12621
|
1 |
|
13048
|
2 |
\chapter{Object-logic specific elements}\label{ch:logics}
|
12621
|
3 |
|
|
4 |
\section{General logic setup}\label{sec:object-logic}
|
|
5 |
|
|
6 |
\indexisarcmd{judgment}
|
|
7 |
\indexisarmeth{atomize}\indexisaratt{atomize}
|
|
8 |
\indexisaratt{rule-format}\indexisaratt{rulify}
|
|
9 |
|
|
10 |
\begin{matharray}{rcl}
|
|
11 |
\isarcmd{judgment} & : & \isartrans{theory}{theory} \\
|
|
12 |
atomize & : & \isarmeth \\
|
|
13 |
atomize & : & \isaratt \\
|
|
14 |
rule_format & : & \isaratt \\
|
|
15 |
rulify & : & \isaratt \\
|
|
16 |
\end{matharray}
|
|
17 |
|
|
18 |
The very starting point for any Isabelle object-logic is a ``truth judgment''
|
|
19 |
that links object-level statements to the meta-logic (with its minimal
|
|
20 |
language of $prop$ that covers universal quantification $\Forall$ and
|
13041
|
21 |
implication $\Imp$).
|
|
22 |
|
|
23 |
Common object-logics are sufficiently expressive to internalize rule
|
|
24 |
statements over $\Forall$ and $\Imp$ within their own language. This is
|
|
25 |
useful in certain situations where a rule needs to be viewed as an atomic
|
|
26 |
statement from the meta-level perspective, e.g.\ $\All x x \in A \Imp P(x)$
|
|
27 |
versus $\forall x \in A. P(x)$.
|
12621
|
28 |
|
|
29 |
From the following language elements, only the $atomize$ method and
|
|
30 |
$rule_format$ attribute are occasionally required by end-users, the rest is
|
|
31 |
for those who need to setup their own object-logic. In the latter case
|
|
32 |
existing formulations of Isabelle/FOL or Isabelle/HOL may be taken as
|
|
33 |
realistic examples.
|
|
34 |
|
|
35 |
Generic tools may refer to the information provided by object-logic
|
13041
|
36 |
declarations internally.
|
|
37 |
|
|
38 |
\railalias{ruleformat}{rule\_format}
|
|
39 |
\railterm{ruleformat}
|
12621
|
40 |
|
|
41 |
\begin{rail}
|
|
42 |
'judgment' constdecl
|
|
43 |
;
|
13041
|
44 |
'atomize' ('(' 'full' ')')?
|
13014
|
45 |
;
|
|
46 |
ruleformat ('(' 'noasm' ')')?
|
12621
|
47 |
;
|
|
48 |
\end{rail}
|
|
49 |
|
|
50 |
\begin{descr}
|
13041
|
51 |
|
|
52 |
\item [$\isarkeyword{judgment}~c::\sigma~~(mx)$] declares constant $c$ as the
|
12621
|
53 |
truth judgment of the current object-logic. Its type $\sigma$ should
|
|
54 |
specify a coercion of the category of object-level propositions to $prop$ of
|
13041
|
55 |
the Pure meta-logic; the mixfix annotation $(mx)$ would typically just link
|
12621
|
56 |
the object language (internally of syntactic category $logic$) with that of
|
|
57 |
$prop$. Only one $\isarkeyword{judgment}$ declaration may be given in any
|
|
58 |
theory development.
|
13041
|
59 |
|
12621
|
60 |
\item [$atomize$] (as a method) rewrites any non-atomic premises of a
|
|
61 |
sub-goal, using the meta-level equations declared via $atomize$ (as an
|
|
62 |
attribute) beforehand. As a result, heavily nested goals become amenable to
|
|
63 |
fundamental operations such as resolution (cf.\ the $rule$ method) and
|
13014
|
64 |
proof-by-assumption (cf.\ $assumption$). Giving the ``$(full)$'' option
|
13041
|
65 |
here means to turn the whole subgoal into an object-statement (if possible),
|
13014
|
66 |
including the outermost parameters and assumptions as well.
|
|
67 |
|
12621
|
68 |
A typical collection of $atomize$ rules for a particular object-logic would
|
|
69 |
provide an internalization for each of the connectives of $\Forall$, $\Imp$,
|
|
70 |
and $\equiv$. Meta-level conjunction expressed in the manner of minimal
|
|
71 |
higher-order logic as $\All{\PROP\,C} (A \Imp B \Imp \PROP\,C) \Imp PROP\,C$
|
|
72 |
should be covered as well (this is particularly important for locales, see
|
|
73 |
\S\ref{sec:locale}).
|
13014
|
74 |
|
12621
|
75 |
\item [$rule_format$] rewrites a theorem by the equalities declared as
|
|
76 |
$rulify$ rules in the current object-logic. By default, the result is fully
|
|
77 |
normalized, including assumptions and conclusions at any depth. The
|
|
78 |
$no_asm$ option restricts the transformation to the conclusion of a rule.
|
13014
|
79 |
|
12621
|
80 |
In common object-logics (HOL, FOL, ZF), the effect of $rule_format$ is to
|
|
81 |
replace (bounded) universal quantification ($\forall$) and implication
|
|
82 |
($\imp$) by the corresponding rule statements over $\Forall$ and $\Imp$.
|
|
83 |
|
|
84 |
\end{descr}
|
|
85 |
|
|
86 |
|
|
87 |
\section{HOL}
|
|
88 |
|
13039
|
89 |
\subsection{Primitive types}\label{sec:hol-typedef}
|
12621
|
90 |
|
|
91 |
\indexisarcmdof{HOL}{typedecl}\indexisarcmdof{HOL}{typedef}
|
|
92 |
\begin{matharray}{rcl}
|
|
93 |
\isarcmd{typedecl} & : & \isartrans{theory}{theory} \\
|
|
94 |
\isarcmd{typedef} & : & \isartrans{theory}{proof(prove)} \\
|
|
95 |
\end{matharray}
|
|
96 |
|
|
97 |
\begin{rail}
|
12879
|
98 |
'typedecl' typespec infix?
|
12621
|
99 |
;
|
13443
|
100 |
'typedef' altname? abstype '=' repset
|
13016
|
101 |
;
|
|
102 |
|
13444
|
103 |
altname: '(' (name | 'open' | 'open' name) ')'
|
13443
|
104 |
;
|
13016
|
105 |
abstype: typespec infix?
|
|
106 |
;
|
|
107 |
repset: term ('morphisms' name name)?
|
12621
|
108 |
;
|
|
109 |
\end{rail}
|
|
110 |
|
|
111 |
\begin{descr}
|
13014
|
112 |
|
12621
|
113 |
\item [$\isarkeyword{typedecl}~(\vec\alpha)t$] is similar to the original
|
|
114 |
$\isarkeyword{typedecl}$ of Isabelle/Pure (see \S\ref{sec:types-pure}), but
|
13041
|
115 |
also declares type arity $t :: (type, \dots, type) type$, making $t$ an
|
12621
|
116 |
actual HOL type constructor.
|
13014
|
117 |
|
12621
|
118 |
\item [$\isarkeyword{typedef}~(\vec\alpha)t = A$] sets up a goal stating
|
|
119 |
non-emptiness of the set $A$. After finishing the proof, the theory will be
|
13014
|
120 |
augmented by a Gordon/HOL-style type definition, which establishes a
|
|
121 |
bijection between the representing set $A$ and the new type $t$.
|
|
122 |
|
|
123 |
Technically, $\isarkeyword{typedef}$ defines both a type $t$ and a set (term
|
13016
|
124 |
constant) of the same name (an alternative base name may be given in
|
|
125 |
parentheses). The injection from type to set is called $Rep_t$, its inverse
|
|
126 |
$Abs_t$ (this may be changed via an explicit $\isarkeyword{morphisms}$
|
|
127 |
declaration).
|
|
128 |
|
13041
|
129 |
Theorems $Rep_t$, $Rep_t_inverse$, and $Abs_t_inverse$ provide the most
|
|
130 |
basic characterization as a corresponding injection/surjection pair (in both
|
13016
|
131 |
directions). Rules $Rep_t_inject$ and $Abs_t_inject$ provide a slightly
|
13041
|
132 |
more convenient view on the injectivity part, suitable for automated proof
|
|
133 |
tools (e.g.\ in $simp$ or $iff$ declarations). Rules
|
|
134 |
$Rep_t_cases/Rep_t_induct$, and $Abs_t_cases/Abs_t_induct$ provide
|
|
135 |
alternative views on surjectivity; these are already declared as set or type
|
|
136 |
rules for the generic $cases$ and $induct$ methods.
|
13443
|
137 |
|
|
138 |
An alternative name may be specified in parentheses; the default is to use
|
|
139 |
$t$ as indicated before. The $open$ declaration suppresses a separate
|
|
140 |
constant definition for the representing set.
|
12621
|
141 |
\end{descr}
|
|
142 |
|
13041
|
143 |
Note that raw type declarations are rarely used in practice; the main
|
|
144 |
application is with experimental (or even axiomatic!) theory fragments.
|
|
145 |
Instead of primitive HOL type definitions, user-level theories usually refer
|
|
146 |
to higher-level packages such as $\isarkeyword{record}$ (see
|
|
147 |
\S\ref{sec:hol-record}) or $\isarkeyword{datatype}$ (see
|
|
148 |
\S\ref{sec:hol-datatype}).
|
12621
|
149 |
|
13014
|
150 |
|
|
151 |
\subsection{Adhoc tuples}
|
12621
|
152 |
|
|
153 |
\indexisarattof{HOL}{split-format}
|
|
154 |
\begin{matharray}{rcl}
|
|
155 |
split_format^* & : & \isaratt \\
|
|
156 |
\end{matharray}
|
|
157 |
|
|
158 |
\railalias{splitformat}{split\_format}
|
|
159 |
\railterm{splitformat}
|
|
160 |
|
|
161 |
\begin{rail}
|
13027
|
162 |
splitformat (((name *) + 'and') | ('(' 'complete' ')'))
|
12621
|
163 |
;
|
|
164 |
\end{rail}
|
|
165 |
|
|
166 |
\begin{descr}
|
13041
|
167 |
|
12621
|
168 |
\item [$split_format~\vec p@1 \dots \vec p@n$] puts expressions of low-level
|
|
169 |
tuple types into canonical form as specified by the arguments given; $\vec
|
13049
|
170 |
p@i$ refers to occurrences in premise $i$ of the rule. The ``$(complete)$''
|
13041
|
171 |
option causes \emph{all} arguments in function applications to be
|
|
172 |
represented canonically according to their tuple type structure.
|
13014
|
173 |
|
12621
|
174 |
Note that these operations tend to invent funny names for new local
|
|
175 |
parameters to be introduced.
|
|
176 |
|
|
177 |
\end{descr}
|
|
178 |
|
|
179 |
|
13039
|
180 |
\subsection{Records}\label{sec:hol-record}
|
13014
|
181 |
|
13041
|
182 |
In principle, records merely generalize the concept of tuples, where
|
|
183 |
components may be addressed by labels instead of just position. The logical
|
13014
|
184 |
infrastructure of records in Isabelle/HOL is slightly more advanced, though,
|
|
185 |
supporting truly extensible record schemes. This admits operations that are
|
|
186 |
polymorphic with respect to record extension, yielding ``object-oriented''
|
|
187 |
effects like (single) inheritance. See also \cite{NaraschewskiW-TPHOLs98} for
|
|
188 |
more details on object-oriented verification and record subtyping in HOL.
|
|
189 |
|
|
190 |
|
13039
|
191 |
\subsubsection{Basic concepts}
|
13014
|
192 |
|
|
193 |
Isabelle/HOL supports both \emph{fixed} and \emph{schematic} records at the
|
|
194 |
level of terms and types. The notation is as follows:
|
|
195 |
|
|
196 |
\begin{center}
|
|
197 |
\begin{tabular}{l|l|l}
|
|
198 |
& record terms & record types \\ \hline
|
|
199 |
fixed & $\record{x = a\fs y = b}$ & $\record{x \ty A\fs y \ty B}$ \\
|
|
200 |
schematic & $\record{x = a\fs y = b\fs \more = m}$ &
|
|
201 |
$\record{x \ty A\fs y \ty B\fs \more \ty M}$ \\
|
|
202 |
\end{tabular}
|
|
203 |
\end{center}
|
|
204 |
|
|
205 |
\noindent The ASCII representation of $\record{x = a}$ is \texttt{(| x = a |)}.
|
|
206 |
|
|
207 |
A fixed record $\record{x = a\fs y = b}$ has field $x$ of value $a$ and field
|
|
208 |
$y$ of value $b$. The corresponding type is $\record{x \ty A\fs y \ty B}$,
|
|
209 |
assuming that $a \ty A$ and $b \ty B$.
|
12621
|
210 |
|
13014
|
211 |
A record scheme like $\record{x = a\fs y = b\fs \more = m}$ contains fields
|
|
212 |
$x$ and $y$ as before, but also possibly further fields as indicated by the
|
|
213 |
``$\more$'' notation (which is actually part of the syntax). The improper
|
|
214 |
field ``$\more$'' of a record scheme is called the \emph{more part}.
|
|
215 |
Logically it is just a free variable, which is occasionally referred to as
|
13041
|
216 |
``row variable'' in the literature. The more part of a record scheme may be
|
|
217 |
instantiated by zero or more further components. For example, the previous
|
13014
|
218 |
scheme may get instantiated to $\record{x = a\fs y = b\fs z = c\fs \more =
|
|
219 |
m'}$, where $m'$ refers to a different more part. Fixed records are special
|
|
220 |
instances of record schemes, where ``$\more$'' is properly terminated by the
|
|
221 |
$() :: unit$ element. Actually, $\record{x = a\fs y = b}$ is just an
|
|
222 |
abbreviation for $\record{x = a\fs y = b\fs \more = ()}$.
|
|
223 |
|
|
224 |
\medskip
|
12621
|
225 |
|
13014
|
226 |
Two key observations make extensible records in a simply typed language like
|
|
227 |
HOL feasible:
|
|
228 |
\begin{enumerate}
|
|
229 |
\item the more part is internalized, as a free term or type variable,
|
|
230 |
\item field names are externalized, they cannot be accessed within the logic
|
|
231 |
as first-class values.
|
|
232 |
\end{enumerate}
|
|
233 |
|
|
234 |
\medskip
|
|
235 |
|
|
236 |
In Isabelle/HOL record types have to be defined explicitly, fixing their field
|
13042
|
237 |
names and types, and their (optional) parent record. Afterwards, records may
|
|
238 |
be formed using above syntax, while obeying the canonical order of fields as
|
|
239 |
given by their declaration. The record package provides several standard
|
|
240 |
operations like selectors and updates. The common setup for various generic
|
|
241 |
proof tools enable succinct reasoning patterns. See also the Isabelle/HOL
|
|
242 |
tutorial \cite{isabelle-hol-book} for further instructions on using records in
|
13014
|
243 |
practice.
|
|
244 |
|
|
245 |
|
13042
|
246 |
\subsubsection{Record specifications}
|
12621
|
247 |
|
|
248 |
\indexisarcmdof{HOL}{record}
|
|
249 |
\begin{matharray}{rcl}
|
|
250 |
\isarcmd{record} & : & \isartrans{theory}{theory} \\
|
|
251 |
\end{matharray}
|
|
252 |
|
|
253 |
\begin{rail}
|
|
254 |
'record' typespec '=' (type '+')? (constdecl +)
|
|
255 |
;
|
|
256 |
\end{rail}
|
|
257 |
|
|
258 |
\begin{descr}
|
|
259 |
\item [$\isarkeyword{record}~(\vec\alpha)t = \tau + \vec c :: \vec\sigma$]
|
|
260 |
defines extensible record type $(\vec\alpha)t$, derived from the optional
|
|
261 |
parent record $\tau$ by adding new field components $\vec c :: \vec\sigma$.
|
13014
|
262 |
|
|
263 |
The type variables of $\tau$ and $\vec\sigma$ need to be covered by the
|
|
264 |
(distinct) parameters $\vec\alpha$. Type constructor $t$ has to be new,
|
|
265 |
while $\tau$ needs to specify an instance of an existing record type. At
|
|
266 |
least one new field $\vec c$ has to be specified. Basically, field names
|
|
267 |
need to belong to a unique record. This is not a real restriction in
|
|
268 |
practice, since fields are qualified by the record name internally.
|
|
269 |
|
|
270 |
The parent record specification $\tau$ is optional; if omitted $t$ becomes a
|
|
271 |
root record. The hierarchy of all records declared within a theory context
|
|
272 |
forms a forest structure, i.e.\ a set of trees starting with a root record
|
|
273 |
each. There is no way to merge multiple parent records!
|
|
274 |
|
|
275 |
For convenience, $(\vec\alpha) \, t$ is made a type abbreviation for the
|
|
276 |
fixed record type $\record{\vec c \ty \vec\sigma}$, likewise is
|
|
277 |
$(\vec\alpha, \zeta) \, t_scheme$ made an abbreviation for $\record{\vec c
|
|
278 |
\ty \vec\sigma\fs \more \ty \zeta}$.
|
|
279 |
|
12621
|
280 |
\end{descr}
|
|
281 |
|
13042
|
282 |
\subsubsection{Record operations}
|
13014
|
283 |
|
|
284 |
Any record definition of the form presented above produces certain standard
|
|
285 |
operations. Selectors and updates are provided for any field, including the
|
|
286 |
improper one ``$more$''. There are also cumulative record constructor
|
|
287 |
functions. To simplify the presentation below, we assume for now that
|
|
288 |
$(\vec\alpha) \, t$ is a root record with fields $\vec c \ty \vec\sigma$.
|
|
289 |
|
|
290 |
\medskip \textbf{Selectors} and \textbf{updates} are available for any field
|
|
291 |
(including ``$more$''):
|
|
292 |
\begin{matharray}{lll}
|
|
293 |
c@i & \ty & \record{\vec c \ty \vec \sigma, \more \ty \zeta} \To \sigma@i \\
|
|
294 |
c@i_update & \ty & \sigma@i \To \record{\vec c \ty \vec\sigma, \more \ty \zeta} \To
|
|
295 |
\record{\vec c \ty \vec\sigma, \more \ty \zeta}
|
|
296 |
\end{matharray}
|
|
297 |
|
|
298 |
There is special syntax for application of updates: $r \, \record{x \asn a}$
|
|
299 |
abbreviates term $x_update \, a \, r$. Further notation for repeated updates
|
|
300 |
is also available: $r \, \record{x \asn a} \, \record{y \asn b} \, \record{z
|
|
301 |
\asn c}$ may be written $r \, \record{x \asn a\fs y \asn b\fs z \asn c}$.
|
|
302 |
Note that because of postfix notation the order of fields shown here is
|
|
303 |
reverse than in the actual term. Since repeated updates are just function
|
|
304 |
applications, fields may be freely permuted in $\record{x \asn a\fs y \asn
|
|
305 |
b\fs z \asn c}$, as far as logical equality is concerned. Thus
|
13041
|
306 |
commutativity of independent updates can be proven within the logic for any
|
|
307 |
two fields, but not as a general theorem.
|
13014
|
308 |
|
|
309 |
\medskip The \textbf{make} operation provides a cumulative record constructor
|
13041
|
310 |
function:
|
13014
|
311 |
\begin{matharray}{lll}
|
|
312 |
t{\dtt}make & \ty & \vec\sigma \To \record{\vec c \ty \vec \sigma} \\
|
|
313 |
\end{matharray}
|
|
314 |
|
|
315 |
\medskip We now reconsider the case of non-root records, which are derived of
|
|
316 |
some parent. In general, the latter may depend on another parent as well,
|
|
317 |
resulting in a list of \emph{ancestor records}. Appending the lists of fields
|
|
318 |
of all ancestors results in a certain field prefix. The record package
|
|
319 |
automatically takes care of this by lifting operations over this context of
|
|
320 |
ancestor fields. Assuming that $(\vec\alpha) \, t$ has ancestor fields $\vec
|
|
321 |
b \ty \vec\rho$, the above record operations will get the following types:
|
|
322 |
\begin{matharray}{lll}
|
|
323 |
c@i & \ty & \record{\vec b \ty \vec\rho, \vec c \ty \vec\sigma, \more \ty
|
|
324 |
\zeta} \To \sigma@i \\
|
|
325 |
c@i_update & \ty & \sigma@i \To
|
|
326 |
\record{\vec b \ty \vec\rho, \vec c \ty \vec\sigma, \more \ty \zeta} \To
|
|
327 |
\record{\vec b \ty \vec\rho, \vec c \ty \vec\sigma, \more \ty \zeta} \\
|
|
328 |
t{\dtt}make & \ty & \vec\rho \To \vec\sigma \To
|
|
329 |
\record{\vec b \ty \vec\rho, \vec c \ty \vec \sigma} \\
|
|
330 |
\end{matharray}
|
|
331 |
\noindent
|
|
332 |
|
|
333 |
\medskip Some further operations address the extension aspect of a derived
|
|
334 |
record scheme specifically: $fields$ produces a record fragment consisting of
|
|
335 |
exactly the new fields introduced here (the result may serve as a more part
|
|
336 |
elsewhere); $extend$ takes a fixed record and adds a given more part;
|
|
337 |
$truncate$ restricts a record scheme to a fixed record.
|
|
338 |
|
|
339 |
\begin{matharray}{lll}
|
|
340 |
t{\dtt}fields & \ty & \vec\sigma \To \record{\vec c \ty \vec \sigma} \\
|
|
341 |
t{\dtt}extend & \ty & \record{\vec d \ty \vec \rho, \vec c \ty \vec\sigma} \To
|
|
342 |
\zeta \To \record{\vec d \ty \vec \rho, \vec c \ty \vec\sigma, \more \ty \zeta} \\
|
|
343 |
t{\dtt}truncate & \ty & \record{\vec d \ty \vec \rho, \vec c \ty \vec\sigma, \more \ty \zeta} \To
|
|
344 |
\record{\vec d \ty \vec \rho, \vec c \ty \vec\sigma} \\
|
|
345 |
\end{matharray}
|
|
346 |
|
13041
|
347 |
\noindent Note that $t{\dtt}make$ and $t{\dtt}fields$ actually coincide for root records.
|
13014
|
348 |
|
|
349 |
|
13042
|
350 |
\subsubsection{Derived rules and proof tools}
|
13014
|
351 |
|
|
352 |
The record package proves several results internally, declaring these facts to
|
|
353 |
appropriate proof tools. This enables users to reason about record structures
|
13041
|
354 |
quite conveniently. Assume that $t$ is a record type as specified above.
|
13014
|
355 |
|
|
356 |
\begin{enumerate}
|
13041
|
357 |
|
13014
|
358 |
\item Standard conversions for selectors or updates applied to record
|
|
359 |
constructor terms are made part of the default Simplifier context; thus
|
|
360 |
proofs by reduction of basic operations merely require the $simp$ method
|
13041
|
361 |
without further arguments. These rules are available as $t{\dtt}simps$,
|
|
362 |
too.
|
|
363 |
|
13014
|
364 |
\item Selectors applied to updated records are automatically reduced by an
|
13041
|
365 |
internal simplification procedure, which is also part of the standard
|
|
366 |
Simplifier setup.
|
13014
|
367 |
|
|
368 |
\item Inject equations of a form analogous to $((x, y) = (x', y')) \equiv x=x'
|
|
369 |
\conj y=y'$ are declared to the Simplifier and Classical Reasoner as $iff$
|
|
370 |
rules. These rules are available as $t{\dtt}iffs$.
|
|
371 |
|
|
372 |
\item The introduction rule for record equality analogous to $x~r = x~r' \Imp
|
|
373 |
y~r = y~r' \Imp \dots \Imp r = r'$ is declared to the Simplifier, and as the
|
|
374 |
basic rule context as ``$intro?$''. The rule is called $t{\dtt}equality$.
|
|
375 |
|
|
376 |
\item Representations of arbitrary record expressions as canonical constructor
|
|
377 |
terms are provided both in $cases$ and $induct$ format (cf.\ the generic
|
|
378 |
proof methods of the same name, \S\ref{sec:cases-induct}). Several
|
|
379 |
variations are available, for fixed records, record schemes, more parts etc.
|
13041
|
380 |
|
13014
|
381 |
The generic proof methods are sufficiently smart to pick the most sensible
|
|
382 |
rule according to the type of the indicated record expression: users just
|
13041
|
383 |
need to apply something like ``$(cases~r)$'' to a certain proof problem.
|
13014
|
384 |
|
|
385 |
\item The derived record operations $t{\dtt}make$, $t{\dtt}fields$,
|
|
386 |
$t{\dtt}extend$, $t{\dtt}truncate$ are \emph{not} treated automatically, but
|
|
387 |
usually need to be expanded by hand, using the collective fact
|
|
388 |
$t{\dtt}defs$.
|
|
389 |
|
|
390 |
\end{enumerate}
|
|
391 |
|
12621
|
392 |
|
|
393 |
\subsection{Datatypes}\label{sec:hol-datatype}
|
|
394 |
|
|
395 |
\indexisarcmdof{HOL}{datatype}\indexisarcmdof{HOL}{rep-datatype}
|
|
396 |
\begin{matharray}{rcl}
|
|
397 |
\isarcmd{datatype} & : & \isartrans{theory}{theory} \\
|
|
398 |
\isarcmd{rep_datatype} & : & \isartrans{theory}{theory} \\
|
|
399 |
\end{matharray}
|
|
400 |
|
|
401 |
\railalias{repdatatype}{rep\_datatype}
|
|
402 |
\railterm{repdatatype}
|
|
403 |
|
|
404 |
\begin{rail}
|
|
405 |
'datatype' (dtspec + 'and')
|
|
406 |
;
|
13024
|
407 |
repdatatype (name *) dtrules
|
12621
|
408 |
;
|
|
409 |
|
|
410 |
dtspec: parname? typespec infix? '=' (cons + '|')
|
|
411 |
;
|
13024
|
412 |
cons: name (type *) mixfix?
|
12621
|
413 |
;
|
|
414 |
dtrules: 'distinct' thmrefs 'inject' thmrefs 'induction' thmrefs
|
|
415 |
\end{rail}
|
|
416 |
|
|
417 |
\begin{descr}
|
|
418 |
\item [$\isarkeyword{datatype}$] defines inductive datatypes in HOL.
|
|
419 |
\item [$\isarkeyword{rep_datatype}$] represents existing types as inductive
|
|
420 |
ones, generating the standard infrastructure of derived concepts (primitive
|
|
421 |
recursion etc.).
|
|
422 |
\end{descr}
|
|
423 |
|
|
424 |
The induction and exhaustion theorems generated provide case names according
|
|
425 |
to the constructors involved, while parameters are named after the types (see
|
|
426 |
also \S\ref{sec:cases-induct}).
|
|
427 |
|
13014
|
428 |
See \cite{isabelle-HOL} for more details on datatypes, but beware of the
|
|
429 |
old-style theory syntax being used there! Apart from proper proof methods for
|
|
430 |
case-analysis and induction, there are also emulations of ML tactics
|
12621
|
431 |
\texttt{case_tac} and \texttt{induct_tac} available, see
|
13042
|
432 |
\S\ref{sec:hol-induct-tac}; these admit to refer directly to the internal
|
|
433 |
structure of subgoals (including internally bound parameters).
|
12621
|
434 |
|
|
435 |
|
|
436 |
\subsection{Recursive functions}\label{sec:recursion}
|
|
437 |
|
|
438 |
\indexisarcmdof{HOL}{primrec}\indexisarcmdof{HOL}{recdef}\indexisarcmdof{HOL}{recdef-tc}
|
|
439 |
\begin{matharray}{rcl}
|
|
440 |
\isarcmd{primrec} & : & \isartrans{theory}{theory} \\
|
|
441 |
\isarcmd{recdef} & : & \isartrans{theory}{theory} \\
|
|
442 |
\isarcmd{recdef_tc}^* & : & \isartrans{theory}{proof(prove)} \\
|
|
443 |
\end{matharray}
|
|
444 |
|
|
445 |
\railalias{recdefsimp}{recdef\_simp}
|
|
446 |
\railterm{recdefsimp}
|
|
447 |
|
|
448 |
\railalias{recdefcong}{recdef\_cong}
|
|
449 |
\railterm{recdefcong}
|
|
450 |
|
|
451 |
\railalias{recdefwf}{recdef\_wf}
|
|
452 |
\railterm{recdefwf}
|
|
453 |
|
|
454 |
\railalias{recdeftc}{recdef\_tc}
|
|
455 |
\railterm{recdeftc}
|
|
456 |
|
|
457 |
\begin{rail}
|
13024
|
458 |
'primrec' parname? (equation +)
|
12621
|
459 |
;
|
13024
|
460 |
'recdef' ('(' 'permissive' ')')? \\ name term (prop +) hints?
|
12621
|
461 |
;
|
12879
|
462 |
recdeftc thmdecl? tc
|
12621
|
463 |
;
|
|
464 |
|
12879
|
465 |
equation: thmdecl? prop
|
12621
|
466 |
;
|
13024
|
467 |
hints: '(' 'hints' (recdefmod *) ')'
|
12621
|
468 |
;
|
|
469 |
recdefmod: ((recdefsimp | recdefcong | recdefwf) (() | 'add' | 'del') ':' thmrefs) | clasimpmod
|
|
470 |
;
|
|
471 |
tc: nameref ('(' nat ')')?
|
|
472 |
;
|
|
473 |
\end{rail}
|
|
474 |
|
|
475 |
\begin{descr}
|
13024
|
476 |
|
12621
|
477 |
\item [$\isarkeyword{primrec}$] defines primitive recursive functions over
|
13024
|
478 |
datatypes, see also \cite{isabelle-HOL}.
|
|
479 |
|
12621
|
480 |
\item [$\isarkeyword{recdef}$] defines general well-founded recursive
|
13024
|
481 |
functions (using the TFL package), see also \cite{isabelle-HOL}. The
|
13041
|
482 |
``$(permissive)$'' option tells TFL to recover from failed proof attempts,
|
12621
|
483 |
returning unfinished results. The $recdef_simp$, $recdef_cong$, and
|
|
484 |
$recdef_wf$ hints refer to auxiliary rules to be used in the internal
|
13024
|
485 |
automated proof process of TFL. Additional $clasimpmod$ declarations (cf.\
|
12621
|
486 |
\S\ref{sec:clasimp}) may be given to tune the context of the Simplifier
|
13024
|
487 |
(cf.\ \S\ref{sec:simplifier}) and Classical reasoner (cf.\
|
12621
|
488 |
\S\ref{sec:classical}).
|
13024
|
489 |
|
12621
|
490 |
\item [$\isarkeyword{recdef_tc}~c~(i)$] recommences the proof for leftover
|
|
491 |
termination condition number $i$ (default $1$) as generated by a
|
|
492 |
$\isarkeyword{recdef}$ definition of constant $c$.
|
13024
|
493 |
|
12621
|
494 |
Note that in most cases, $\isarkeyword{recdef}$ is able to finish its
|
|
495 |
internal proofs without manual intervention.
|
13024
|
496 |
|
12621
|
497 |
\end{descr}
|
|
498 |
|
13014
|
499 |
Both kinds of recursive definitions accommodate reasoning by induction (cf.\
|
12621
|
500 |
\S\ref{sec:cases-induct}): rule $c\mathord{.}induct$ (where $c$ is the name of
|
|
501 |
the function definition) refers to a specific induction rule, with parameters
|
|
502 |
named according to the user-specified equations. Case names of
|
|
503 |
$\isarkeyword{primrec}$ are that of the datatypes involved, while those of
|
|
504 |
$\isarkeyword{recdef}$ are numbered (starting from $1$).
|
|
505 |
|
|
506 |
The equations provided by these packages may be referred later as theorem list
|
13041
|
507 |
$f{\dtt}simps$, where $f$ is the (collective) name of the functions defined.
|
|
508 |
Individual equations may be named explicitly as well; note that for
|
12621
|
509 |
$\isarkeyword{recdef}$ each specification given by the user may result in
|
|
510 |
several theorems.
|
|
511 |
|
|
512 |
\medskip Hints for $\isarkeyword{recdef}$ may be also declared globally, using
|
|
513 |
the following attributes.
|
|
514 |
|
|
515 |
\indexisarattof{HOL}{recdef-simp}\indexisarattof{HOL}{recdef-cong}\indexisarattof{HOL}{recdef-wf}
|
|
516 |
\begin{matharray}{rcl}
|
|
517 |
recdef_simp & : & \isaratt \\
|
|
518 |
recdef_cong & : & \isaratt \\
|
|
519 |
recdef_wf & : & \isaratt \\
|
|
520 |
\end{matharray}
|
|
521 |
|
|
522 |
\railalias{recdefsimp}{recdef\_simp}
|
|
523 |
\railterm{recdefsimp}
|
|
524 |
|
|
525 |
\railalias{recdefcong}{recdef\_cong}
|
|
526 |
\railterm{recdefcong}
|
|
527 |
|
|
528 |
\railalias{recdefwf}{recdef\_wf}
|
|
529 |
\railterm{recdefwf}
|
|
530 |
|
|
531 |
\begin{rail}
|
|
532 |
(recdefsimp | recdefcong | recdefwf) (() | 'add' | 'del')
|
|
533 |
;
|
|
534 |
\end{rail}
|
|
535 |
|
|
536 |
|
|
537 |
\subsection{(Co)Inductive sets}\label{sec:hol-inductive}
|
|
538 |
|
|
539 |
\indexisarcmdof{HOL}{inductive}\indexisarcmdof{HOL}{coinductive}\indexisarattof{HOL}{mono}
|
|
540 |
\begin{matharray}{rcl}
|
|
541 |
\isarcmd{inductive} & : & \isartrans{theory}{theory} \\
|
|
542 |
\isarcmd{coinductive} & : & \isartrans{theory}{theory} \\
|
|
543 |
mono & : & \isaratt \\
|
|
544 |
\end{matharray}
|
|
545 |
|
|
546 |
\begin{rail}
|
|
547 |
('inductive' | 'coinductive') sets intros monos?
|
|
548 |
;
|
|
549 |
'mono' (() | 'add' | 'del')
|
|
550 |
;
|
|
551 |
|
12879
|
552 |
sets: (term +)
|
12621
|
553 |
;
|
12879
|
554 |
intros: 'intros' (thmdecl? prop +)
|
12621
|
555 |
;
|
12879
|
556 |
monos: 'monos' thmrefs
|
12621
|
557 |
;
|
|
558 |
\end{rail}
|
|
559 |
|
|
560 |
\begin{descr}
|
|
561 |
\item [$\isarkeyword{inductive}$ and $\isarkeyword{coinductive}$] define
|
|
562 |
(co)inductive sets from the given introduction rules.
|
|
563 |
\item [$mono$] declares monotonicity rules. These rule are involved in the
|
|
564 |
automated monotonicity proof of $\isarkeyword{inductive}$.
|
|
565 |
\end{descr}
|
|
566 |
|
13024
|
567 |
See \cite{isabelle-HOL} for further information on inductive definitions in
|
|
568 |
HOL, but note that this covers the old-style theory format.
|
12621
|
569 |
|
|
570 |
|
|
571 |
\subsection{Arithmetic proof support}
|
|
572 |
|
|
573 |
\indexisarmethof{HOL}{arith}\indexisarattof{HOL}{arith-split}
|
|
574 |
\begin{matharray}{rcl}
|
|
575 |
arith & : & \isarmeth \\
|
|
576 |
arith_split & : & \isaratt \\
|
|
577 |
\end{matharray}
|
|
578 |
|
|
579 |
\begin{rail}
|
|
580 |
'arith' '!'?
|
|
581 |
;
|
|
582 |
\end{rail}
|
|
583 |
|
|
584 |
The $arith$ method decides linear arithmetic problems (on types $nat$, $int$,
|
|
585 |
$real$). Any current facts are inserted into the goal before running the
|
|
586 |
procedure. The ``!''~argument causes the full context of assumptions to be
|
|
587 |
included. The $arith_split$ attribute declares case split rules to be
|
|
588 |
expanded before the arithmetic procedure is invoked.
|
|
589 |
|
|
590 |
Note that a simpler (but faster) version of arithmetic reasoning is already
|
|
591 |
performed by the Simplifier.
|
|
592 |
|
|
593 |
|
13024
|
594 |
\subsection{Cases and induction: emulating tactic scripts}\label{sec:hol-induct-tac}
|
12621
|
595 |
|
|
596 |
The following important tactical tools of Isabelle/HOL have been ported to
|
|
597 |
Isar. These should be never used in proper proof texts!
|
|
598 |
|
|
599 |
\indexisarmethof{HOL}{case-tac}\indexisarmethof{HOL}{induct-tac}
|
|
600 |
\indexisarmethof{HOL}{ind-cases}\indexisarcmdof{HOL}{inductive-cases}
|
|
601 |
\begin{matharray}{rcl}
|
|
602 |
case_tac^* & : & \isarmeth \\
|
|
603 |
induct_tac^* & : & \isarmeth \\
|
|
604 |
ind_cases^* & : & \isarmeth \\
|
|
605 |
\isarcmd{inductive_cases} & : & \isartrans{theory}{theory} \\
|
|
606 |
\end{matharray}
|
|
607 |
|
|
608 |
\railalias{casetac}{case\_tac}
|
|
609 |
\railterm{casetac}
|
|
610 |
|
|
611 |
\railalias{inducttac}{induct\_tac}
|
|
612 |
\railterm{inducttac}
|
|
613 |
|
|
614 |
\railalias{indcases}{ind\_cases}
|
|
615 |
\railterm{indcases}
|
|
616 |
|
|
617 |
\railalias{inductivecases}{inductive\_cases}
|
|
618 |
\railterm{inductivecases}
|
|
619 |
|
|
620 |
\begin{rail}
|
|
621 |
casetac goalspec? term rule?
|
|
622 |
;
|
|
623 |
inducttac goalspec? (insts * 'and') rule?
|
|
624 |
;
|
|
625 |
indcases (prop +)
|
|
626 |
;
|
13014
|
627 |
inductivecases (thmdecl? (prop +) + 'and')
|
12621
|
628 |
;
|
|
629 |
|
|
630 |
rule: ('rule' ':' thmref)
|
|
631 |
;
|
|
632 |
\end{rail}
|
|
633 |
|
|
634 |
\begin{descr}
|
|
635 |
\item [$case_tac$ and $induct_tac$] admit to reason about inductive datatypes
|
|
636 |
only (unless an alternative rule is given explicitly). Furthermore,
|
|
637 |
$case_tac$ does a classical case split on booleans; $induct_tac$ allows only
|
|
638 |
variables to be given as instantiation. These tactic emulations feature
|
|
639 |
both goal addressing and dynamic instantiation. Note that named rule cases
|
|
640 |
are \emph{not} provided as would be by the proper $induct$ and $cases$ proof
|
|
641 |
methods (see \S\ref{sec:cases-induct}).
|
13041
|
642 |
|
12621
|
643 |
\item [$ind_cases$ and $\isarkeyword{inductive_cases}$] provide an interface
|
13041
|
644 |
to the internal \texttt{mk_cases} operation. Rules are simplified in an
|
|
645 |
unrestricted forward manner.
|
13014
|
646 |
|
12621
|
647 |
While $ind_cases$ is a proof method to apply the result immediately as
|
|
648 |
elimination rules, $\isarkeyword{inductive_cases}$ provides case split
|
|
649 |
theorems at the theory level for later use,
|
|
650 |
\end{descr}
|
|
651 |
|
|
652 |
|
13039
|
653 |
\subsection{Executable code}
|
13027
|
654 |
|
|
655 |
Isabelle/Pure provides a generic infrastructure to support code generation
|
|
656 |
from executable specifications, both functional and relational programs.
|
|
657 |
Isabelle/HOL instantiates these mechanisms in a way that is amenable to
|
|
658 |
end-user applications. See \cite{isabelle-HOL} for further information (this
|
13041
|
659 |
actually covers the new-style theory format as well).
|
13027
|
660 |
|
|
661 |
\indexisarcmd{generate-code}\indexisarcmd{consts-code}\indexisarcmd{types-code}
|
|
662 |
\indexisaratt{code}
|
|
663 |
|
|
664 |
\begin{matharray}{rcl}
|
|
665 |
\isarcmd{generate_code} & : & \isartrans{theory}{theory} \\
|
|
666 |
\isarcmd{consts_code} & : & \isartrans{theory}{theory} \\
|
|
667 |
\isarcmd{types_code} & : & \isartrans{theory}{theory} \\
|
|
668 |
code & : & \isaratt \\
|
|
669 |
\end{matharray}
|
|
670 |
|
|
671 |
\railalias{generatecode}{generate\_code}
|
|
672 |
\railterm{generatecode}
|
|
673 |
|
|
674 |
\railalias{constscode}{consts\_code}
|
|
675 |
\railterm{constscode}
|
|
676 |
|
|
677 |
\railalias{typescode}{types\_code}
|
|
678 |
\railterm{typescode}
|
|
679 |
|
|
680 |
\begin{rail}
|
|
681 |
generatecode ( () | '(' name ')') ((name '=' term) +)
|
|
682 |
;
|
|
683 |
constscode (name ('::' type)? template +)
|
|
684 |
;
|
|
685 |
typescode (name template +)
|
|
686 |
;
|
|
687 |
template: '(' string ')'
|
|
688 |
;
|
|
689 |
|
|
690 |
'code' (name)?
|
|
691 |
;
|
|
692 |
\end{rail}
|
|
693 |
|
|
694 |
|
12621
|
695 |
\section{HOLCF}
|
|
696 |
|
|
697 |
\subsection{Mixfix syntax for continuous operations}
|
|
698 |
|
|
699 |
\indexisarcmdof{HOLCF}{consts}\indexisarcmdof{HOLCF}{constdefs}
|
|
700 |
|
|
701 |
\begin{matharray}{rcl}
|
|
702 |
\isarcmd{consts} & : & \isartrans{theory}{theory} \\
|
|
703 |
\isarcmd{constdefs} & : & \isartrans{theory}{theory} \\
|
|
704 |
\end{matharray}
|
|
705 |
|
|
706 |
HOLCF provides a separate type for continuous functions $\alpha \rightarrow
|
|
707 |
\beta$, with an explicit application operator $f \cdot x$. Isabelle mixfix
|
|
708 |
syntax normally refers directly to the pure meta-level function type $\alpha
|
|
709 |
\To \beta$, with application $f\,x$.
|
|
710 |
|
|
711 |
The HOLCF variants of $\CONSTS$ and $\CONSTDEFS$ have the same outer syntax as
|
|
712 |
the pure versions (cf.\ \S\ref{sec:consts}). Internally, declarations
|
|
713 |
involving continuous function types are treated specifically, transforming the
|
|
714 |
syntax template accordingly and generating syntax translation rules for the
|
|
715 |
abstract and concrete representation of application.
|
|
716 |
|
|
717 |
The behavior for plain meta-level function types is unchanged. Mixed
|
|
718 |
continuous and meta-level application is \emph{not} supported.
|
|
719 |
|
|
720 |
\subsection{Recursive domains}
|
|
721 |
|
|
722 |
\indexisarcmdof{HOLCF}{domain}
|
|
723 |
\begin{matharray}{rcl}
|
|
724 |
\isarcmd{domain} & : & \isartrans{theory}{theory} \\
|
|
725 |
\end{matharray}
|
|
726 |
|
|
727 |
\begin{rail}
|
|
728 |
'domain' parname? (dmspec + 'and')
|
|
729 |
;
|
|
730 |
|
|
731 |
dmspec: typespec '=' (cons + '|')
|
|
732 |
;
|
13024
|
733 |
cons: name (type *) mixfix?
|
12621
|
734 |
;
|
|
735 |
dtrules: 'distinct' thmrefs 'inject' thmrefs 'induction' thmrefs
|
|
736 |
\end{rail}
|
|
737 |
|
13041
|
738 |
Recursive domains in HOLCF are analogous to datatypes in classical HOL (cf.\
|
|
739 |
\S\ref{sec:hol-datatype}). Mutual recursion is supported, but no nesting nor
|
12621
|
740 |
arbitrary branching. Domain constructors may be strict (default) or lazy, the
|
13041
|
741 |
latter admits to introduce infinitary objects in the typical LCF manner (e.g.\
|
13014
|
742 |
lazy lists). See also \cite{MuellerNvOS99} for a general discussion of HOLCF
|
|
743 |
domains.
|
12621
|
744 |
|
|
745 |
|
|
746 |
\section{ZF}
|
|
747 |
|
|
748 |
\subsection{Type checking}
|
|
749 |
|
13024
|
750 |
The ZF logic is essentially untyped, so the concept of ``type checking'' is
|
|
751 |
performed as logical reasoning about set-membership statements. A special
|
|
752 |
method assists users in this task; a version of this is already declared as a
|
13041
|
753 |
``solver'' in the standard Simplifier setup.
|
13024
|
754 |
|
|
755 |
\indexisarcmd{print-tcset}\indexisaratt{typecheck}\indexisaratt{TC}
|
|
756 |
|
|
757 |
\begin{matharray}{rcl}
|
|
758 |
\isarcmd{print_tcset}^* & : & \isarkeep{theory~|~proof} \\
|
|
759 |
typecheck & : & \isarmeth \\
|
|
760 |
TC & : & \isaratt \\
|
|
761 |
\end{matharray}
|
|
762 |
|
|
763 |
\begin{rail}
|
|
764 |
'TC' (() | 'add' | 'del')
|
|
765 |
;
|
|
766 |
\end{rail}
|
|
767 |
|
|
768 |
\begin{descr}
|
|
769 |
|
|
770 |
\item [$\isarcmd{print_tcset}$] prints the collection of typechecking rules of
|
|
771 |
the current context.
|
|
772 |
|
|
773 |
Note that the component built into the Simplifier only knows about those
|
|
774 |
rules being declared globally in the theory!
|
|
775 |
|
|
776 |
\item [$typecheck$] attempts to solve any pending type-checking problems in
|
|
777 |
subgoals.
|
|
778 |
|
|
779 |
\item [$TC$] adds or deletes type-checking rules from the context.
|
|
780 |
|
|
781 |
\end{descr}
|
|
782 |
|
|
783 |
|
|
784 |
\subsection{(Co)Inductive sets and datatypes}
|
|
785 |
|
|
786 |
\subsubsection{Set definitions}
|
|
787 |
|
|
788 |
In ZF everything is a set. The generic inductive package also provides a
|
|
789 |
specific view for ``datatype'' specifications. Coinductive definitions are
|
13041
|
790 |
available in both cases, too.
|
13024
|
791 |
|
|
792 |
\indexisarcmdof{ZF}{inductive}\indexisarcmdof{ZF}{coinductive}
|
|
793 |
\indexisarcmdof{ZF}{datatype}\indexisarcmdof{ZF}{codatatype}
|
|
794 |
\begin{matharray}{rcl}
|
|
795 |
\isarcmd{inductive} & : & \isartrans{theory}{theory} \\
|
|
796 |
\isarcmd{coinductive} & : & \isartrans{theory}{theory} \\
|
|
797 |
\isarcmd{datatype} & : & \isartrans{theory}{theory} \\
|
|
798 |
\isarcmd{codatatype} & : & \isartrans{theory}{theory} \\
|
|
799 |
\end{matharray}
|
|
800 |
|
|
801 |
\railalias{CONDEFS}{con\_defs}
|
|
802 |
\railterm{CONDEFS}
|
|
803 |
|
|
804 |
\railalias{TYPEINTROS}{type\_intros}
|
|
805 |
\railterm{TYPEINTROS}
|
|
806 |
|
|
807 |
\railalias{TYPEELIMS}{type\_elims}
|
|
808 |
\railterm{TYPEELIMS}
|
|
809 |
|
|
810 |
\begin{rail}
|
|
811 |
('inductive' | 'coinductive') domains intros hints
|
|
812 |
;
|
12621
|
813 |
|
13024
|
814 |
domains: 'domains' (term + '+') ('<=' | subseteq) term
|
|
815 |
;
|
|
816 |
intros: 'intros' (thmdecl? prop +)
|
|
817 |
;
|
|
818 |
hints: monos? condefs? typeintros? typeelims?
|
|
819 |
;
|
|
820 |
monos: ('monos' thmrefs)?
|
|
821 |
;
|
|
822 |
condefs: (CONDEFS thmrefs)?
|
|
823 |
;
|
|
824 |
typeintros: (TYPEINTROS thmrefs)?
|
|
825 |
;
|
|
826 |
typeelims: (TYPEELIMS thmrefs)?
|
|
827 |
;
|
|
828 |
\end{rail}
|
|
829 |
|
|
830 |
In the following diagram $monos$, $typeintros$, and $typeelims$ are the same
|
|
831 |
as above.
|
|
832 |
|
|
833 |
\begin{rail}
|
|
834 |
('datatype' | 'codatatype') domain? (dtspec + 'and') hints
|
|
835 |
;
|
|
836 |
|
|
837 |
domain: ('<=' | subseteq) term
|
|
838 |
;
|
|
839 |
dtspec: term '=' (con + '|')
|
|
840 |
;
|
|
841 |
con: name ('(' (term ',' +) ')')?
|
|
842 |
;
|
|
843 |
hints: monos? typeintros? typeelims?
|
|
844 |
;
|
|
845 |
\end{rail}
|
|
846 |
|
|
847 |
See \cite{isabelle-ZF} for further information on inductive definitions in
|
|
848 |
HOL, but note that this covers the old-style theory format.
|
12621
|
849 |
|
13024
|
850 |
|
|
851 |
\subsubsection{Primitive recursive functions}
|
|
852 |
|
|
853 |
\indexisarcmdof{ZF}{primrec}
|
|
854 |
\begin{matharray}{rcl}
|
|
855 |
\isarcmd{primrec} & : & \isartrans{theory}{theory} \\
|
|
856 |
\end{matharray}
|
|
857 |
|
|
858 |
\begin{rail}
|
|
859 |
'primrec' (thmdecl? prop +)
|
|
860 |
;
|
|
861 |
\end{rail}
|
|
862 |
|
|
863 |
|
13042
|
864 |
\subsubsection{Cases and induction: emulating tactic scripts}
|
13024
|
865 |
|
|
866 |
The following important tactical tools of Isabelle/ZF have been ported to
|
|
867 |
Isar. These should be never used in proper proof texts!
|
|
868 |
|
|
869 |
\indexisarmethof{ZF}{case-tac}\indexisarmethof{ZF}{induct-tac}
|
|
870 |
\indexisarmethof{ZF}{ind-cases}\indexisarcmdof{ZF}{inductive-cases}
|
|
871 |
\begin{matharray}{rcl}
|
|
872 |
case_tac^* & : & \isarmeth \\
|
|
873 |
induct_tac^* & : & \isarmeth \\
|
|
874 |
ind_cases^* & : & \isarmeth \\
|
|
875 |
\isarcmd{inductive_cases} & : & \isartrans{theory}{theory} \\
|
|
876 |
\end{matharray}
|
|
877 |
|
|
878 |
\begin{rail}
|
|
879 |
(casetac | inducttac) goalspec? name
|
|
880 |
;
|
|
881 |
indcases (prop +)
|
|
882 |
;
|
|
883 |
inductivecases (thmdecl? (prop +) + 'and')
|
|
884 |
;
|
|
885 |
\end{rail}
|
12621
|
886 |
|
13014
|
887 |
%%% Local Variables:
|
12621
|
888 |
%%% mode: latex
|
|
889 |
%%% TeX-master: "isar-ref"
|
13014
|
890 |
%%% End:
|