| author | wenzelm | 
| Thu, 28 Aug 2008 19:29:56 +0200 | |
| changeset 28043 | 4d05f04cc671 | 
| parent 26317 | 01a98fd72eae | 
| child 31021 | 53642251a04f | 
| permissions | -rw-r--r-- | 
| 23273 | 1 | (* Title: HOL/ex/Groebner_Examples.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Amine Chaieb, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Groebner Basis Examples *}
 | |
| 7 | ||
| 8 | theory Groebner_Examples | |
| 25255 
66ee31849d13
Added example for the ideal membership problem solved by algebra
 chaieb parents: 
23581diff
changeset | 9 | imports Groebner_Basis | 
| 23273 | 10 | begin | 
| 11 | ||
| 12 | subsection {* Basic examples *}
 | |
| 13 | ||
| 14 | lemma "3 ^ 3 == (?X::'a::{number_ring,recpower})"
 | |
| 15 | by sring_norm | |
| 16 | ||
| 17 | lemma "(x - (-2))^5 == ?X::int" | |
| 18 | by sring_norm | |
| 19 | ||
| 20 | lemma "(x - (-2))^5 * (y - 78) ^ 8 == ?X::int" | |
| 21 | by sring_norm | |
| 22 | ||
| 23 | lemma "((-3) ^ (Suc (Suc (Suc 0)))) == (X::'a::{number_ring,recpower})"
 | |
| 24 | apply (simp only: power_Suc power_0) | |
| 25 | apply (simp only: comp_arith) | |
| 26 | oops | |
| 27 | ||
| 28 | lemma "((x::int) + y)^3 - 1 = (x - z)^2 - 10 \<Longrightarrow> x = z + 3 \<Longrightarrow> x = - y" | |
| 29 | by algebra | |
| 30 | ||
| 31 | lemma "(4::nat) + 4 = 3 + 5" | |
| 32 | by algebra | |
| 33 | ||
| 34 | lemma "(4::int) + 0 = 4" | |
| 35 | apply algebra? | |
| 36 | by simp | |
| 37 | ||
| 38 | lemma | |
| 39 | assumes "a * x^2 + b * x + c = (0::int)" and "d * x^2 + e * x + f = 0" | |
| 40 | shows "d^2*c^2 - 2*d*c*a*f + a^2*f^2 - e*d*b*c - e*b*a*f + a*e^2*c + f*d*b^2 = 0" | |
| 41 | using assms by algebra | |
| 42 | ||
| 43 | lemma "(x::int)^3 - x^2 - 5*x - 3 = 0 \<longleftrightarrow> (x = 3 \<or> x = -1)" | |
| 44 | by algebra | |
| 45 | ||
| 46 | theorem "x* (x\<twosuperior> - x - 5) - 3 = (0::int) \<longleftrightarrow> (x = 3 \<or> x = -1)" | |
| 47 | by algebra | |
| 48 | ||
| 23581 | 49 | lemma | 
| 50 |   fixes x::"'a::{idom,recpower,number_ring}"
 | |
| 51 | shows "x^2*y = x^2 & x*y^2 = y^2 \<longleftrightarrow> x=1 & y=1 | x=0 & y=0" | |
| 52 | by algebra | |
| 23273 | 53 | |
| 54 | subsection {* Lemmas for Lagrange's theorem *}
 | |
| 55 | ||
| 56 | definition | |
| 57 | sq :: "'a::times => 'a" where | |
| 58 | "sq x == x*x" | |
| 59 | ||
| 60 | lemma | |
| 61 |   fixes x1 :: "'a::{idom,recpower,number_ring}"
 | |
| 62 | shows | |
| 63 | "(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) = | |
| 64 | sq (x1*y1 - x2*y2 - x3*y3 - x4*y4) + | |
| 65 | sq (x1*y2 + x2*y1 + x3*y4 - x4*y3) + | |
| 66 | sq (x1*y3 - x2*y4 + x3*y1 + x4*y2) + | |
| 67 | sq (x1*y4 + x2*y3 - x3*y2 + x4*y1)" | |
| 23338 | 68 | by (algebra add: sq_def) | 
| 23273 | 69 | |
| 70 | lemma | |
| 71 |   fixes p1 :: "'a::{idom,recpower,number_ring}"
 | |
| 72 | shows | |
| 73 | "(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * | |
| 74 | (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) | |
| 75 | = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + | |
| 76 | sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) + | |
| 77 | sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) + | |
| 78 | sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) + | |
| 79 | sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) + | |
| 80 | sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) + | |
| 81 | sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) + | |
| 82 | sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)" | |
| 23338 | 83 | by (algebra add: sq_def) | 
| 23273 | 84 | |
| 85 | ||
| 86 | subsection {* Colinearity is invariant by rotation *}
 | |
| 87 | ||
| 88 | types point = "int \<times> int" | |
| 89 | ||
| 90 | definition collinear ::"point \<Rightarrow> point \<Rightarrow> point \<Rightarrow> bool" where | |
| 91 | "collinear \<equiv> \<lambda>(Ax,Ay) (Bx,By) (Cx,Cy). | |
| 92 | ((Ax - Bx) * (By - Cy) = (Ay - By) * (Bx - Cx))" | |
| 93 | ||
| 94 | lemma collinear_inv_rotation: | |
| 95 | assumes "collinear (Ax, Ay) (Bx, By) (Cx, Cy)" and "c\<twosuperior> + s\<twosuperior> = 1" | |
| 96 | shows "collinear (Ax * c - Ay * s, Ay * c + Ax * s) | |
| 97 | (Bx * c - By * s, By * c + Bx * s) (Cx * c - Cy * s, Cy * c + Cx * s)" | |
| 23338 | 98 | using assms | 
| 99 | by (algebra add: collinear_def split_def fst_conv snd_conv) | |
| 23273 | 100 | |
| 25255 
66ee31849d13
Added example for the ideal membership problem solved by algebra
 chaieb parents: 
23581diff
changeset | 101 | lemma "EX (d::int). a*y - a*x = n*d \<Longrightarrow> EX u v. a*u + n*v = 1 \<Longrightarrow> EX e. y - x = n*e" | 
| 26317 | 102 | by algebra | 
| 25255 
66ee31849d13
Added example for the ideal membership problem solved by algebra
 chaieb parents: 
23581diff
changeset | 103 | |
| 23273 | 104 | end |