| 
61640
 | 
     1  | 
(* Author: Tobias Nipkow *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
section {* Unbalanced Tree as Map *}
 | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Tree_Map
  | 
| 
 | 
     6  | 
imports
  | 
| 
 | 
     7  | 
  Tree_Set
  | 
| 
 | 
     8  | 
  Map_by_Ordered
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
fun lookup :: "('a::cmp*'b) tree \<Rightarrow> 'a \<Rightarrow> 'b option" where
 | 
| 
 | 
    12  | 
"lookup Leaf x = None" |
  | 
| 
 | 
    13  | 
"lookup (Node l (a,b) r) x =
  | 
| 
 | 
    14  | 
  (case cmp x a of LT \<Rightarrow> lookup l x | GT \<Rightarrow> lookup r x | EQ \<Rightarrow> Some b)"
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
fun update :: "'a::cmp \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree \<Rightarrow> ('a*'b) tree" where
 | 
| 
 | 
    17  | 
"update x y Leaf = Node Leaf (x,y) Leaf" |
  | 
| 
 | 
    18  | 
"update x y (Node l (a,b) r) = (case cmp x a of
  | 
| 
 | 
    19  | 
   LT \<Rightarrow> Node (update x y l) (a,b) r |
  | 
| 
 | 
    20  | 
   EQ \<Rightarrow> Node l (x,y) r |
  | 
| 
 | 
    21  | 
   GT \<Rightarrow> Node l (a,b) (update x y r))"
  | 
| 
 | 
    22  | 
  | 
| 
 | 
    23  | 
fun delete :: "'a::cmp \<Rightarrow> ('a*'b) tree \<Rightarrow> ('a*'b) tree" where
 | 
| 
 | 
    24  | 
"delete x Leaf = Leaf" |
  | 
| 
 | 
    25  | 
"delete x (Node l (a,b) r) = (case cmp x a of
  | 
| 
 | 
    26  | 
  LT \<Rightarrow> Node (delete x l) (a,b) r |
  | 
| 
 | 
    27  | 
  GT \<Rightarrow> Node l (a,b) (delete x r) |
  | 
| 
 | 
    28  | 
  EQ \<Rightarrow> if r = Leaf then l else let (ab',r') = del_min r in Node l ab' r')"
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
subsection "Functional Correctness Proofs"
  | 
| 
 | 
    32  | 
  | 
| 
61790
 | 
    33  | 
lemma lookup_map_of:
  | 
| 
61640
 | 
    34  | 
  "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x"
  | 
| 
 | 
    35  | 
by (induction t) (auto simp: map_of_simps split: option.split)
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma inorder_update:
  | 
| 
 | 
    38  | 
  "sorted1(inorder t) \<Longrightarrow> inorder(update a b t) = upd_list a b (inorder t)"
  | 
| 
 | 
    39  | 
by(induction t) (auto simp: upd_list_simps)
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
lemma inorder_delete:
  | 
| 
 | 
    42  | 
  "sorted1(inorder t) \<Longrightarrow> inorder(delete x t) = del_list x (inorder t)"
  | 
| 
 | 
    43  | 
by(induction t) (auto simp: del_list_simps del_minD split: prod.splits)
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
interpretation Map_by_Ordered
  | 
| 
 | 
    46  | 
where empty = Leaf and lookup = lookup and update = update and delete = delete
  | 
| 
61686
 | 
    47  | 
and inorder = inorder and inv = "\<lambda>_. True"
  | 
| 
61640
 | 
    48  | 
proof (standard, goal_cases)
  | 
| 
 | 
    49  | 
  case 1 show ?case by simp
  | 
| 
 | 
    50  | 
next
  | 
| 
61790
 | 
    51  | 
  case 2 thus ?case by(simp add: lookup_map_of)
  | 
| 
61640
 | 
    52  | 
next
  | 
| 
 | 
    53  | 
  case 3 thus ?case by(simp add: inorder_update)
  | 
| 
 | 
    54  | 
next
  | 
| 
 | 
    55  | 
  case 4 thus ?case by(simp add: inorder_delete)
  | 
| 
61686
 | 
    56  | 
qed auto
  | 
| 
61640
 | 
    57  | 
  | 
| 
 | 
    58  | 
end
  |