert a (A - {a}) = insert a A"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1524 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1525 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1526 | lemma insert_Diff: "a \<in> A ==> insert a (A - {a}) = A"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1527 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1528 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1529 | lemma Diff_insert_absorb: "x \<notin> A ==> (insert x A) - {x} = A"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1530 | by auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1531 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1532 | lemma Diff_disjoint [simp]: "A \<inter> (B - A) = {}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1533 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1534 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1535 | lemma Diff_partition: "A \<subseteq> B ==> A \<union> (B - A) = B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1536 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1537 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1538 | lemma double_diff: "A \<subseteq> B ==> B \<subseteq> C ==> B - (C - A) = A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1539 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1540 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1541 | lemma Un_Diff_cancel [simp]: "A \<union> (B - A) = A \<union> B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1542 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1543 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1544 | lemma Un_Diff_cancel2 [simp]: "(B - A) \<union> A = B \<union> A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1545 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1546 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1547 | lemma Diff_Un: "A - (B \<union> C) = (A - B) \<inter> (A - C)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1548 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1549 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1550 | lemma Diff_Int: "A - (B \<inter> C) = (A - B) \<union> (A - C)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1551 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1552 | |
| 61518 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61378diff
changeset | 1553 | lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B" | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61378diff
changeset | 1554 | by blast | 
| 
ff12606337e9
new lemmas about topology, etc., for Cauchy integral formula
 paulson parents: 
61378diff
changeset | 1555 | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1556 | lemma Un_Diff: "(A \<union> B) - C = (A - C) \<union> (B - C)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1557 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1558 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1559 | lemma Int_Diff: "(A \<inter> B) - C = A \<inter> (B - C)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1560 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1561 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1562 | lemma Diff_Int_distrib: "C \<inter> (A - B) = (C \<inter> A) - (C \<inter> B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1563 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1564 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1565 | lemma Diff_Int_distrib2: "(A - B) \<inter> C = (A \<inter> C) - (B \<inter> C)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1566 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1567 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1568 | lemma Diff_Compl [simp]: "A - (- B) = A \<inter> B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1569 | by auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1570 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1571 | lemma Compl_Diff_eq [simp]: "- (A - B) = -A \<union> B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1572 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1573 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1574 | |
| 60758 | 1575 | text \<open>\medskip Quantification over type @{typ bool}.\<close>
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1576 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1577 | lemma bool_induct: "P True \<Longrightarrow> P False \<Longrightarrow> P x" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1578 | by (cases x) auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1579 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1580 | lemma all_bool_eq: "(\<forall>b. P b) \<longleftrightarrow> P True \<and> P False" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1581 | by (auto intro: bool_induct) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1582 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1583 | lemma bool_contrapos: "P x \<Longrightarrow> \<not> P False \<Longrightarrow> P True" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1584 | by (cases x) auto | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1585 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1586 | lemma ex_bool_eq: "(\<exists>b. P b) \<longleftrightarrow> P True \<or> P False" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1587 | by (auto intro: bool_contrapos) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1588 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1589 | lemma UNIV_bool: "UNIV = {False, True}"
 | 
| 43866 
8a50dc70cbff
moving UNIV = ... equations to their proper theories
 haftmann parents: 
43818diff
changeset | 1590 | by (auto intro: bool_induct) | 
| 
8a50dc70cbff
moving UNIV = ... equations to their proper theories
 haftmann parents: 
43818diff
changeset | 1591 | |
| 61799 | 1592 | text \<open>\medskip \<open>Pow\<close>\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1593 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1594 | lemma Pow_empty [simp]: "Pow {} = {{}}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1595 | by (auto simp add: Pow_def) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1596 | |
| 60161 | 1597 | lemma Pow_singleton_iff [simp]: "Pow X = {Y} \<longleftrightarrow> X = {} \<and> Y = {}"
 | 
| 1598 | by blast | |
| 1599 | ||
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1600 | lemma Pow_insert: "Pow (insert a A) = Pow A \<union> (insert a ` Pow A)" | 
| 55143 
04448228381d
explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
 wenzelm parents: 
54998diff
changeset | 1601 |   by (blast intro: image_eqI [where ?x = "u - {a}" for u])
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1602 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1603 | lemma Pow_Compl: "Pow (- A) = {-B | B. A \<in> Pow B}"
 | 
| 55143 
04448228381d
explicit eigen-context for attributes "where", "of", and corresponding read_instantiate, instantiate_tac;
 wenzelm parents: 
54998diff
changeset | 1604 | by (blast intro: exI [where ?x = "- u" for u]) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1605 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1606 | lemma Pow_UNIV [simp]: "Pow UNIV = UNIV" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1607 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1608 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1609 | lemma Un_Pow_subset: "Pow A \<union> Pow B \<subseteq> Pow (A \<union> B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1610 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1611 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1612 | lemma Pow_Int_eq [simp]: "Pow (A \<inter> B) = Pow A \<inter> Pow B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1613 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1614 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1615 | |
| 60758 | 1616 | text \<open>\medskip Miscellany.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1617 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1618 | lemma set_eq_subset: "(A = B) = (A \<subseteq> B & B \<subseteq> A)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1619 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1620 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1621 | lemma subset_iff: "(A \<subseteq> B) = (\<forall>t. t \<in> A --> t \<in> B)" | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1622 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1623 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1624 | lemma subset_iff_psubset_eq: "(A \<subseteq> B) = ((A \<subset> B) | (A = B))" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1625 | by (unfold less_le) blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1626 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1627 | lemma all_not_in_conv [simp]: "(\<forall>x. x \<notin> A) = (A = {})"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1628 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1629 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1630 | lemma ex_in_conv: "(\<exists>x. x \<in> A) = (A \<noteq> {})"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1631 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1632 | |
| 43967 | 1633 | lemma ball_simps [simp, no_atp]: | 
| 1634 | "\<And>A P Q. (\<forall>x\<in>A. P x \<or> Q) \<longleftrightarrow> ((\<forall>x\<in>A. P x) \<or> Q)" | |
| 1635 | "\<And>A P Q. (\<forall>x\<in>A. P \<or> Q x) \<longleftrightarrow> (P \<or> (\<forall>x\<in>A. Q x))" | |
| 1636 | "\<And>A P Q. (\<forall>x\<in>A. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (\<forall>x\<in>A. Q x))" | |
| 1637 | "\<And>A P Q. (\<forall>x\<in>A. P x \<longrightarrow> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<longrightarrow> Q)" | |
| 1638 |   "\<And>P. (\<forall>x\<in>{}. P x) \<longleftrightarrow> True"
 | |
| 1639 | "\<And>P. (\<forall>x\<in>UNIV. P x) \<longleftrightarrow> (\<forall>x. P x)" | |
| 1640 | "\<And>a B P. (\<forall>x\<in>insert a B. P x) \<longleftrightarrow> (P a \<and> (\<forall>x\<in>B. P x))" | |
| 1641 | "\<And>P Q. (\<forall>x\<in>Collect Q. P x) \<longleftrightarrow> (\<forall>x. Q x \<longrightarrow> P x)" | |
| 1642 | "\<And>A P f. (\<forall>x\<in>f`A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P (f x))" | |
| 1643 | "\<And>A P. (\<not> (\<forall>x\<in>A. P x)) \<longleftrightarrow> (\<exists>x\<in>A. \<not> P x)" | |
| 1644 | by auto | |
| 1645 | ||
| 1646 | lemma bex_simps [simp, no_atp]: | |
| 1647 | "\<And>A P Q. (\<exists>x\<in>A. P x \<and> Q) \<longleftrightarrow> ((\<exists>x\<in>A. P x) \<and> Q)" | |
| 1648 | "\<And>A P Q. (\<exists>x\<in>A. P \<and> Q x) \<longleftrightarrow> (P \<and> (\<exists>x\<in>A. Q x))" | |
| 1649 |   "\<And>P. (\<exists>x\<in>{}. P x) \<longleftrightarrow> False"
 | |
| 1650 | "\<And>P. (\<exists>x\<in>UNIV. P x) \<longleftrightarrow> (\<exists>x. P x)" | |
| 1651 | "\<And>a B P. (\<exists>x\<in>insert a B. P x) \<longleftrightarrow> (P a | (\<exists>x\<in>B. P x))" | |
| 1652 | "\<And>P Q. (\<exists>x\<in>Collect Q. P x) \<longleftrightarrow> (\<exists>x. Q x \<and> P x)" | |
| 1653 | "\<And>A P f. (\<exists>x\<in>f`A. P x) \<longleftrightarrow> (\<exists>x\<in>A. P (f x))" | |
| 1654 | "\<And>A P. (\<not>(\<exists>x\<in>A. P x)) \<longleftrightarrow> (\<forall>x\<in>A. \<not> P x)" | |
| 1655 | by auto | |
| 1656 | ||
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1657 | |
| 60758 | 1658 | subsubsection \<open>Monotonicity of various operations\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1659 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1660 | lemma image_mono: "A \<subseteq> B ==> f`A \<subseteq> f`B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1661 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1662 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1663 | lemma Pow_mono: "A \<subseteq> B ==> Pow A \<subseteq> Pow B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1664 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1665 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1666 | lemma insert_mono: "C \<subseteq> D ==> insert a C \<subseteq> insert a D" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1667 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1668 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1669 | lemma Un_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<union> B \<subseteq> C \<union> D" | 
| 36009 | 1670 | by (fact sup_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1671 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1672 | lemma Int_mono: "A \<subseteq> C ==> B \<subseteq> D ==> A \<inter> B \<subseteq> C \<inter> D" | 
| 36009 | 1673 | by (fact inf_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1674 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1675 | lemma Diff_mono: "A \<subseteq> C ==> D \<subseteq> B ==> A - B \<subseteq> C - D" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1676 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1677 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1678 | lemma Compl_anti_mono: "A \<subseteq> B ==> -B \<subseteq> -A" | 
| 36009 | 1679 | by (fact compl_mono) | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1680 | |
| 60758 | 1681 | text \<open>\medskip Monotonicity of implications.\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1682 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1683 | lemma in_mono: "A \<subseteq> B ==> x \<in> A --> x \<in> B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1684 | apply (rule impI) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1685 | apply (erule subsetD, assumption) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1686 | done | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1687 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1688 | lemma conj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 & P2) --> (Q1 & Q2)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1689 | by iprover | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1690 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1691 | lemma disj_mono: "P1 --> Q1 ==> P2 --> Q2 ==> (P1 | P2) --> (Q1 | Q2)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1692 | by iprover | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1693 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1694 | lemma imp_mono: "Q1 --> P1 ==> P2 --> Q2 ==> (P1 --> P2) --> (Q1 --> Q2)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1695 | by iprover | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1696 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1697 | lemma imp_refl: "P --> P" .. | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1698 | |
| 33935 | 1699 | lemma not_mono: "Q --> P ==> ~ P --> ~ Q" | 
| 1700 | by iprover | |
| 1701 | ||
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1702 | lemma ex_mono: "(!!x. P x --> Q x) ==> (EX x. P x) --> (EX x. Q x)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1703 | by iprover | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1704 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1705 | lemma all_mono: "(!!x. P x --> Q x) ==> (ALL x. P x) --> (ALL x. Q x)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1706 | by iprover | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1707 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1708 | lemma Collect_mono: "(!!x. P x --> Q x) ==> Collect P \<subseteq> Collect Q" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1709 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1710 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1711 | lemma Int_Collect_mono: | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1712 | "A \<subseteq> B ==> (!!x. x \<in> A ==> P x --> Q x) ==> A \<inter> Collect P \<subseteq> B \<inter> Collect Q" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1713 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1714 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1715 | lemmas basic_monos = | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1716 | subset_refl imp_refl disj_mono conj_mono | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1717 | ex_mono Collect_mono in_mono | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1718 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1719 | lemma eq_to_mono: "a = b ==> c = d ==> b --> d ==> a --> c" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1720 | by iprover | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1721 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1722 | |
| 60758 | 1723 | subsubsection \<open>Inverse image of a function\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1724 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35115diff
changeset | 1725 | definition vimage :: "('a => 'b) => 'b set => 'a set" (infixr "-`" 90) where
 | 
| 37767 | 1726 |   "f -` B == {x. f x : B}"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1727 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1728 | lemma vimage_eq [simp]: "(a : f -` B) = (f a : B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1729 | by (unfold vimage_def) blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1730 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1731 | lemma vimage_singleton_eq: "(a : f -` {b}) = (f a = b)"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1732 | by simp | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1733 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1734 | lemma vimageI [intro]: "f a = b ==> b:B ==> a : f -` B" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1735 | by (unfold vimage_def) blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1736 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1737 | lemma vimageI2: "f a : A ==> a : f -` A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1738 | by (unfold vimage_def) fast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1739 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1740 | lemma vimageE [elim!]: "a: f -` B ==> (!!x. f a = x ==> x:B ==> P) ==> P" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1741 | by (unfold vimage_def) blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1742 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1743 | lemma vimageD: "a : f -` A ==> f a : A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1744 | by (unfold vimage_def) fast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1745 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1746 | lemma vimage_empty [simp]: "f -` {} = {}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1747 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1748 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1749 | lemma vimage_Compl: "f -` (-A) = -(f -` A)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1750 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1751 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1752 | lemma vimage_Un [simp]: "f -` (A Un B) = (f -` A) Un (f -` B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1753 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1754 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1755 | lemma vimage_Int [simp]: "f -` (A Int B) = (f -` A) Int (f -` B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1756 | by fast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1757 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1758 | lemma vimage_Collect_eq [simp]: "f -` Collect P = {y. P (f y)}"
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1759 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1760 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1761 | lemma vimage_Collect: "(!!x. P (f x) = Q x) ==> f -` (Collect P) = Collect Q" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1762 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1763 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1764 | lemma vimage_insert: "f-`(insert a B) = (f-`{a}) Un (f-`B)"
 | 
| 61799 | 1765 |   \<comment> \<open>NOT suitable for rewriting because of the recurrence of @{term "{a}"}.\<close>
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1766 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1767 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1768 | lemma vimage_Diff: "f -` (A - B) = (f -` A) - (f -` B)" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1769 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1770 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1771 | lemma vimage_UNIV [simp]: "f -` UNIV = UNIV" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1772 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1773 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1774 | lemma vimage_mono: "A \<subseteq> B ==> f -` A \<subseteq> f -` B" | 
| 61799 | 1775 | \<comment> \<open>monotonicity\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1776 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1777 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53364diff
changeset | 1778 | lemma vimage_image_eq: "f -` (f ` A) = {y. EX x:A. f x = f y}"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1779 | by (blast intro: sym) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1780 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1781 | lemma image_vimage_subset: "f ` (f -` A) <= A" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1782 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1783 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1784 | lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f" | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1785 | by blast | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1786 | |
| 55775 | 1787 | lemma image_subset_iff_subset_vimage: "f ` A \<subseteq> B \<longleftrightarrow> A \<subseteq> f -` B" | 
| 59506 
4af607652318
Not a simprule, as it complicates proofs
 paulson <lp15@cam.ac.uk> parents: 
59504diff
changeset | 1788 | by blast | 
| 55775 | 1789 | |
| 33533 
40b44cb20c8c
New theory Probability/Borel.thy, and some associated lemmas
 paulson parents: 
33045diff
changeset | 1790 | lemma vimage_const [simp]: "((\<lambda>x. c) -` A) = (if c \<in> A then UNIV else {})"
 | 
| 
40b44cb20c8c
New theory Probability/Borel.thy, and some associated lemmas
 paulson parents: 
33045diff
changeset | 1791 | by auto | 
| 
40b44cb20c8c
New theory Probability/Borel.thy, and some associated lemmas
 paulson parents: 
33045diff
changeset | 1792 | |
| 52143 | 1793 | lemma vimage_if [simp]: "((\<lambda>x. if x \<in> B then c else d) -` A) = | 
| 33533 
40b44cb20c8c
New theory Probability/Borel.thy, and some associated lemmas
 paulson parents: 
33045diff
changeset | 1794 | (if c \<in> A then (if d \<in> A then UNIV else B) | 
| 52143 | 1795 |     else if d \<in> A then -B else {})"
 | 
| 1796 | by (auto simp add: vimage_def) | |
| 33533 
40b44cb20c8c
New theory Probability/Borel.thy, and some associated lemmas
 paulson parents: 
33045diff
changeset | 1797 | |
| 35576 | 1798 | lemma vimage_inter_cong: | 
| 1799 | "(\<And> w. w \<in> S \<Longrightarrow> f w = g w) \<Longrightarrow> f -` y \<inter> S = g -` y \<inter> S" | |
| 1800 | by auto | |
| 1801 | ||
| 43898 | 1802 | lemma vimage_ident [simp]: "(%x. x) -` Y = Y" | 
| 1803 | by blast | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1804 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1805 | |
| 60758 | 1806 | subsubsection \<open>Getting the Contents of a Singleton Set\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1807 | |
| 39910 | 1808 | definition the_elem :: "'a set \<Rightarrow> 'a" where | 
| 1809 |   "the_elem X = (THE x. X = {x})"
 | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1810 | |
| 39910 | 1811 | lemma the_elem_eq [simp]: "the_elem {x} = x"
 | 
| 1812 | by (simp add: the_elem_def) | |
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1813 | |
| 56740 | 1814 | lemma the_elem_image_unique: | 
| 1815 |   assumes "A \<noteq> {}"
 | |
| 1816 | assumes *: "\<And>y. y \<in> A \<Longrightarrow> f y = f x" | |
| 1817 | shows "the_elem (f ` A) = f x" | |
| 1818 | unfolding the_elem_def proof (rule the1_equality) | |
| 60758 | 1819 |   from \<open>A \<noteq> {}\<close> obtain y where "y \<in> A" by auto
 | 
| 56740 | 1820 | with * have "f x = f y" by simp | 
| 60758 | 1821 | with \<open>y \<in> A\<close> have "f x \<in> f ` A" by blast | 
| 56740 | 1822 |   with * show "f ` A = {f x}" by auto
 | 
| 1823 |   then show "\<exists>!x. f ` A = {x}" by auto
 | |
| 1824 | qed | |
| 1825 | ||
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1826 | |
| 60758 | 1827 | subsubsection \<open>Least value operator\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1828 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1829 | lemma Least_mono: | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1830 | "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1831 | ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)" | 
| 61799 | 1832 | \<comment> \<open>Courtesy of Stephan Merz\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1833 | apply clarify | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1834 | apply (erule_tac P = "%x. x : S" in LeastI2_order, fast) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1835 | apply (rule LeastI2_order) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1836 | apply (auto elim: monoD intro!: order_antisym) | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1837 | done | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1838 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1839 | |
| 60758 | 1840 | subsubsection \<open>Monad operation\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1841 | |
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 1842 | definition bind :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> 'b set" where
 | 
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 1843 |   "bind A f = {x. \<exists>B \<in> f`A. x \<in> B}"
 | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1844 | |
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 1845 | hide_const (open) bind | 
| 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 1846 | |
| 46036 | 1847 | lemma bind_bind: | 
| 1848 | fixes A :: "'a set" | |
| 1849 | shows "Set.bind (Set.bind A B) C = Set.bind A (\<lambda>x. Set.bind (B x) C)" | |
| 1850 | by (auto simp add: bind_def) | |
| 1851 | ||
| 1852 | lemma empty_bind [simp]: | |
| 46128 
53e7cc599f58
interaction of set operations for execution and membership predicate
 haftmann parents: 
46127diff
changeset | 1853 |   "Set.bind {} f = {}"
 | 
| 46036 | 1854 | by (simp add: bind_def) | 
| 1855 | ||
| 1856 | lemma nonempty_bind_const: | |
| 1857 |   "A \<noteq> {} \<Longrightarrow> Set.bind A (\<lambda>_. B) = B"
 | |
| 1858 | by (auto simp add: bind_def) | |
| 1859 | ||
| 1860 | lemma bind_const: "Set.bind A (\<lambda>_. B) = (if A = {} then {} else B)"
 | |
| 1861 | by (auto simp add: bind_def) | |
| 1862 | ||
| 60057 | 1863 | lemma bind_singleton_conv_image: "Set.bind A (\<lambda>x. {f x}) = f ` A"
 | 
| 1864 | by(auto simp add: bind_def) | |
| 45959 
184d36538e51
`set` is now a proper type constructor; added operation for set monad
 haftmann parents: 
45909diff
changeset | 1865 | |
| 60758 | 1866 | subsubsection \<open>Operations for execution\<close> | 
| 45986 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1867 | |
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1868 | definition is_empty :: "'a set \<Rightarrow> bool" where | 
| 46127 | 1869 |   [code_abbrev]: "is_empty A \<longleftrightarrow> A = {}"
 | 
| 45986 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1870 | |
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1871 | hide_const (open) is_empty | 
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1872 | |
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1873 | definition remove :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where | 
| 46127 | 1874 |   [code_abbrev]: "remove x A = A - {x}"
 | 
| 45986 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1875 | |
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1876 | hide_const (open) remove | 
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1877 | |
| 46128 
53e7cc599f58
interaction of set operations for execution and membership predicate
 haftmann parents: 
46127diff
changeset | 1878 | lemma member_remove [simp]: | 
| 
53e7cc599f58
interaction of set operations for execution and membership predicate
 haftmann parents: 
46127diff
changeset | 1879 | "x \<in> Set.remove y A \<longleftrightarrow> x \<in> A \<and> x \<noteq> y" | 
| 
53e7cc599f58
interaction of set operations for execution and membership predicate
 haftmann parents: 
46127diff
changeset | 1880 | by (simp add: remove_def) | 
| 
53e7cc599f58
interaction of set operations for execution and membership predicate
 haftmann parents: 
46127diff
changeset | 1881 | |
| 49757 
73ab6d4a9236
rename Set.project to Set.filter - more appropriate name
 kuncar parents: 
49660diff
changeset | 1882 | definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where
 | 
| 
73ab6d4a9236
rename Set.project to Set.filter - more appropriate name
 kuncar parents: 
49660diff
changeset | 1883 |   [code_abbrev]: "filter P A = {a \<in> A. P a}"
 | 
| 
73ab6d4a9236
rename Set.project to Set.filter - more appropriate name
 kuncar parents: 
49660diff
changeset | 1884 | |
| 
73ab6d4a9236
rename Set.project to Set.filter - more appropriate name
 kuncar parents: 
49660diff
changeset | 1885 | hide_const (open) filter | 
| 
73ab6d4a9236
rename Set.project to Set.filter - more appropriate name
 kuncar parents: 
49660diff
changeset | 1886 | |
| 
73ab6d4a9236
rename Set.project to Set.filter - more appropriate name
 kuncar parents: 
49660diff
changeset | 1887 | lemma member_filter [simp]: | 
| 
73ab6d4a9236
rename Set.project to Set.filter - more appropriate name
 kuncar parents: 
49660diff
changeset | 1888 | "x \<in> Set.filter P A \<longleftrightarrow> x \<in> A \<and> P x" | 
| 
73ab6d4a9236
rename Set.project to Set.filter - more appropriate name
 kuncar parents: 
49660diff
changeset | 1889 | by (simp add: filter_def) | 
| 46128 
53e7cc599f58
interaction of set operations for execution and membership predicate
 haftmann parents: 
46127diff
changeset | 1890 | |
| 45986 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1891 | instantiation set :: (equal) equal | 
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1892 | begin | 
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1893 | |
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1894 | definition | 
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1895 | "HOL.equal A B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A" | 
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1896 | |
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1897 | instance proof | 
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1898 | qed (auto simp add: equal_set_def) | 
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1899 | |
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1900 | end | 
| 
c9e50153e5ae
moved various set operations to theory Set (resp. Product_Type)
 haftmann parents: 
45959diff
changeset | 1901 | |
| 46127 | 1902 | |
| 60758 | 1903 | text \<open>Misc\<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1904 | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
60758diff
changeset | 1905 | definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)" | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
60758diff
changeset | 1906 | |
| 45152 | 1907 | hide_const (open) member not_member | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1908 | |
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1909 | lemmas equalityI = subset_antisym | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1910 | |
| 60758 | 1911 | ML \<open> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1912 | val Ball_def = @{thm Ball_def}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1913 | val Bex_def = @{thm Bex_def}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1914 | val CollectD = @{thm CollectD}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1915 | val CollectE = @{thm CollectE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1916 | val CollectI = @{thm CollectI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1917 | val Collect_conj_eq = @{thm Collect_conj_eq}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1918 | val Collect_mem_eq = @{thm Collect_mem_eq}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1919 | val IntD1 = @{thm IntD1}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1920 | val IntD2 = @{thm IntD2}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1921 | val IntE = @{thm IntE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1922 | val IntI = @{thm IntI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1923 | val Int_Collect = @{thm Int_Collect}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1924 | val UNIV_I = @{thm UNIV_I}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1925 | val UNIV_witness = @{thm UNIV_witness}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1926 | val UnE = @{thm UnE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1927 | val UnI1 = @{thm UnI1}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1928 | val UnI2 = @{thm UnI2}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1929 | val ballE = @{thm ballE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1930 | val ballI = @{thm ballI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1931 | val bexCI = @{thm bexCI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1932 | val bexE = @{thm bexE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1933 | val bexI = @{thm bexI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1934 | val bex_triv = @{thm bex_triv}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1935 | val bspec = @{thm bspec}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1936 | val contra_subsetD = @{thm contra_subsetD}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1937 | val equalityCE = @{thm equalityCE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1938 | val equalityD1 = @{thm equalityD1}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1939 | val equalityD2 = @{thm equalityD2}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1940 | val equalityE = @{thm equalityE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1941 | val equalityI = @{thm equalityI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1942 | val imageE = @{thm imageE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1943 | val imageI = @{thm imageI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1944 | val image_Un = @{thm image_Un}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1945 | val image_insert = @{thm image_insert}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1946 | val insert_commute = @{thm insert_commute}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1947 | val insert_iff = @{thm insert_iff}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1948 | val mem_Collect_eq = @{thm mem_Collect_eq}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1949 | val rangeE = @{thm rangeE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1950 | val rangeI = @{thm rangeI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1951 | val range_eqI = @{thm range_eqI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1952 | val subsetCE = @{thm subsetCE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1953 | val subsetD = @{thm subsetD}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1954 | val subsetI = @{thm subsetI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1955 | val subset_refl = @{thm subset_refl}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1956 | val subset_trans = @{thm subset_trans}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1957 | val vimageD = @{thm vimageD}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1958 | val vimageE = @{thm vimageE}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1959 | val vimageI = @{thm vimageI}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1960 | val vimageI2 = @{thm vimageI2}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1961 | val vimage_Collect = @{thm vimage_Collect}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1962 | val vimage_Int = @{thm vimage_Int}
 | 
| 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1963 | val vimage_Un = @{thm vimage_Un}
 | 
| 60758 | 1964 | \<close> | 
| 32135 
f645b51e8e54
set intersection and union now named inter and union; closer connection between set and lattice operations; factored out complete lattice
 haftmann parents: 
32120diff
changeset | 1965 | |
| 32077 
3698947146b2
closer relation of sets and complete lattices; corresponding consts, defs and syntax at similar places in theory text
 haftmann parents: 
32064diff
changeset | 1966 | end | 
| 46853 | 1967 |