| author | blanchet | 
| Thu, 05 May 2011 02:27:02 +0200 | |
| changeset 42690 | 4d29b4785f43 | 
| parent 38867 | 23af89f419bb | 
| child 43965 | 31945a5034b7 | 
| permissions | -rw-r--r-- | 
| 24127 | 1 | |
| 2 | header {* Meson test cases *}
 | |
| 3 | ||
| 4 | theory Meson_Test | |
| 5 | imports Main | |
| 6 | begin | |
| 7 | ||
| 8 | text {*
 | |
| 9 | WARNING: there are many potential conflicts between variables used | |
| 10 | below and constants declared in HOL! | |
| 11 | *} | |
| 12 | ||
| 38867 | 13 | hide_const (open) implies union inter subset sum quotient | 
| 24127 | 14 | |
| 15 | text {*
 | |
| 16 | Test data for the MESON proof procedure | |
| 17 | (Excludes the equality problems 51, 52, 56, 58) | |
| 18 | *} | |
| 19 | ||
| 20 | ||
| 21 | subsection {* Interactive examples *}
 | |
| 22 | ||
| 37777 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 23 | lemma problem_25: | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 24 | "(\<exists>x. P x) & (\<forall>x. L x --> ~ (M x & R x)) & (\<forall>x. P x --> (M x & L x)) & ((\<forall>x. P x --> Q x) | (\<exists>x. P x & R x)) --> (\<exists>x. Q x & P x)" | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 25 | apply (rule ccontr) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 26 |   ML_prf {*
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 27 |     val prem25 = Thm.assume @{cprop "\<not> ?thesis"};
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 28 |     val nnf25 = Meson.make_nnf @{context} prem25;
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 29 |     val xsko25 = Meson.skolemize @{context} nnf25;
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 30 | *} | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 31 |   apply (tactic {* cut_facts_tac [xsko25] 1 THEN REPEAT (etac exE 1) *})
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 32 |   ML_val {*
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 33 |     val [_, sko25] = #prems (#1 (Subgoal.focus @{context} 1 (#goal @{Isar.goal})));
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 34 | val clauses25 = Meson.make_clauses [sko25]; (*7 clauses*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 35 | val horns25 = Meson.make_horns clauses25; (*16 Horn clauses*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 36 | val go25 :: _ = Meson.gocls clauses25; | 
| 24127 | 37 | |
| 37777 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 38 |     Goal.prove @{context} [] [] @{prop False} (fn _ =>
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 39 | rtac go25 1 THEN | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 40 | Meson.depth_prolog_tac horns25); | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 41 | *} | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 42 | oops | 
| 24127 | 43 | |
| 37777 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 44 | lemma problem_26: | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 45 | "((\<exists>x. p x) = (\<exists>x. q x)) & (\<forall>x. \<forall>y. p x & q y --> (r x = s y)) --> ((\<forall>x. p x --> r x) = (\<forall>x. q x --> s x))" | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 46 | apply (rule ccontr) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 47 |   ML_prf {*
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 48 |     val prem26 = Thm.assume @{cprop "\<not> ?thesis"}
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 49 |     val nnf26 = Meson.make_nnf @{context} prem26;
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 50 |     val xsko26 = Meson.skolemize @{context} nnf26;
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 51 | *} | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 52 |   apply (tactic {* cut_facts_tac [xsko26] 1 THEN REPEAT (etac exE 1) *})
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 53 |   ML_val {*
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 54 |     val [_, sko26] = #prems (#1 (Subgoal.focus @{context} 1 (#goal @{Isar.goal})));
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 55 | val clauses26 = Meson.make_clauses [sko26]; (*9 clauses*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 56 | val horns26 = Meson.make_horns clauses26; (*24 Horn clauses*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 57 | val go26 :: _ = Meson.gocls clauses26; | 
| 24127 | 58 | |
| 37777 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 59 |     Goal.prove @{context} [] [] @{prop False} (fn _ =>
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 60 | rtac go26 1 THEN | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 61 | Meson.depth_prolog_tac horns26); (*7 ms*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 62 | (*Proof is of length 107!!*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 63 | *} | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 64 | oops | 
| 24127 | 65 | |
| 37777 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 66 | lemma problem_43: -- "NOW PROVED AUTOMATICALLY!!" (*16 Horn clauses*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 67 | "(\<forall>x. \<forall>y. q x y = (\<forall>z. p z x = (p z y::bool))) --> (\<forall>x. (\<forall>y. q x y = (q y x::bool)))" | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 68 | apply (rule ccontr) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 69 |   ML_prf {*
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 70 |     val prem43 = Thm.assume @{cprop "\<not> ?thesis"};
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 71 |     val nnf43 = Meson.make_nnf @{context} prem43;
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 72 |     val xsko43 = Meson.skolemize @{context} nnf43;
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 73 | *} | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 74 |   apply (tactic {* cut_facts_tac [xsko43] 1 THEN REPEAT (etac exE 1) *})
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 75 |   ML_val {*
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 76 |     val [_, sko43] = #prems (#1 (Subgoal.focus @{context} 1 (#goal @{Isar.goal})));
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 77 | val clauses43 = Meson.make_clauses [sko43]; (*6*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 78 | val horns43 = Meson.make_horns clauses43; (*16*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 79 | val go43 :: _ = Meson.gocls clauses43; | 
| 24127 | 80 | |
| 37777 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 81 |     Goal.prove @{context} [] [] @{prop False} (fn _ =>
 | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 82 | rtac go43 1 THEN | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 83 | Meson.best_prolog_tac Meson.size_of_subgoals horns43); (*7ms*) | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 84 | *} | 
| 
22107b894e5a
some modernization of really ancient Meson experiments;
 wenzelm parents: 
37595diff
changeset | 85 | oops | 
| 24127 | 86 | |
| 24128 | 87 | (* | 
| 24127 | 88 | #1 (q x xa ==> ~ q x xa) ==> q xa x | 
| 89 | #2 (q xa x ==> ~ q xa x) ==> q x xa | |
| 90 | #3 (~ q x xa ==> q x xa) ==> ~ q xa x | |
| 91 | #4 (~ q xa x ==> q xa x) ==> ~ q x xa | |
| 92 | #5 [| ~ q ?U ?V ==> q ?U ?V; ~ p ?W ?U ==> p ?W ?U |] ==> p ?W ?V | |
| 93 | #6 [| ~ p ?W ?U ==> p ?W ?U; p ?W ?V ==> ~ p ?W ?V |] ==> ~ q ?U ?V | |
| 94 | #7 [| p ?W ?V ==> ~ p ?W ?V; ~ q ?U ?V ==> q ?U ?V |] ==> ~ p ?W ?U | |
| 95 | #8 [| ~ q ?U ?V ==> q ?U ?V; ~ p ?W ?V ==> p ?W ?V |] ==> p ?W ?U | |
| 96 | #9 [| ~ p ?W ?V ==> p ?W ?V; p ?W ?U ==> ~ p ?W ?U |] ==> ~ q ?U ?V | |
| 97 | #10 [| p ?W ?U ==> ~ p ?W ?U; ~ q ?U ?V ==> q ?U ?V |] ==> ~ p ?W ?V | |
| 98 | #11 [| p (xb ?U ?V) ?U ==> ~ p (xb ?U ?V) ?U; | |
| 99 | p (xb ?U ?V) ?V ==> ~ p (xb ?U ?V) ?V |] ==> q ?U ?V | |
| 100 | #12 [| p (xb ?U ?V) ?V ==> ~ p (xb ?U ?V) ?V; q ?U ?V ==> ~ q ?U ?V |] ==> | |
| 101 | p (xb ?U ?V) ?U | |
| 102 | #13 [| q ?U ?V ==> ~ q ?U ?V; p (xb ?U ?V) ?U ==> ~ p (xb ?U ?V) ?U |] ==> | |
| 103 | p (xb ?U ?V) ?V | |
| 104 | #14 [| ~ p (xb ?U ?V) ?U ==> p (xb ?U ?V) ?U; | |
| 105 | ~ p (xb ?U ?V) ?V ==> p (xb ?U ?V) ?V |] ==> q ?U ?V | |
| 106 | #15 [| ~ p (xb ?U ?V) ?V ==> p (xb ?U ?V) ?V; q ?U ?V ==> ~ q ?U ?V |] ==> | |
| 107 | ~ p (xb ?U ?V) ?U | |
| 108 | #16 [| q ?U ?V ==> ~ q ?U ?V; ~ p (xb ?U ?V) ?U ==> p (xb ?U ?V) ?U |] ==> | |
| 109 | ~ p (xb ?U ?V) ?V | |
| 110 | ||
| 111 | And here is the proof! (Unkn is the start state after use of goal clause) | |
| 112 | [Unkn, Res ([Thm "#14"], false, 1), Res ([Thm "#5"], false, 1), | |
| 113 | Res ([Thm "#1"], false, 1), Asm 1, Res ([Thm "#13"], false, 1), Asm 2, | |
| 114 | Asm 1, Res ([Thm "#13"], false, 1), Asm 1, Res ([Thm "#10"], false, 1), | |
| 115 | Res ([Thm "#16"], false, 1), Asm 2, Asm 1, Res ([Thm "#1"], false, 1), | |
| 116 | Asm 1, Res ([Thm "#14"], false, 1), Res ([Thm "#5"], false, 1), | |
| 117 | Res ([Thm "#2"], false, 1), Asm 1, Res ([Thm "#13"], false, 1), Asm 2, | |
| 118 | Asm 1, Res ([Thm "#8"], false, 1), Res ([Thm "#2"], false, 1), Asm 1, | |
| 119 | Res ([Thm "#12"], false, 1), Asm 2, Asm 1] : lderiv list | |
| 120 | *) | |
| 121 | ||
| 122 | ||
| 123 | text {*
 | |
| 124 | MORE and MUCH HARDER test data for the MESON proof procedure | |
| 125 | (courtesy John Harrison). | |
| 126 | *} | |
| 127 | ||
| 128 | (* ========================================================================= *) | |
| 129 | (* 100 problems selected from the TPTP library *) | |
| 130 | (* ========================================================================= *) | |
| 131 | ||
| 132 | (* | |
| 133 | * Original timings for John Harrison's MESON_TAC. | |
| 134 | * Timings below on a 600MHz Pentium III (perch) | |
| 135 | * Some timings below refer to griffon, which is a dual 2.5GHz Power Mac G5. | |
| 24128 | 136 | * | 
| 24127 | 137 | * A few variable names have been changed to avoid clashing with constants. | 
| 138 | * | |
| 139 | * Changed numeric constants e.g. 0, 1, 2... to num0, num1, num2... | |
| 140 | * | |
| 141 | * Here's a list giving typical CPU times, as well as common names and | |
| 142 | * literature references. | |
| 143 | * | |
| 144 | * BOO003-1 34.6 B2 part 1 [McCharen, et al., 1976]; Lemma proved [Overbeek, et al., 1976]; prob2_part1.ver1.in [ANL] | |
| 145 | * BOO004-1 36.7 B2 part 2 [McCharen, et al., 1976]; Lemma proved [Overbeek, et al., 1976]; prob2_part2.ver1 [ANL] | |
| 146 | * BOO005-1 47.4 B3 part 1 [McCharen, et al., 1976]; B5 [McCharen, et al., 1976]; Lemma proved [Overbeek, et al., 1976]; prob3_part1.ver1.in [ANL] | |
| 147 | * BOO006-1 48.4 B3 part 2 [McCharen, et al., 1976]; B6 [McCharen, et al., 1976]; Lemma proved [Overbeek, et al., 1976]; prob3_part2.ver1 [ANL] | |
| 148 | * BOO011-1 19.0 B7 [McCharen, et al., 1976]; prob7.ver1 [ANL] | |
| 149 | * CAT001-3 45.2 C1 [McCharen, et al., 1976]; p1.ver3.in [ANL] | |
| 150 | * CAT003-3 10.5 C3 [McCharen, et al., 1976]; p3.ver3.in [ANL] | |
| 151 | * CAT005-1 480.1 C5 [McCharen, et al., 1976]; p5.ver1.in [ANL] | |
| 152 | * CAT007-1 11.9 C7 [McCharen, et al., 1976]; p7.ver1.in [ANL] | |
| 153 | * CAT018-1 81.3 p18.ver1.in [ANL] | |
| 154 | * COL001-2 16.0 C1 [Wos & McCune, 1988] | |
| 155 | * COL023-1 5.1 [McCune & Wos, 1988] | |
| 156 | * COL032-1 15.8 [McCune & Wos, 1988] | |
| 157 | * COL052-2 13.2 bird4.ver2.in [ANL] | |
| 158 | * COL075-2 116.9 [Jech, 1994] | |
| 159 | * COM001-1 1.7 shortburst [Wilson & Minker, 1976] | |
| 160 | * COM002-1 4.4 burstall [Wilson & Minker, 1976] | |
| 161 | * COM002-2 7.4 | |
| 162 | * COM003-2 22.1 [Brushi, 1991] | |
| 163 | * COM004-1 45.1 | |
| 164 | * GEO003-1 71.7 T3 [McCharen, et al., 1976]; t3.ver1.in [ANL] | |
| 165 | * GEO017-2 78.8 D4.1 [Quaife, 1989] | |
| 166 | * GEO027-3 181.5 D10.1 [Quaife, 1989] | |
| 167 | * GEO058-2 104.0 R4 [Quaife, 1989] | |
| 168 | * GEO079-1 2.4 GEOMETRY THEOREM [Slagle, 1967] | |
| 169 | * GRP001-1 47.8 CADE-11 Competition 1 [Overbeek, 1990]; G1 [McCharen, et al., 1976]; THEOREM 1 [Lusk & McCune, 1993]; wos10 [Wilson & Minker, 1976]; xsquared.ver1.in [ANL]; [Robinson, 1963] | |
| 170 | * GRP008-1 50.4 Problem 4 [Wos, 1965]; wos4 [Wilson & Minker, 1976] | |
| 171 | * GRP013-1 40.2 Problem 11 [Wos, 1965]; wos11 [Wilson & Minker, 1976] | |
| 172 | * GRP037-3 43.8 Problem 17 [Wos, 1965]; wos17 [Wilson & Minker, 1976] | |
| 173 | * GRP031-2 3.2 ls23 [Lawrence & Starkey, 1974]; ls23 [Wilson & Minker, 1976] | |
| 174 | * GRP034-4 2.5 ls26 [Lawrence & Starkey, 1974]; ls26 [Wilson & Minker, 1976] | |
| 175 | * GRP047-2 11.7 [Veroff, 1992] | |
| 176 | * GRP130-1 170.6 Bennett QG8 [TPTP]; QG8 [Slaney, 1993] | |
| 177 | * GRP156-1 48.7 ax_mono1c [Schulz, 1995] | |
| 178 | * GRP168-1 159.1 p01a [Schulz, 1995] | |
| 179 | * HEN003-3 39.9 HP3 [McCharen, et al., 1976] | |
| 180 | * HEN007-2 125.7 H7 [McCharen, et al., 1976] | |
| 181 | * HEN008-4 62.0 H8 [McCharen, et al., 1976] | |
| 182 | * HEN009-5 136.3 H9 [McCharen, et al., 1976]; hp9.ver3.in [ANL] | |
| 183 | * HEN012-3 48.5 new.ver2.in [ANL] | |
| 184 | * LCL010-1 370.9 EC-73 [McCune & Wos, 1992]; ec_yq.in [OTTER] | |
| 185 | * LCL077-2 51.6 morgan.two.ver1.in [ANL] | |
| 186 | * LCL082-1 14.6 IC-1.1 [Wos, et al., 1990]; IC-65 [McCune & Wos, 1992]; ls2 [SETHEO]; S1 [Pfenning, 1988] | |
| 187 | * LCL111-1 585.6 CADE-11 Competition 6 [Overbeek, 1990]; mv25.in [OTTER]; MV-57 [McCune & Wos, 1992]; mv.in part 2 [OTTER]; ovb6 [SETHEO]; THEOREM 6 [Lusk & McCune, 1993] | |
| 188 | * LCL143-1 10.9 Lattice structure theorem 2 [Bonacina, 1991] | |
| 189 | * LCL182-1 271.6 Problem 2.16 [Whitehead & Russell, 1927] | |
| 190 | * LCL200-1 12.0 Problem 2.46 [Whitehead & Russell, 1927] | |
| 191 | * LCL215-1 214.4 Problem 2.62 [Whitehead & Russell, 1927]; Problem 2.63 [Whitehead & Russell, 1927] | |
| 192 | * LCL230-2 0.2 Pelletier 5 [Pelletier, 1986] | |
| 193 | * LDA003-1 68.5 Problem 3 [Jech, 1993] | |
| 194 | * MSC002-1 9.2 DBABHP [Michie, et al., 1972]; DBABHP [Wilson & Minker, 1976] | |
| 195 | * MSC003-1 3.2 HASPARTS-T1 [Wilson & Minker, 1976] | |
| 196 | * MSC004-1 9.3 HASPARTS-T2 [Wilson & Minker, 1976] | |
| 197 | * MSC005-1 1.8 Problem 5.1 [Plaisted, 1982] | |
| 198 | * MSC006-1 39.0 nonob.lop [SETHEO] | |
| 199 | * NUM001-1 14.0 Chang-Lee-10a [Chang, 1970]; ls28 [Lawrence & Starkey, 1974]; ls28 [Wilson & Minker, 1976] | |
| 200 | * NUM021-1 52.3 ls65 [Lawrence & Starkey, 1974]; ls65 [Wilson & Minker, 1976] | |
| 201 | * NUM024-1 64.6 ls75 [Lawrence & Starkey, 1974]; ls75 [Wilson & Minker, 1976] | |
| 202 | * NUM180-1 621.2 LIM2.1 [Quaife] | |
| 203 | * NUM228-1 575.9 TRECDEF4 cor. [Quaife] | |
| 204 | * PLA002-1 37.4 Problem 5.7 [Plaisted, 1982] | |
| 205 | * PLA006-1 7.2 [Segre & Elkan, 1994] | |
| 206 | * PLA017-1 484.8 [Segre & Elkan, 1994] | |
| 207 | * PLA022-1 19.1 [Segre & Elkan, 1994] | |
| 208 | * PLA022-2 19.7 [Segre & Elkan, 1994] | |
| 209 | * PRV001-1 10.3 PV1 [McCharen, et al., 1976] | |
| 210 | * PRV003-1 3.9 E2 [McCharen, et al., 1976]; v2.lop [SETHEO] | |
| 211 | * PRV005-1 4.3 E4 [McCharen, et al., 1976]; v4.lop [SETHEO] | |
| 212 | * PRV006-1 6.0 E5 [McCharen, et al., 1976]; v5.lop [SETHEO] | |
| 213 | * PRV009-1 2.2 Hoares FIND [Bledsoe, 1977]; Problem 5.5 [Plaisted, 1982] | |
| 214 | * PUZ012-1 3.5 Boxes-of-fruit [Wos, 1988]; Boxes-of-fruit [Wos, et al., 1992]; boxes.ver1.in [ANL] | |
| 215 | * PUZ020-1 56.6 knightknave.in [ANL] | |
| 216 | * PUZ025-1 58.4 Problem 35 [Smullyan, 1978]; tandl35.ver1.in [ANL] | |
| 217 | * PUZ029-1 5.1 pigs.ver1.in [ANL] | |
| 218 | * RNG001-3 82.4 EX6-T? [Wilson & Minker, 1976]; ex6.lop [SETHEO]; Example 6a [Fleisig, et al., 1974]; FEX6T1 [SPRFN]; FEX6T2 [SPRFN] | |
| 219 | * RNG001-5 399.8 Problem 21 [Wos, 1965]; wos21 [Wilson & Minker, 1976] | |
| 220 | * RNG011-5 8.4 CADE-11 Competition Eq-10 [Overbeek, 1990]; PROBLEM 10 [Zhang, 1993]; THEOREM EQ-10 [Lusk & McCune, 1993] | |
| 221 | * RNG023-6 9.1 [Stevens, 1987] | |
| 222 | * RNG028-2 9.3 PROOF III [Anantharaman & Hsiang, 1990] | |
| 223 | * RNG038-2 16.2 Problem 27 [Wos, 1965]; wos27 [Wilson & Minker, 1976] | |
| 224 | * RNG040-2 180.5 Problem 29 [Wos, 1965]; wos29 [Wilson & Minker, 1976] | |
| 225 | * RNG041-1 35.8 Problem 30 [Wos, 1965]; wos30 [Wilson & Minker, 1976] | |
| 226 | * ROB010-1 205.0 Lemma 3.3 [Winker, 1990]; RA2 [Lusk & Wos, 1992] | |
| 227 | * ROB013-1 23.6 Lemma 3.5 [Winker, 1990] | |
| 228 | * ROB016-1 15.2 Corollary 3.7 [Winker, 1990] | |
| 229 | * ROB021-1 230.4 [McCune, 1992] | |
| 230 | * SET005-1 192.2 ls108 [Lawrence & Starkey, 1974]; ls108 [Wilson & Minker, 1976] | |
| 231 | * SET009-1 10.5 ls116 [Lawrence & Starkey, 1974]; ls116 [Wilson & Minker, 1976] | |
| 232 | * SET025-4 694.7 Lemma 10 [Boyer, et al, 1986] | |
| 233 | * SET046-5 2.3 p42.in [ANL]; Pelletier 42 [Pelletier, 1986] | |
| 234 | * SET047-5 3.7 p43.in [ANL]; Pelletier 43 [Pelletier, 1986] | |
| 235 | * SYN034-1 2.8 QW [Michie, et al., 1972]; QW [Wilson & Minker, 1976] | |
| 236 | * SYN071-1 1.9 Pelletier 48 [Pelletier, 1986] | |
| 237 | * SYN349-1 61.7 Ch17N5 [Tammet, 1994] | |
| 238 | * SYN352-1 5.5 Ch18N4 [Tammet, 1994] | |
| 239 | * TOP001-2 61.1 Lemma 1a [Wick & McCune, 1989] | |
| 240 | * TOP002-2 0.4 Lemma 1b [Wick & McCune, 1989] | |
| 241 | * TOP004-1 181.6 Lemma 1d [Wick & McCune, 1989] | |
| 242 | * TOP004-2 9.0 Lemma 1d [Wick & McCune, 1989] | |
| 243 | * TOP005-2 139.8 Lemma 1e [Wick & McCune, 1989] | |
| 244 | *) | |
| 245 | ||
| 24128 | 246 | abbreviation "EQU001_0_ax equal \<equiv> (\<forall>X. equal(X::'a,X)) & | 
| 247 | (\<forall>Y X. equal(X::'a,Y) --> equal(Y::'a,X)) & | |
| 24127 | 248 | (\<forall>Y X Z. equal(X::'a,Y) & equal(Y::'a,Z) --> equal(X::'a,Z))" | 
| 249 | ||
| 250 | abbreviation "BOO002_0_ax equal INVERSE multiplicative_identity | |
| 251 | additive_identity multiply product add sum \<equiv> | |
| 24128 | 252 | (\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & | 
| 253 | (\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | |
| 254 | (\<forall>Y X Z. sum(X::'a,Y,Z) --> sum(Y::'a,X,Z)) & | |
| 255 | (\<forall>Y X Z. product(X::'a,Y,Z) --> product(Y::'a,X,Z)) & | |
| 256 | (\<forall>X. sum(additive_identity::'a,X,X)) & | |
| 257 | (\<forall>X. sum(X::'a,additive_identity,X)) & | |
| 258 | (\<forall>X. product(multiplicative_identity::'a,X,X)) & | |
| 259 | (\<forall>X. product(X::'a,multiplicative_identity,X)) & | |
| 260 | (\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & | |
| 261 | (\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & | |
| 262 | (\<forall>Y Z V3 X V1 V2 V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & product(V3::'a,X,V4) --> sum(V1::'a,V2,V4)) & | |
| 263 | (\<forall>Y Z V1 V2 V3 X V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(V3::'a,X,V4)) & | |
| 264 | (\<forall>Y Z X V3 V1 V2 V4. sum(X::'a,Y,V1) & sum(X::'a,Z,V2) & product(Y::'a,Z,V3) & sum(X::'a,V3,V4) --> product(V1::'a,V2,V4)) & | |
| 265 | (\<forall>Y Z V1 V2 X V3 V4. sum(X::'a,Y,V1) & sum(X::'a,Z,V2) & product(Y::'a,Z,V3) & product(V1::'a,V2,V4) --> sum(X::'a,V3,V4)) & | |
| 266 | (\<forall>Y Z V3 X V1 V2 V4. sum(Y::'a,X,V1) & sum(Z::'a,X,V2) & product(Y::'a,Z,V3) & sum(V3::'a,X,V4) --> product(V1::'a,V2,V4)) & | |
| 267 | (\<forall>Y Z V1 V2 V3 X V4. sum(Y::'a,X,V1) & sum(Z::'a,X,V2) & product(Y::'a,Z,V3) & product(V1::'a,V2,V4) --> sum(V3::'a,X,V4)) & | |
| 268 | (\<forall>X. sum(INVERSE(X),X,multiplicative_identity)) & | |
| 269 | (\<forall>X. sum(X::'a,INVERSE(X),multiplicative_identity)) & | |
| 270 | (\<forall>X. product(INVERSE(X),X,additive_identity)) & | |
| 271 | (\<forall>X. product(X::'a,INVERSE(X),additive_identity)) & | |
| 272 | (\<forall>X Y U V. sum(X::'a,Y,U) & sum(X::'a,Y,V) --> equal(U::'a,V)) & | |
| 24127 | 273 | (\<forall>X Y U V. product(X::'a,Y,U) & product(X::'a,Y,V) --> equal(U::'a,V))" | 
| 274 | ||
| 275 | abbreviation "BOO002_0_eq INVERSE multiply add product sum equal \<equiv> | |
| 24128 | 276 | (\<forall>X Y W Z. equal(X::'a,Y) & sum(X::'a,W,Z) --> sum(Y::'a,W,Z)) & | 
| 277 | (\<forall>X W Y Z. equal(X::'a,Y) & sum(W::'a,X,Z) --> sum(W::'a,Y,Z)) & | |
| 278 | (\<forall>X W Z Y. equal(X::'a,Y) & sum(W::'a,Z,X) --> sum(W::'a,Z,Y)) & | |
| 279 | (\<forall>X Y W Z. equal(X::'a,Y) & product(X::'a,W,Z) --> product(Y::'a,W,Z)) & | |
| 280 | (\<forall>X W Y Z. equal(X::'a,Y) & product(W::'a,X,Z) --> product(W::'a,Y,Z)) & | |
| 281 | (\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y)) & | |
| 282 | (\<forall>X Y W. equal(X::'a,Y) --> equal(add(X::'a,W),add(Y::'a,W))) & | |
| 283 | (\<forall>X W Y. equal(X::'a,Y) --> equal(add(W::'a,X),add(W::'a,Y))) & | |
| 284 | (\<forall>X Y W. equal(X::'a,Y) --> equal(multiply(X::'a,W),multiply(Y::'a,W))) & | |
| 285 | (\<forall>X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & | |
| 24127 | 286 | (\<forall>X Y. equal(X::'a,Y) --> equal(INVERSE(X),INVERSE(Y)))" | 
| 287 | ||
| 288 | (*51194 inferences so far. Searching to depth 13. 232.9 secs*) | |
| 289 | lemma BOO003_1: | |
| 290 | "EQU001_0_ax equal & | |
| 291 | BOO002_0_ax equal INVERSE multiplicative_identity additive_identity multiply product add sum & | |
| 292 | BOO002_0_eq INVERSE multiply add product sum equal & | |
| 293 | (~product(x::'a,x,x)) --> False" | |
| 294 | oops | |
| 295 | ||
| 296 | (*51194 inferences so far. Searching to depth 13. 204.6 secs | |
| 297 | Strange! The previous problem also has 51194 inferences at depth 13. They | |
| 298 | must be very similar!*) | |
| 299 | lemma BOO004_1: | |
| 300 | "EQU001_0_ax equal & | |
| 301 | BOO002_0_ax equal INVERSE multiplicative_identity additive_identity multiply product add sum & | |
| 302 | BOO002_0_eq INVERSE multiply add product sum equal & | |
| 303 | (~sum(x::'a,x,x)) --> False" | |
| 304 | oops | |
| 305 | ||
| 306 | (*74799 inferences so far. Searching to depth 13. 290.0 secs*) | |
| 307 | lemma BOO005_1: | |
| 308 | "EQU001_0_ax equal & | |
| 309 | BOO002_0_ax equal INVERSE multiplicative_identity additive_identity multiply product add sum & | |
| 310 | BOO002_0_eq INVERSE multiply add product sum equal & | |
| 311 | (~sum(x::'a,multiplicative_identity,multiplicative_identity)) --> False" | |
| 312 | oops | |
| 313 | ||
| 314 | (*74799 inferences so far. Searching to depth 13. 314.6 secs*) | |
| 315 | lemma BOO006_1: | |
| 316 | "EQU001_0_ax equal & | |
| 317 | BOO002_0_ax equal INVERSE multiplicative_identity additive_identity multiply product add sum & | |
| 318 | BOO002_0_eq INVERSE multiply add product sum equal & | |
| 319 | (~product(x::'a,additive_identity,additive_identity)) --> False" | |
| 320 | oops | |
| 321 | ||
| 322 | (*5 inferences so far. Searching to depth 5. 1.3 secs*) | |
| 323 | lemma BOO011_1: | |
| 324 | "EQU001_0_ax equal & | |
| 325 | BOO002_0_ax equal INVERSE multiplicative_identity additive_identity multiply product add sum & | |
| 326 | BOO002_0_eq INVERSE multiply add product sum equal & | |
| 327 | (~equal(INVERSE(additive_identity),multiplicative_identity)) --> False" | |
| 328 | by meson | |
| 329 | ||
| 330 | abbreviation "CAT003_0_ax f1 compos codomain domain equal there_exists equivalent \<equiv> | |
| 24128 | 331 | (\<forall>Y X. equivalent(X::'a,Y) --> there_exists(X)) & | 
| 332 | (\<forall>X Y. equivalent(X::'a,Y) --> equal(X::'a,Y)) & | |
| 333 | (\<forall>X Y. there_exists(X) & equal(X::'a,Y) --> equivalent(X::'a,Y)) & | |
| 334 | (\<forall>X. there_exists(domain(X)) --> there_exists(X)) & | |
| 335 | (\<forall>X. there_exists(codomain(X)) --> there_exists(X)) & | |
| 336 | (\<forall>Y X. there_exists(compos(X::'a,Y)) --> there_exists(domain(X))) & | |
| 337 | (\<forall>X Y. there_exists(compos(X::'a,Y)) --> equal(domain(X),codomain(Y))) & | |
| 338 | (\<forall>X Y. there_exists(domain(X)) & equal(domain(X),codomain(Y)) --> there_exists(compos(X::'a,Y))) & | |
| 339 | (\<forall>X Y Z. equal(compos(X::'a,compos(Y::'a,Z)),compos(compos(X::'a,Y),Z))) & | |
| 340 | (\<forall>X. equal(compos(X::'a,domain(X)),X)) & | |
| 341 | (\<forall>X. equal(compos(codomain(X),X),X)) & | |
| 342 | (\<forall>X Y. equivalent(X::'a,Y) --> there_exists(Y)) & | |
| 343 | (\<forall>X Y. there_exists(X) & there_exists(Y) & equal(X::'a,Y) --> equivalent(X::'a,Y)) & | |
| 344 | (\<forall>Y X. there_exists(compos(X::'a,Y)) --> there_exists(codomain(X))) & | |
| 345 | (\<forall>X Y. there_exists(f1(X::'a,Y)) | equal(X::'a,Y)) & | |
| 346 | (\<forall>X Y. equal(X::'a,f1(X::'a,Y)) | equal(Y::'a,f1(X::'a,Y)) | equal(X::'a,Y)) & | |
| 24127 | 347 | (\<forall>X Y. equal(X::'a,f1(X::'a,Y)) & equal(Y::'a,f1(X::'a,Y)) --> equal(X::'a,Y))" | 
| 348 | ||
| 349 | abbreviation "CAT003_0_eq f1 compos codomain domain equivalent there_exists equal \<equiv> | |
| 24128 | 350 | (\<forall>X Y. equal(X::'a,Y) & there_exists(X) --> there_exists(Y)) & | 
| 351 | (\<forall>X Y Z. equal(X::'a,Y) & equivalent(X::'a,Z) --> equivalent(Y::'a,Z)) & | |
| 352 | (\<forall>X Z Y. equal(X::'a,Y) & equivalent(Z::'a,X) --> equivalent(Z::'a,Y)) & | |
| 353 | (\<forall>X Y. equal(X::'a,Y) --> equal(domain(X),domain(Y))) & | |
| 354 | (\<forall>X Y. equal(X::'a,Y) --> equal(codomain(X),codomain(Y))) & | |
| 355 | (\<forall>X Y Z. equal(X::'a,Y) --> equal(compos(X::'a,Z),compos(Y::'a,Z))) & | |
| 356 | (\<forall>X Z Y. equal(X::'a,Y) --> equal(compos(Z::'a,X),compos(Z::'a,Y))) & | |
| 357 | (\<forall>A B C. equal(A::'a,B) --> equal(f1(A::'a,C),f1(B::'a,C))) & | |
| 24127 | 358 | (\<forall>D F' E. equal(D::'a,E) --> equal(f1(F'::'a,D),f1(F'::'a,E)))" | 
| 359 | ||
| 360 | (*4007 inferences so far. Searching to depth 9. 13 secs*) | |
| 361 | lemma CAT001_3: | |
| 362 | "EQU001_0_ax equal & | |
| 363 | CAT003_0_ax f1 compos codomain domain equal there_exists equivalent & | |
| 364 | CAT003_0_eq f1 compos codomain domain equivalent there_exists equal & | |
| 24128 | 365 | (there_exists(compos(a::'a,b))) & | 
| 366 | (\<forall>Y X Z. equal(compos(compos(a::'a,b),X),Y) & equal(compos(compos(a::'a,b),Z),Y) --> equal(X::'a,Z)) & | |
| 367 | (there_exists(compos(b::'a,h))) & | |
| 368 | (equal(compos(b::'a,h),compos(b::'a,g))) & | |
| 24127 | 369 | (~equal(h::'a,g)) --> False" | 
| 370 | by meson | |
| 371 | ||
| 372 | (*245 inferences so far. Searching to depth 7. 1.0 secs*) | |
| 373 | lemma CAT003_3: | |
| 374 | "EQU001_0_ax equal & | |
| 375 | CAT003_0_ax f1 compos codomain domain equal there_exists equivalent & | |
| 376 | CAT003_0_eq f1 compos codomain domain equivalent there_exists equal & | |
| 24128 | 377 | (there_exists(compos(a::'a,b))) & | 
| 378 | (\<forall>Y X Z. equal(compos(X::'a,compos(a::'a,b)),Y) & equal(compos(Z::'a,compos(a::'a,b)),Y) --> equal(X::'a,Z)) & | |
| 379 | (there_exists(h)) & | |
| 380 | (equal(compos(h::'a,a),compos(g::'a,a))) & | |
| 24127 | 381 | (~equal(g::'a,h)) --> False" | 
| 382 | by meson | |
| 383 | ||
| 384 | abbreviation "CAT001_0_ax equal codomain domain identity_map compos product defined \<equiv> | |
| 24128 | 385 | (\<forall>X Y. defined(X::'a,Y) --> product(X::'a,Y,compos(X::'a,Y))) & | 
| 386 | (\<forall>Z X Y. product(X::'a,Y,Z) --> defined(X::'a,Y)) & | |
| 387 | (\<forall>X Xy Y Z. product(X::'a,Y,Xy) & defined(Xy::'a,Z) --> defined(Y::'a,Z)) & | |
| 388 | (\<forall>Y Xy Z X Yz. product(X::'a,Y,Xy) & product(Y::'a,Z,Yz) & defined(Xy::'a,Z) --> defined(X::'a,Yz)) & | |
| 389 | (\<forall>Xy Y Z X Yz Xyz. product(X::'a,Y,Xy) & product(Xy::'a,Z,Xyz) & product(Y::'a,Z,Yz) --> product(X::'a,Yz,Xyz)) & | |
| 390 | (\<forall>Z Yz X Y. product(Y::'a,Z,Yz) & defined(X::'a,Yz) --> defined(X::'a,Y)) & | |
| 391 | (\<forall>Y X Yz Xy Z. product(Y::'a,Z,Yz) & product(X::'a,Y,Xy) & defined(X::'a,Yz) --> defined(Xy::'a,Z)) & | |
| 392 | (\<forall>Yz X Y Xy Z Xyz. product(Y::'a,Z,Yz) & product(X::'a,Yz,Xyz) & product(X::'a,Y,Xy) --> product(Xy::'a,Z,Xyz)) & | |
| 393 | (\<forall>Y X Z. defined(X::'a,Y) & defined(Y::'a,Z) & identity_map(Y) --> defined(X::'a,Z)) & | |
| 394 | (\<forall>X. identity_map(domain(X))) & | |
| 395 | (\<forall>X. identity_map(codomain(X))) & | |
| 396 | (\<forall>X. defined(X::'a,domain(X))) & | |
| 397 | (\<forall>X. defined(codomain(X),X)) & | |
| 398 | (\<forall>X. product(X::'a,domain(X),X)) & | |
| 399 | (\<forall>X. product(codomain(X),X,X)) & | |
| 400 | (\<forall>X Y. defined(X::'a,Y) & identity_map(X) --> product(X::'a,Y,Y)) & | |
| 401 | (\<forall>Y X. defined(X::'a,Y) & identity_map(Y) --> product(X::'a,Y,X)) & | |
| 24127 | 402 | (\<forall>X Y Z W. product(X::'a,Y,Z) & product(X::'a,Y,W) --> equal(Z::'a,W))" | 
| 403 | ||
| 404 | abbreviation "CAT001_0_eq compos defined identity_map codomain domain product equal \<equiv> | |
| 24128 | 405 | (\<forall>X Y Z W. equal(X::'a,Y) & product(X::'a,Z,W) --> product(Y::'a,Z,W)) & | 
| 406 | (\<forall>X Z Y W. equal(X::'a,Y) & product(Z::'a,X,W) --> product(Z::'a,Y,W)) & | |
| 407 | (\<forall>X Z W Y. equal(X::'a,Y) & product(Z::'a,W,X) --> product(Z::'a,W,Y)) & | |
| 408 | (\<forall>X Y. equal(X::'a,Y) --> equal(domain(X),domain(Y))) & | |
| 409 | (\<forall>X Y. equal(X::'a,Y) --> equal(codomain(X),codomain(Y))) & | |
| 410 | (\<forall>X Y. equal(X::'a,Y) & identity_map(X) --> identity_map(Y)) & | |
| 411 | (\<forall>X Y Z. equal(X::'a,Y) & defined(X::'a,Z) --> defined(Y::'a,Z)) & | |
| 412 | (\<forall>X Z Y. equal(X::'a,Y) & defined(Z::'a,X) --> defined(Z::'a,Y)) & | |
| 413 | (\<forall>X Z Y. equal(X::'a,Y) --> equal(compos(Z::'a,X),compos(Z::'a,Y))) & | |
| 24127 | 414 | (\<forall>X Y Z. equal(X::'a,Y) --> equal(compos(X::'a,Z),compos(Y::'a,Z)))" | 
| 415 | ||
| 416 | (*54288 inferences so far. Searching to depth 14. 118.0 secs*) | |
| 417 | lemma CAT005_1: | |
| 418 | "EQU001_0_ax equal & | |
| 419 | CAT001_0_ax equal codomain domain identity_map compos product defined & | |
| 420 | CAT001_0_eq compos defined identity_map codomain domain product equal & | |
| 24128 | 421 | (defined(a::'a,d)) & | 
| 422 | (identity_map(d)) & | |
| 24127 | 423 | (~equal(domain(a),d)) --> False" | 
| 424 | oops | |
| 425 | ||
| 426 | (*1728 inferences so far. Searching to depth 10. 5.8 secs*) | |
| 427 | lemma CAT007_1: | |
| 428 | "EQU001_0_ax equal & | |
| 429 | CAT001_0_ax equal codomain domain identity_map compos product defined & | |
| 430 | CAT001_0_eq compos defined identity_map codomain domain product equal & | |
| 24128 | 431 | (equal(domain(a),codomain(b))) & | 
| 24127 | 432 | (~defined(a::'a,b)) --> False" | 
| 433 | by meson | |
| 434 | ||
| 435 | (*82895 inferences so far. Searching to depth 13. 355 secs*) | |
| 436 | lemma CAT018_1: | |
| 437 | "EQU001_0_ax equal & | |
| 438 | CAT001_0_ax equal codomain domain identity_map compos product defined & | |
| 439 | CAT001_0_eq compos defined identity_map codomain domain product equal & | |
| 24128 | 440 | (defined(a::'a,b)) & | 
| 441 | (defined(b::'a,c)) & | |
| 24127 | 442 | (~defined(a::'a,compos(b::'a,c))) --> False" | 
| 443 | oops | |
| 444 | ||
| 445 | (*1118 inferences so far. Searching to depth 8. 2.3 secs*) | |
| 446 | lemma COL001_2: | |
| 447 | "EQU001_0_ax equal & | |
| 24128 | 448 | (\<forall>X Y Z. equal(apply(apply(apply(s::'a,X),Y),Z),apply(apply(X::'a,Z),apply(Y::'a,Z)))) & | 
| 449 | (\<forall>Y X. equal(apply(apply(k::'a,X),Y),X)) & | |
| 450 | (\<forall>X Y Z. equal(apply(apply(apply(b::'a,X),Y),Z),apply(X::'a,apply(Y::'a,Z)))) & | |
| 451 | (\<forall>X. equal(apply(i::'a,X),X)) & | |
| 452 | (\<forall>A B C. equal(A::'a,B) --> equal(apply(A::'a,C),apply(B::'a,C))) & | |
| 453 | (\<forall>D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & | |
| 454 | (\<forall>X. equal(apply(apply(apply(s::'a,apply(b::'a,X)),i),apply(apply(s::'a,apply(b::'a,X)),i)),apply(x::'a,apply(apply(apply(s::'a,apply(b::'a,X)),i),apply(apply(s::'a,apply(b::'a,X)),i))))) & | |
| 24127 | 455 | (\<forall>Y. ~equal(Y::'a,apply(combinator::'a,Y))) --> False" | 
| 456 | by meson | |
| 457 | ||
| 458 | (*500 inferences so far. Searching to depth 8. 0.9 secs*) | |
| 459 | lemma COL023_1: | |
| 460 | "EQU001_0_ax equal & | |
| 24128 | 461 | (\<forall>X Y Z. equal(apply(apply(apply(b::'a,X),Y),Z),apply(X::'a,apply(Y::'a,Z)))) & | 
| 462 | (\<forall>X Y Z. equal(apply(apply(apply(n::'a,X),Y),Z),apply(apply(apply(X::'a,Z),Y),Z))) & | |
| 463 | (\<forall>A B C. equal(A::'a,B) --> equal(apply(A::'a,C),apply(B::'a,C))) & | |
| 464 | (\<forall>D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & | |
| 24127 | 465 | (\<forall>Y. ~equal(Y::'a,apply(combinator::'a,Y))) --> False" | 
| 466 | by meson | |
| 467 | ||
| 468 | (*3018 inferences so far. Searching to depth 10. 4.3 secs*) | |
| 469 | lemma COL032_1: | |
| 470 | "EQU001_0_ax equal & | |
| 24128 | 471 | (\<forall>X. equal(apply(m::'a,X),apply(X::'a,X))) & | 
| 472 | (\<forall>Y X Z. equal(apply(apply(apply(q::'a,X),Y),Z),apply(Y::'a,apply(X::'a,Z)))) & | |
| 473 | (\<forall>A B C. equal(A::'a,B) --> equal(apply(A::'a,C),apply(B::'a,C))) & | |
| 474 | (\<forall>D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & | |
| 475 | (\<forall>G H. equal(G::'a,H) --> equal(f(G),f(H))) & | |
| 24127 | 476 | (\<forall>Y. ~equal(apply(Y::'a,f(Y)),apply(f(Y),apply(Y::'a,f(Y))))) --> False" | 
| 477 | by meson | |
| 478 | ||
| 479 | (*381878 inferences so far. Searching to depth 13. 670.4 secs*) | |
| 480 | lemma COL052_2: | |
| 481 | "EQU001_0_ax equal & | |
| 24128 | 482 | (\<forall>X Y W. equal(response(compos(X::'a,Y),W),response(X::'a,response(Y::'a,W)))) & | 
| 483 | (\<forall>X Y. agreeable(X) --> equal(response(X::'a,common_bird(Y)),response(Y::'a,common_bird(Y)))) & | |
| 484 | (\<forall>Z X. equal(response(X::'a,Z),response(compatible(X),Z)) --> agreeable(X)) & | |
| 485 | (\<forall>A B. equal(A::'a,B) --> equal(common_bird(A),common_bird(B))) & | |
| 486 | (\<forall>C D. equal(C::'a,D) --> equal(compatible(C),compatible(D))) & | |
| 487 | (\<forall>Q R. equal(Q::'a,R) & agreeable(Q) --> agreeable(R)) & | |
| 488 | (\<forall>A B C. equal(A::'a,B) --> equal(compos(A::'a,C),compos(B::'a,C))) & | |
| 489 | (\<forall>D F' E. equal(D::'a,E) --> equal(compos(F'::'a,D),compos(F'::'a,E))) & | |
| 490 | (\<forall>G H I'. equal(G::'a,H) --> equal(response(G::'a,I'),response(H::'a,I'))) & | |
| 491 | (\<forall>J L K'. equal(J::'a,K') --> equal(response(L::'a,J),response(L::'a,K'))) & | |
| 492 | (agreeable(c)) & | |
| 493 | (~agreeable(a)) & | |
| 24127 | 494 | (equal(c::'a,compos(a::'a,b))) --> False" | 
| 495 | oops | |
| 496 | ||
| 497 | (*13201 inferences so far. Searching to depth 11. 31.9 secs*) | |
| 498 | lemma COL075_2: | |
| 24128 | 499 | "EQU001_0_ax equal & | 
| 500 | (\<forall>Y X. equal(apply(apply(k::'a,X),Y),X)) & | |
| 501 | (\<forall>X Y Z. equal(apply(apply(apply(abstraction::'a,X),Y),Z),apply(apply(X::'a,apply(k::'a,Z)),apply(Y::'a,Z)))) & | |
| 502 | (\<forall>D E F'. equal(D::'a,E) --> equal(apply(D::'a,F'),apply(E::'a,F'))) & | |
| 503 | (\<forall>G I' H. equal(G::'a,H) --> equal(apply(I'::'a,G),apply(I'::'a,H))) & | |
| 504 | (\<forall>A B. equal(A::'a,B) --> equal(b(A),b(B))) & | |
| 505 | (\<forall>C D. equal(C::'a,D) --> equal(c(C),c(D))) & | |
| 24127 | 506 | (\<forall>Y. ~equal(apply(apply(Y::'a,b(Y)),c(Y)),apply(b(Y),b(Y)))) --> False" | 
| 507 | oops | |
| 508 | ||
| 509 | (*33 inferences so far. Searching to depth 7. 0.1 secs*) | |
| 510 | lemma COM001_1: | |
| 24128 | 511 | "(\<forall>Goal_state Start_state. follows(Goal_state::'a,Start_state) --> succeeds(Goal_state::'a,Start_state)) & | 
| 512 | (\<forall>Goal_state Intermediate_state Start_state. succeeds(Goal_state::'a,Intermediate_state) & succeeds(Intermediate_state::'a,Start_state) --> succeeds(Goal_state::'a,Start_state)) & | |
| 513 | (\<forall>Start_state Label Goal_state. has(Start_state::'a,goto(Label)) & labels(Label::'a,Goal_state) --> succeeds(Goal_state::'a,Start_state)) & | |
| 514 | (\<forall>Start_state Condition Goal_state. has(Start_state::'a,ifthen(Condition::'a,Goal_state)) --> succeeds(Goal_state::'a,Start_state)) & | |
| 515 | (labels(loop::'a,p3)) & | |
| 516 | (has(p3::'a,ifthen(equal(register_j::'a,n),p4))) & | |
| 517 | (has(p4::'a,goto(out))) & | |
| 518 | (follows(p5::'a,p4)) & | |
| 519 | (follows(p8::'a,p3)) & | |
| 520 | (has(p8::'a,goto(loop))) & | |
| 24127 | 521 | (~succeeds(p3::'a,p3)) --> False" | 
| 522 | by meson | |
| 523 | ||
| 524 | (*533 inferences so far. Searching to depth 13. 0.3 secs*) | |
| 525 | lemma COM002_1: | |
| 24128 | 526 | "(\<forall>Goal_state Start_state. follows(Goal_state::'a,Start_state) --> succeeds(Goal_state::'a,Start_state)) & | 
| 527 | (\<forall>Goal_state Intermediate_state Start_state. succeeds(Goal_state::'a,Intermediate_state) & succeeds(Intermediate_state::'a,Start_state) --> succeeds(Goal_state::'a,Start_state)) & | |
| 528 | (\<forall>Start_state Label Goal_state. has(Start_state::'a,goto(Label)) & labels(Label::'a,Goal_state) --> succeeds(Goal_state::'a,Start_state)) & | |
| 529 | (\<forall>Start_state Condition Goal_state. has(Start_state::'a,ifthen(Condition::'a,Goal_state)) --> succeeds(Goal_state::'a,Start_state)) & | |
| 530 | (has(p1::'a,assign(register_j::'a,num0))) & | |
| 531 | (follows(p2::'a,p1)) & | |
| 532 | (has(p2::'a,assign(register_k::'a,num1))) & | |
| 533 | (labels(loop::'a,p3)) & | |
| 534 | (follows(p3::'a,p2)) & | |
| 535 | (has(p3::'a,ifthen(equal(register_j::'a,n),p4))) & | |
| 536 | (has(p4::'a,goto(out))) & | |
| 537 | (follows(p5::'a,p4)) & | |
| 538 | (follows(p6::'a,p3)) & | |
| 539 | (has(p6::'a,assign(register_k::'a,mtimes(num2::'a,register_k)))) & | |
| 540 | (follows(p7::'a,p6)) & | |
| 541 | (has(p7::'a,assign(register_j::'a,mplus(register_j::'a,num1)))) & | |
| 542 | (follows(p8::'a,p7)) & | |
| 543 | (has(p8::'a,goto(loop))) & | |
| 24127 | 544 | (~succeeds(p3::'a,p3)) --> False" | 
| 545 | by meson | |
| 546 | ||
| 547 | (*4821 inferences so far. Searching to depth 14. 1.3 secs*) | |
| 548 | lemma COM002_2: | |
| 24128 | 549 | "(\<forall>Goal_state Start_state. ~(fails(Goal_state::'a,Start_state) & follows(Goal_state::'a,Start_state))) & | 
| 550 | (\<forall>Goal_state Intermediate_state Start_state. fails(Goal_state::'a,Start_state) --> fails(Goal_state::'a,Intermediate_state) | fails(Intermediate_state::'a,Start_state)) & | |
| 551 | (\<forall>Start_state Label Goal_state. ~(fails(Goal_state::'a,Start_state) & has(Start_state::'a,goto(Label)) & labels(Label::'a,Goal_state))) & | |
| 552 | (\<forall>Start_state Condition Goal_state. ~(fails(Goal_state::'a,Start_state) & has(Start_state::'a,ifthen(Condition::'a,Goal_state)))) & | |
| 553 | (has(p1::'a,assign(register_j::'a,num0))) & | |
| 554 | (follows(p2::'a,p1)) & | |
| 555 | (has(p2::'a,assign(register_k::'a,num1))) & | |
| 556 | (labels(loop::'a,p3)) & | |
| 557 | (follows(p3::'a,p2)) & | |
| 558 | (has(p3::'a,ifthen(equal(register_j::'a,n),p4))) & | |
| 559 | (has(p4::'a,goto(out))) & | |
| 560 | (follows(p5::'a,p4)) & | |
| 561 | (follows(p6::'a,p3)) & | |
| 562 | (has(p6::'a,assign(register_k::'a,mtimes(num2::'a,register_k)))) & | |
| 563 | (follows(p7::'a,p6)) & | |
| 564 | (has(p7::'a,assign(register_j::'a,mplus(register_j::'a,num1)))) & | |
| 565 | (follows(p8::'a,p7)) & | |
| 566 | (has(p8::'a,goto(loop))) & | |
| 24127 | 567 | (fails(p3::'a,p3)) --> False" | 
| 568 | by meson | |
| 569 | ||
| 570 | (*98 inferences so far. Searching to depth 10. 1.1 secs*) | |
| 571 | lemma COM003_2: | |
| 24128 | 572 | "(\<forall>X Y Z. program_decides(X) & program(Y) --> decides(X::'a,Y,Z)) & | 
| 573 | (\<forall>X. program_decides(X) | program(f2(X))) & | |
| 574 | (\<forall>X. decides(X::'a,f2(X),f1(X)) --> program_decides(X)) & | |
| 575 | (\<forall>X. program_program_decides(X) --> program(X)) & | |
| 576 | (\<forall>X. program_program_decides(X) --> program_decides(X)) & | |
| 577 | (\<forall>X. program(X) & program_decides(X) --> program_program_decides(X)) & | |
| 578 | (\<forall>X. algorithm_program_decides(X) --> algorithm(X)) & | |
| 579 | (\<forall>X. algorithm_program_decides(X) --> program_decides(X)) & | |
| 580 | (\<forall>X. algorithm(X) & program_decides(X) --> algorithm_program_decides(X)) & | |
| 581 | (\<forall>Y X. program_halts2(X::'a,Y) --> program(X)) & | |
| 582 | (\<forall>X Y. program_halts2(X::'a,Y) --> halts2(X::'a,Y)) & | |
| 583 | (\<forall>X Y. program(X) & halts2(X::'a,Y) --> program_halts2(X::'a,Y)) & | |
| 584 | (\<forall>W X Y Z. halts3_outputs(X::'a,Y,Z,W) --> halts3(X::'a,Y,Z)) & | |
| 585 | (\<forall>Y Z X W. halts3_outputs(X::'a,Y,Z,W) --> outputs(X::'a,W)) & | |
| 586 | (\<forall>Y Z X W. halts3(X::'a,Y,Z) & outputs(X::'a,W) --> halts3_outputs(X::'a,Y,Z,W)) & | |
| 587 | (\<forall>Y X. program_not_halts2(X::'a,Y) --> program(X)) & | |
| 588 | (\<forall>X Y. ~(program_not_halts2(X::'a,Y) & halts2(X::'a,Y))) & | |
| 589 | (\<forall>X Y. program(X) --> program_not_halts2(X::'a,Y) | halts2(X::'a,Y)) & | |
| 590 | (\<forall>W X Y. halts2_outputs(X::'a,Y,W) --> halts2(X::'a,Y)) & | |
| 591 | (\<forall>Y X W. halts2_outputs(X::'a,Y,W) --> outputs(X::'a,W)) & | |
| 592 | (\<forall>Y X W. halts2(X::'a,Y) & outputs(X::'a,W) --> halts2_outputs(X::'a,Y,W)) & | |
| 593 | (\<forall>X W Y Z. program_halts2_halts3_outputs(X::'a,Y,Z,W) --> program_halts2(Y::'a,Z)) & | |
| 594 | (\<forall>X Y Z W. program_halts2_halts3_outputs(X::'a,Y,Z,W) --> halts3_outputs(X::'a,Y,Z,W)) & | |
| 595 | (\<forall>X Y Z W. program_halts2(Y::'a,Z) & halts3_outputs(X::'a,Y,Z,W) --> program_halts2_halts3_outputs(X::'a,Y,Z,W)) & | |
| 596 | (\<forall>X W Y Z. program_not_halts2_halts3_outputs(X::'a,Y,Z,W) --> program_not_halts2(Y::'a,Z)) & | |
| 597 | (\<forall>X Y Z W. program_not_halts2_halts3_outputs(X::'a,Y,Z,W) --> halts3_outputs(X::'a,Y,Z,W)) & | |
| 598 | (\<forall>X Y Z W. program_not_halts2(Y::'a,Z) & halts3_outputs(X::'a,Y,Z,W) --> program_not_halts2_halts3_outputs(X::'a,Y,Z,W)) & | |
| 599 | (\<forall>X W Y. program_halts2_halts2_outputs(X::'a,Y,W) --> program_halts2(Y::'a,Y)) & | |
| 600 | (\<forall>X Y W. program_halts2_halts2_outputs(X::'a,Y,W) --> halts2_outputs(X::'a,Y,W)) & | |
| 601 | (\<forall>X Y W. program_halts2(Y::'a,Y) & halts2_outputs(X::'a,Y,W) --> program_halts2_halts2_outputs(X::'a,Y,W)) & | |
| 602 | (\<forall>X W Y. program_not_halts2_halts2_outputs(X::'a,Y,W) --> program_not_halts2(Y::'a,Y)) & | |
| 603 | (\<forall>X Y W. program_not_halts2_halts2_outputs(X::'a,Y,W) --> halts2_outputs(X::'a,Y,W)) & | |
| 604 | (\<forall>X Y W. program_not_halts2(Y::'a,Y) & halts2_outputs(X::'a,Y,W) --> program_not_halts2_halts2_outputs(X::'a,Y,W)) & | |
| 605 | (\<forall>X. algorithm_program_decides(X) --> program_program_decides(c1)) & | |
| 606 | (\<forall>W Y Z. program_program_decides(W) --> program_halts2_halts3_outputs(W::'a,Y,Z,good)) & | |
| 607 | (\<forall>W Y Z. program_program_decides(W) --> program_not_halts2_halts3_outputs(W::'a,Y,Z,bad)) & | |
| 608 | (\<forall>W. program(W) & program_halts2_halts3_outputs(W::'a,f3(W),f3(W),good) & program_not_halts2_halts3_outputs(W::'a,f3(W),f3(W),bad) --> program(c2)) & | |
| 609 | (\<forall>W Y. program(W) & program_halts2_halts3_outputs(W::'a,f3(W),f3(W),good) & program_not_halts2_halts3_outputs(W::'a,f3(W),f3(W),bad) --> program_halts2_halts2_outputs(c2::'a,Y,good)) & | |
| 610 | (\<forall>W Y. program(W) & program_halts2_halts3_outputs(W::'a,f3(W),f3(W),good) & program_not_halts2_halts3_outputs(W::'a,f3(W),f3(W),bad) --> program_not_halts2_halts2_outputs(c2::'a,Y,bad)) & | |
| 611 | (\<forall>V. program(V) & program_halts2_halts2_outputs(V::'a,f4(V),good) & program_not_halts2_halts2_outputs(V::'a,f4(V),bad) --> program(c3)) & | |
| 612 | (\<forall>V Y. program(V) & program_halts2_halts2_outputs(V::'a,f4(V),good) & program_not_halts2_halts2_outputs(V::'a,f4(V),bad) & program_halts2(Y::'a,Y) --> halts2(c3::'a,Y)) & | |
| 613 | (\<forall>V Y. program(V) & program_halts2_halts2_outputs(V::'a,f4(V),good) & program_not_halts2_halts2_outputs(V::'a,f4(V),bad) --> program_not_halts2_halts2_outputs(c3::'a,Y,bad)) & | |
| 24127 | 614 | (algorithm_program_decides(c4)) --> False" | 
| 615 | by meson | |
| 616 | ||
| 24128 | 617 | (*2100398 inferences so far. Searching to depth 12. | 
| 24127 | 618 | 1256s (21 mins) on griffon*) | 
| 619 | lemma COM004_1: | |
| 24128 | 620 | "EQU001_0_ax equal & | 
| 621 | (\<forall>C D P Q X Y. failure_node(X::'a,or(C::'a,P)) & failure_node(Y::'a,or(D::'a,Q)) & contradictory(P::'a,Q) & siblings(X::'a,Y) --> failure_node(parent_of(X::'a,Y),or(C::'a,D))) & | |
| 622 | (\<forall>X. contradictory(negate(X),X)) & | |
| 623 | (\<forall>X. contradictory(X::'a,negate(X))) & | |
| 624 | (\<forall>X. siblings(left_child_of(X),right_child_of(X))) & | |
| 625 | (\<forall>D E. equal(D::'a,E) --> equal(left_child_of(D),left_child_of(E))) & | |
| 626 | (\<forall>F' G. equal(F'::'a,G) --> equal(negate(F'),negate(G))) & | |
| 627 | (\<forall>H I' J. equal(H::'a,I') --> equal(or(H::'a,J),or(I'::'a,J))) & | |
| 628 | (\<forall>K' M L. equal(K'::'a,L) --> equal(or(M::'a,K'),or(M::'a,L))) & | |
| 629 | (\<forall>N O' P. equal(N::'a,O') --> equal(parent_of(N::'a,P),parent_of(O'::'a,P))) & | |
| 630 | (\<forall>Q S' R. equal(Q::'a,R) --> equal(parent_of(S'::'a,Q),parent_of(S'::'a,R))) & | |
| 631 | (\<forall>T' U. equal(T'::'a,U) --> equal(right_child_of(T'),right_child_of(U))) & | |
| 632 | (\<forall>V W X. equal(V::'a,W) & contradictory(V::'a,X) --> contradictory(W::'a,X)) & | |
| 633 | (\<forall>Y A1 Z. equal(Y::'a,Z) & contradictory(A1::'a,Y) --> contradictory(A1::'a,Z)) & | |
| 634 | (\<forall>B1 C1 D1. equal(B1::'a,C1) & failure_node(B1::'a,D1) --> failure_node(C1::'a,D1)) & | |
| 635 | (\<forall>E1 G1 F1. equal(E1::'a,F1) & failure_node(G1::'a,E1) --> failure_node(G1::'a,F1)) & | |
| 636 | (\<forall>H1 I1 J1. equal(H1::'a,I1) & siblings(H1::'a,J1) --> siblings(I1::'a,J1)) & | |
| 637 | (\<forall>K1 M1 L1. equal(K1::'a,L1) & siblings(M1::'a,K1) --> siblings(M1::'a,L1)) & | |
| 638 | (failure_node(n_left::'a,or(EMPTY::'a,atom))) & | |
| 639 | (failure_node(n_right::'a,or(EMPTY::'a,negate(atom)))) & | |
| 640 | (equal(n_left::'a,left_child_of(n))) & | |
| 641 | (equal(n_right::'a,right_child_of(n))) & | |
| 24127 | 642 | (\<forall>Z. ~failure_node(Z::'a,or(EMPTY::'a,EMPTY))) --> False" | 
| 643 | oops | |
| 644 | ||
| 645 | abbreviation "GEO001_0_ax continuous lower_dimension_point_3 lower_dimension_point_2 | |
| 646 | lower_dimension_point_1 extension euclid2 euclid1 outer_pasch equidistant equal between \<equiv> | |
| 24128 | 647 | (\<forall>X Y. between(X::'a,Y,X) --> equal(X::'a,Y)) & | 
| 648 | (\<forall>V X Y Z. between(X::'a,Y,V) & between(Y::'a,Z,V) --> between(X::'a,Y,Z)) & | |
| 649 | (\<forall>Y X V Z. between(X::'a,Y,Z) & between(X::'a,Y,V) --> equal(X::'a,Y) | between(X::'a,Z,V) | between(X::'a,V,Z)) & | |
| 650 | (\<forall>Y X. equidistant(X::'a,Y,Y,X)) & | |
| 651 | (\<forall>Z X Y. equidistant(X::'a,Y,Z,Z) --> equal(X::'a,Y)) & | |
| 652 | (\<forall>X Y Z V V2 W. equidistant(X::'a,Y,Z,V) & equidistant(X::'a,Y,V2,W) --> equidistant(Z::'a,V,V2,W)) & | |
| 653 | (\<forall>W X Z V Y. between(X::'a,W,V) & between(Y::'a,V,Z) --> between(X::'a,outer_pasch(W::'a,X,Y,Z,V),Y)) & | |
| 654 | (\<forall>W X Y Z V. between(X::'a,W,V) & between(Y::'a,V,Z) --> between(Z::'a,W,outer_pasch(W::'a,X,Y,Z,V))) & | |
| 655 | (\<forall>W X Y Z V. between(X::'a,V,W) & between(Y::'a,V,Z) --> equal(X::'a,V) | between(X::'a,Z,euclid1(W::'a,X,Y,Z,V))) & | |
| 656 | (\<forall>W X Y Z V. between(X::'a,V,W) & between(Y::'a,V,Z) --> equal(X::'a,V) | between(X::'a,Y,euclid2(W::'a,X,Y,Z,V))) & | |
| 657 | (\<forall>W X Y Z V. between(X::'a,V,W) & between(Y::'a,V,Z) --> equal(X::'a,V) | between(euclid1(W::'a,X,Y,Z,V),W,euclid2(W::'a,X,Y,Z,V))) & | |
| 658 | (\<forall>X1 Y1 X Y Z V Z1 V1. equidistant(X::'a,Y,X1,Y1) & equidistant(Y::'a,Z,Y1,Z1) & equidistant(X::'a,V,X1,V1) & equidistant(Y::'a,V,Y1,V1) & between(X::'a,Y,Z) & between(X1::'a,Y1,Z1) --> equal(X::'a,Y) | equidistant(Z::'a,V,Z1,V1)) & | |
| 659 | (\<forall>X Y W V. between(X::'a,Y,extension(X::'a,Y,W,V))) & | |
| 660 | (\<forall>X Y W V. equidistant(Y::'a,extension(X::'a,Y,W,V),W,V)) & | |
| 661 | (~between(lower_dimension_point_1::'a,lower_dimension_point_2,lower_dimension_point_3)) & | |
| 662 | (~between(lower_dimension_point_2::'a,lower_dimension_point_3,lower_dimension_point_1)) & | |
| 663 | (~between(lower_dimension_point_3::'a,lower_dimension_point_1,lower_dimension_point_2)) & | |
| 664 | (\<forall>Z X Y W V. equidistant(X::'a,W,X,V) & equidistant(Y::'a,W,Y,V) & equidistant(Z::'a,W,Z,V) --> between(X::'a,Y,Z) | between(Y::'a,Z,X) | between(Z::'a,X,Y) | equal(W::'a,V)) & | |
| 665 | (\<forall>X Y Z X1 Z1 V. equidistant(V::'a,X,V,X1) & equidistant(V::'a,Z,V,Z1) & between(V::'a,X,Z) & between(X::'a,Y,Z) --> equidistant(V::'a,Y,Z,continuous(X::'a,Y,Z,X1,Z1,V))) & | |
| 24127 | 666 | (\<forall>X Y Z X1 V Z1. equidistant(V::'a,X,V,X1) & equidistant(V::'a,Z,V,Z1) & between(V::'a,X,Z) & between(X::'a,Y,Z) --> between(X1::'a,continuous(X::'a,Y,Z,X1,Z1,V),Z1))" | 
| 667 | ||
| 668 | abbreviation "GEO001_0_eq continuous extension euclid2 euclid1 outer_pasch equidistant | |
| 669 | between equal \<equiv> | |
| 24128 | 670 | (\<forall>X Y W Z. equal(X::'a,Y) & between(X::'a,W,Z) --> between(Y::'a,W,Z)) & | 
| 671 | (\<forall>X W Y Z. equal(X::'a,Y) & between(W::'a,X,Z) --> between(W::'a,Y,Z)) & | |
| 672 | (\<forall>X W Z Y. equal(X::'a,Y) & between(W::'a,Z,X) --> between(W::'a,Z,Y)) & | |
| 673 | (\<forall>X Y V W Z. equal(X::'a,Y) & equidistant(X::'a,V,W,Z) --> equidistant(Y::'a,V,W,Z)) & | |
| 674 | (\<forall>X V Y W Z. equal(X::'a,Y) & equidistant(V::'a,X,W,Z) --> equidistant(V::'a,Y,W,Z)) & | |
| 675 | (\<forall>X V W Y Z. equal(X::'a,Y) & equidistant(V::'a,W,X,Z) --> equidistant(V::'a,W,Y,Z)) & | |
| 676 | (\<forall>X V W Z Y. equal(X::'a,Y) & equidistant(V::'a,W,Z,X) --> equidistant(V::'a,W,Z,Y)) & | |
| 677 | (\<forall>X Y V1 V2 V3 V4. equal(X::'a,Y) --> equal(outer_pasch(X::'a,V1,V2,V3,V4),outer_pasch(Y::'a,V1,V2,V3,V4))) & | |
| 678 | (\<forall>X V1 Y V2 V3 V4. equal(X::'a,Y) --> equal(outer_pasch(V1::'a,X,V2,V3,V4),outer_pasch(V1::'a,Y,V2,V3,V4))) & | |
| 679 | (\<forall>X V1 V2 Y V3 V4. equal(X::'a,Y) --> equal(outer_pasch(V1::'a,V2,X,V3,V4),outer_pasch(V1::'a,V2,Y,V3,V4))) & | |
| 680 | (\<forall>X V1 V2 V3 Y V4. equal(X::'a,Y) --> equal(outer_pasch(V1::'a,V2,V3,X,V4),outer_pasch(V1::'a,V2,V3,Y,V4))) & | |
| 681 | (\<forall>X V1 V2 V3 V4 Y. equal(X::'a,Y) --> equal(outer_pasch(V1::'a,V2,V3,V4,X),outer_pasch(V1::'a,V2,V3,V4,Y))) & | |
| 682 | (\<forall>A B C D E F'. equal(A::'a,B) --> equal(euclid1(A::'a,C,D,E,F'),euclid1(B::'a,C,D,E,F'))) & | |
| 683 | (\<forall>G I' H J K' L. equal(G::'a,H) --> equal(euclid1(I'::'a,G,J,K',L),euclid1(I'::'a,H,J,K',L))) & | |
| 684 | (\<forall>M O' P N Q R. equal(M::'a,N) --> equal(euclid1(O'::'a,P,M,Q,R),euclid1(O'::'a,P,N,Q,R))) & | |
| 685 | (\<forall>S' U V W T' X. equal(S'::'a,T') --> equal(euclid1(U::'a,V,W,S',X),euclid1(U::'a,V,W,T',X))) & | |
| 686 | (\<forall>Y A1 B1 C1 D1 Z. equal(Y::'a,Z) --> equal(euclid1(A1::'a,B1,C1,D1,Y),euclid1(A1::'a,B1,C1,D1,Z))) & | |
| 687 | (\<forall>E1 F1 G1 H1 I1 J1. equal(E1::'a,F1) --> equal(euclid2(E1::'a,G1,H1,I1,J1),euclid2(F1::'a,G1,H1,I1,J1))) & | |
| 688 | (\<forall>K1 M1 L1 N1 O1 P1. equal(K1::'a,L1) --> equal(euclid2(M1::'a,K1,N1,O1,P1),euclid2(M1::'a,L1,N1,O1,P1))) & | |
| 689 | (\<forall>Q1 S1 T1 R1 U1 V1. equal(Q1::'a,R1) --> equal(euclid2(S1::'a,T1,Q1,U1,V1),euclid2(S1::'a,T1,R1,U1,V1))) & | |
| 690 | (\<forall>W1 Y1 Z1 A2 X1 B2. equal(W1::'a,X1) --> equal(euclid2(Y1::'a,Z1,A2,W1,B2),euclid2(Y1::'a,Z1,A2,X1,B2))) & | |
| 691 | (\<forall>C2 E2 F2 G2 H2 D2. equal(C2::'a,D2) --> equal(euclid2(E2::'a,F2,G2,H2,C2),euclid2(E2::'a,F2,G2,H2,D2))) & | |
| 692 | (\<forall>X Y V1 V2 V3. equal(X::'a,Y) --> equal(extension(X::'a,V1,V2,V3),extension(Y::'a,V1,V2,V3))) & | |
| 693 | (\<forall>X V1 Y V2 V3. equal(X::'a,Y) --> equal(extension(V1::'a,X,V2,V3),extension(V1::'a,Y,V2,V3))) & | |
| 694 | (\<forall>X V1 V2 Y V3. equal(X::'a,Y) --> equal(extension(V1::'a,V2,X,V3),extension(V1::'a,V2,Y,V3))) & | |
| 695 | (\<forall>X V1 V2 V3 Y. equal(X::'a,Y) --> equal(extension(V1::'a,V2,V3,X),extension(V1::'a,V2,V3,Y))) & | |
| 696 | (\<forall>X Y V1 V2 V3 V4 V5. equal(X::'a,Y) --> equal(continuous(X::'a,V1,V2,V3,V4,V5),continuous(Y::'a,V1,V2,V3,V4,V5))) & | |
| 697 | (\<forall>X V1 Y V2 V3 V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,X,V2,V3,V4,V5),continuous(V1::'a,Y,V2,V3,V4,V5))) & | |
| 698 | (\<forall>X V1 V2 Y V3 V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,X,V3,V4,V5),continuous(V1::'a,V2,Y,V3,V4,V5))) & | |
| 699 | (\<forall>X V1 V2 V3 Y V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,X,V4,V5),continuous(V1::'a,V2,V3,Y,V4,V5))) & | |
| 700 | (\<forall>X V1 V2 V3 V4 Y V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,X,V5),continuous(V1::'a,V2,V3,V4,Y,V5))) & | |
| 24127 | 701 | (\<forall>X V1 V2 V3 V4 V5 Y. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,V5,X),continuous(V1::'a,V2,V3,V4,V5,Y)))" | 
| 702 | ||
| 703 | ||
| 704 | (*179 inferences so far. Searching to depth 7. 3.9 secs*) | |
| 705 | lemma GEO003_1: | |
| 706 | "EQU001_0_ax equal & | |
| 707 | GEO001_0_ax continuous lower_dimension_point_3 lower_dimension_point_2 | |
| 708 | lower_dimension_point_1 extension euclid2 euclid1 outer_pasch equidistant equal between & | |
| 709 | GEO001_0_eq continuous extension euclid2 euclid1 outer_pasch equidistant between equal & | |
| 710 | (~between(a::'a,b,b)) --> False" | |
| 711 | by meson | |
| 712 | ||
| 713 | abbreviation "GEO002_ax_eq continuous euclid2 euclid1 lower_dimension_point_3 | |
| 714 | lower_dimension_point_2 lower_dimension_point_1 inner_pasch extension | |
| 715 | between equal equidistant \<equiv> | |
| 24128 | 716 | (\<forall>Y X. equidistant(X::'a,Y,Y,X)) & | 
| 717 | (\<forall>X Y Z V V2 W. equidistant(X::'a,Y,Z,V) & equidistant(X::'a,Y,V2,W) --> equidistant(Z::'a,V,V2,W)) & | |
| 718 | (\<forall>Z X Y. equidistant(X::'a,Y,Z,Z) --> equal(X::'a,Y)) & | |
| 719 | (\<forall>X Y W V. between(X::'a,Y,extension(X::'a,Y,W,V))) & | |
| 720 | (\<forall>X Y W V. equidistant(Y::'a,extension(X::'a,Y,W,V),W,V)) & | |
| 721 | (\<forall>X1 Y1 X Y Z V Z1 V1. equidistant(X::'a,Y,X1,Y1) & equidistant(Y::'a,Z,Y1,Z1) & equidistant(X::'a,V,X1,V1) & equidistant(Y::'a,V,Y1,V1) & between(X::'a,Y,Z) & between(X1::'a,Y1,Z1) --> equal(X::'a,Y) | equidistant(Z::'a,V,Z1,V1)) & | |
| 722 | (\<forall>X Y. between(X::'a,Y,X) --> equal(X::'a,Y)) & | |
| 723 | (\<forall>U V W X Y. between(U::'a,V,W) & between(Y::'a,X,W) --> between(V::'a,inner_pasch(U::'a,V,W,X,Y),Y)) & | |
| 724 | (\<forall>V W X Y U. between(U::'a,V,W) & between(Y::'a,X,W) --> between(X::'a,inner_pasch(U::'a,V,W,X,Y),U)) & | |
| 725 | (~between(lower_dimension_point_1::'a,lower_dimension_point_2,lower_dimension_point_3)) & | |
| 726 | (~between(lower_dimension_point_2::'a,lower_dimension_point_3,lower_dimension_point_1)) & | |
| 727 | (~between(lower_dimension_point_3::'a,lower_dimension_point_1,lower_dimension_point_2)) & | |
| 728 | (\<forall>Z X Y W V. equidistant(X::'a,W,X,V) & equidistant(Y::'a,W,Y,V) & equidistant(Z::'a,W,Z,V) --> between(X::'a,Y,Z) | between(Y::'a,Z,X) | between(Z::'a,X,Y) | equal(W::'a,V)) & | |
| 729 | (\<forall>U V W X Y. between(U::'a,W,Y) & between(V::'a,W,X) --> equal(U::'a,W) | between(U::'a,V,euclid1(U::'a,V,W,X,Y))) & | |
| 730 | (\<forall>U V W X Y. between(U::'a,W,Y) & between(V::'a,W,X) --> equal(U::'a,W) | between(U::'a,X,euclid2(U::'a,V,W,X,Y))) & | |
| 731 | (\<forall>U V W X Y. between(U::'a,W,Y) & between(V::'a,W,X) --> equal(U::'a,W) | between(euclid1(U::'a,V,W,X,Y),Y,euclid2(U::'a,V,W,X,Y))) & | |
| 732 | (\<forall>U V V1 W X X1. equidistant(U::'a,V,U,V1) & equidistant(U::'a,X,U,X1) & between(U::'a,V,X) & between(V::'a,W,X) --> between(V1::'a,continuous(U::'a,V,V1,W,X,X1),X1)) & | |
| 733 | (\<forall>U V V1 W X X1. equidistant(U::'a,V,U,V1) & equidistant(U::'a,X,U,X1) & between(U::'a,V,X) & between(V::'a,W,X) --> equidistant(U::'a,W,U,continuous(U::'a,V,V1,W,X,X1))) & | |
| 734 | (\<forall>X Y W Z. equal(X::'a,Y) & between(X::'a,W,Z) --> between(Y::'a,W,Z)) & | |
| 735 | (\<forall>X W Y Z. equal(X::'a,Y) & between(W::'a,X,Z) --> between(W::'a,Y,Z)) & | |
| 736 | (\<forall>X W Z Y. equal(X::'a,Y) & between(W::'a,Z,X) --> between(W::'a,Z,Y)) & | |
| 737 | (\<forall>X Y V W Z. equal(X::'a,Y) & equidistant(X::'a,V,W,Z) --> equidistant(Y::'a,V,W,Z)) & | |
| 738 | (\<forall>X V Y W Z. equal(X::'a,Y) & equidistant(V::'a,X,W,Z) --> equidistant(V::'a,Y,W,Z)) & | |
| 739 | (\<forall>X V W Y Z. equal(X::'a,Y) & equidistant(V::'a,W,X,Z) --> equidistant(V::'a,W,Y,Z)) & | |
| 740 | (\<forall>X V W Z Y. equal(X::'a,Y) & equidistant(V::'a,W,Z,X) --> equidistant(V::'a,W,Z,Y)) & | |
| 741 | (\<forall>X Y V1 V2 V3 V4. equal(X::'a,Y) --> equal(inner_pasch(X::'a,V1,V2,V3,V4),inner_pasch(Y::'a,V1,V2,V3,V4))) & | |
| 742 | (\<forall>X V1 Y V2 V3 V4. equal(X::'a,Y) --> equal(inner_pasch(V1::'a,X,V2,V3,V4),inner_pasch(V1::'a,Y,V2,V3,V4))) & | |
| 743 | (\<forall>X V1 V2 Y V3 V4. equal(X::'a,Y) --> equal(inner_pasch(V1::'a,V2,X,V3,V4),inner_pasch(V1::'a,V2,Y,V3,V4))) & | |
| 744 | (\<forall>X V1 V2 V3 Y V4. equal(X::'a,Y) --> equal(inner_pasch(V1::'a,V2,V3,X,V4),inner_pasch(V1::'a,V2,V3,Y,V4))) & | |
| 745 | (\<forall>X V1 V2 V3 V4 Y. equal(X::'a,Y) --> equal(inner_pasch(V1::'a,V2,V3,V4,X),inner_pasch(V1::'a,V2,V3,V4,Y))) & | |
| 746 | (\<forall>A B C D E F'. equal(A::'a,B) --> equal(euclid1(A::'a,C,D,E,F'),euclid1(B::'a,C,D,E,F'))) & | |
| 747 | (\<forall>G I' H J K' L. equal(G::'a,H) --> equal(euclid1(I'::'a,G,J,K',L),euclid1(I'::'a,H,J,K',L))) & | |
| 748 | (\<forall>M O' P N Q R. equal(M::'a,N) --> equal(euclid1(O'::'a,P,M,Q,R),euclid1(O'::'a,P,N,Q,R))) & | |
| 749 | (\<forall>S' U V W T' X. equal(S'::'a,T') --> equal(euclid1(U::'a,V,W,S',X),euclid1(U::'a,V,W,T',X))) & | |
| 750 | (\<forall>Y A1 B1 C1 D1 Z. equal(Y::'a,Z) --> equal(euclid1(A1::'a,B1,C1,D1,Y),euclid1(A1::'a,B1,C1,D1,Z))) & | |
| 751 | (\<forall>E1 F1 G1 H1 I1 J1. equal(E1::'a,F1) --> equal(euclid2(E1::'a,G1,H1,I1,J1),euclid2(F1::'a,G1,H1,I1,J1))) & | |
| 752 | (\<forall>K1 M1 L1 N1 O1 P1. equal(K1::'a,L1) --> equal(euclid2(M1::'a,K1,N1,O1,P1),euclid2(M1::'a,L1,N1,O1,P1))) & | |
| 753 | (\<forall>Q1 S1 T1 R1 U1 V1. equal(Q1::'a,R1) --> equal(euclid2(S1::'a,T1,Q1,U1,V1),euclid2(S1::'a,T1,R1,U1,V1))) & | |
| 754 | (\<forall>W1 Y1 Z1 A2 X1 B2. equal(W1::'a,X1) --> equal(euclid2(Y1::'a,Z1,A2,W1,B2),euclid2(Y1::'a,Z1,A2,X1,B2))) & | |
| 755 | (\<forall>C2 E2 F2 G2 H2 D2. equal(C2::'a,D2) --> equal(euclid2(E2::'a,F2,G2,H2,C2),euclid2(E2::'a,F2,G2,H2,D2))) & | |
| 756 | (\<forall>X Y V1 V2 V3. equal(X::'a,Y) --> equal(extension(X::'a,V1,V2,V3),extension(Y::'a,V1,V2,V3))) & | |
| 757 | (\<forall>X V1 Y V2 V3. equal(X::'a,Y) --> equal(extension(V1::'a,X,V2,V3),extension(V1::'a,Y,V2,V3))) & | |
| 758 | (\<forall>X V1 V2 Y V3. equal(X::'a,Y) --> equal(extension(V1::'a,V2,X,V3),extension(V1::'a,V2,Y,V3))) & | |
| 759 | (\<forall>X V1 V2 V3 Y. equal(X::'a,Y) --> equal(extension(V1::'a,V2,V3,X),extension(V1::'a,V2,V3,Y))) & | |
| 760 | (\<forall>X Y V1 V2 V3 V4 V5. equal(X::'a,Y) --> equal(continuous(X::'a,V1,V2,V3,V4,V5),continuous(Y::'a,V1,V2,V3,V4,V5))) & | |
| 761 | (\<forall>X V1 Y V2 V3 V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,X,V2,V3,V4,V5),continuous(V1::'a,Y,V2,V3,V4,V5))) & | |
| 762 | (\<forall>X V1 V2 Y V3 V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,X,V3,V4,V5),continuous(V1::'a,V2,Y,V3,V4,V5))) & | |
| 763 | (\<forall>X V1 V2 V3 Y V4 V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,X,V4,V5),continuous(V1::'a,V2,V3,Y,V4,V5))) & | |
| 764 | (\<forall>X V1 V2 V3 V4 Y V5. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,X,V5),continuous(V1::'a,V2,V3,V4,Y,V5))) & | |
| 24127 | 765 | (\<forall>X V1 V2 V3 V4 V5 Y. equal(X::'a,Y) --> equal(continuous(V1::'a,V2,V3,V4,V5,X),continuous(V1::'a,V2,V3,V4,V5,Y)))" | 
| 766 | ||
| 767 | (*4272 inferences so far. Searching to depth 10. 29.4 secs*) | |
| 768 | lemma GEO017_2: | |
| 769 | "EQU001_0_ax equal & | |
| 770 | GEO002_ax_eq continuous euclid2 euclid1 lower_dimension_point_3 | |
| 771 | lower_dimension_point_2 lower_dimension_point_1 inner_pasch extension | |
| 772 | between equal equidistant & | |
| 24128 | 773 | (equidistant(u::'a,v,w,x)) & | 
| 24127 | 774 | (~equidistant(u::'a,v,x,w)) --> False" | 
| 775 | oops | |
| 776 | ||
| 777 | (*382903 inferences so far. Searching to depth 9. 1022s (17 mins) on griffon*) | |
| 778 | lemma GEO027_3: | |
| 779 | "EQU001_0_ax equal & | |
| 780 | GEO002_ax_eq continuous euclid2 euclid1 lower_dimension_point_3 | |
| 781 | lower_dimension_point_2 lower_dimension_point_1 inner_pasch extension | |
| 782 | between equal equidistant & | |
| 24128 | 783 | (\<forall>U V. equal(reflection(U::'a,V),extension(U::'a,V,U,V))) & | 
| 784 | (\<forall>X Y Z. equal(X::'a,Y) --> equal(reflection(X::'a,Z),reflection(Y::'a,Z))) & | |
| 785 | (\<forall>A1 C1 B1. equal(A1::'a,B1) --> equal(reflection(C1::'a,A1),reflection(C1::'a,B1))) & | |
| 786 | (\<forall>U V. equidistant(U::'a,V,U,V)) & | |
| 787 | (\<forall>W X U V. equidistant(U::'a,V,W,X) --> equidistant(W::'a,X,U,V)) & | |
| 788 | (\<forall>V U W X. equidistant(U::'a,V,W,X) --> equidistant(V::'a,U,W,X)) & | |
| 789 | (\<forall>U V X W. equidistant(U::'a,V,W,X) --> equidistant(U::'a,V,X,W)) & | |
| 790 | (\<forall>V U X W. equidistant(U::'a,V,W,X) --> equidistant(V::'a,U,X,W)) & | |
| 791 | (\<forall>W X V U. equidistant(U::'a,V,W,X) --> equidistant(W::'a,X,V,U)) & | |
| 792 | (\<forall>X W U V. equidistant(U::'a,V,W,X) --> equidistant(X::'a,W,U,V)) & | |
| 793 | (\<forall>X W V U. equidistant(U::'a,V,W,X) --> equidistant(X::'a,W,V,U)) & | |
| 794 | (\<forall>W X U V Y Z. equidistant(U::'a,V,W,X) & equidistant(W::'a,X,Y,Z) --> equidistant(U::'a,V,Y,Z)) & | |
| 795 | (\<forall>U V W. equal(V::'a,extension(U::'a,V,W,W))) & | |
| 796 | (\<forall>W X U V Y. equal(Y::'a,extension(U::'a,V,W,X)) --> between(U::'a,V,Y)) & | |
| 797 | (\<forall>U V. between(U::'a,V,reflection(U::'a,V))) & | |
| 798 | (\<forall>U V. equidistant(V::'a,reflection(U::'a,V),U,V)) & | |
| 799 | (\<forall>U V. equal(U::'a,V) --> equal(V::'a,reflection(U::'a,V))) & | |
| 800 | (\<forall>U. equal(U::'a,reflection(U::'a,U))) & | |
| 801 | (\<forall>U V. equal(V::'a,reflection(U::'a,V)) --> equal(U::'a,V)) & | |
| 802 | (\<forall>U V. equidistant(U::'a,U,V,V)) & | |
| 803 | (\<forall>V V1 U W U1 W1. equidistant(U::'a,V,U1,V1) & equidistant(V::'a,W,V1,W1) & between(U::'a,V,W) & between(U1::'a,V1,W1) --> equidistant(U::'a,W,U1,W1)) & | |
| 804 | (\<forall>U V W X. between(U::'a,V,W) & between(U::'a,V,X) & equidistant(V::'a,W,V,X) --> equal(U::'a,V) | equal(W::'a,X)) & | |
| 805 | (between(u::'a,v,w)) & | |
| 806 | (~equal(u::'a,v)) & | |
| 24127 | 807 | (~equal(w::'a,extension(u::'a,v,v,w))) --> False" | 
| 808 | oops | |
| 809 | ||
| 810 | (*313884 inferences so far. Searching to depth 10. 887 secs: 15 mins.*) | |
| 811 | lemma GEO058_2: | |
| 812 | "EQU001_0_ax equal & | |
| 813 | GEO002_ax_eq continuous euclid2 euclid1 lower_dimension_point_3 | |
| 814 | lower_dimension_point_2 lower_dimension_point_1 inner_pasch extension | |
| 815 | between equal equidistant & | |
| 24128 | 816 | (\<forall>U V. equal(reflection(U::'a,V),extension(U::'a,V,U,V))) & | 
| 817 | (\<forall>X Y Z. equal(X::'a,Y) --> equal(reflection(X::'a,Z),reflection(Y::'a,Z))) & | |
| 818 | (\<forall>A1 C1 B1. equal(A1::'a,B1) --> equal(reflection(C1::'a,A1),reflection(C1::'a,B1))) & | |
| 819 | (equal(v::'a,reflection(u::'a,v))) & | |
| 24127 | 820 | (~equal(u::'a,v)) --> False" | 
| 821 | oops | |
| 822 | ||
| 823 | (*0 inferences so far. Searching to depth 0. 0.2 secs*) | |
| 824 | lemma GEO079_1: | |
| 24128 | 825 | "(\<forall>U V W X Y Z. right_angle(U::'a,V,W) & right_angle(X::'a,Y,Z) --> eq(U::'a,V,W,X,Y,Z)) & | 
| 826 | (\<forall>U V W X Y Z. CONGRUENT(U::'a,V,W,X,Y,Z) --> eq(U::'a,V,W,X,Y,Z)) & | |
| 827 | (\<forall>V W U X. trapezoid(U::'a,V,W,X) --> parallel(V::'a,W,U,X)) & | |
| 828 | (\<forall>U V X Y. parallel(U::'a,V,X,Y) --> eq(X::'a,V,U,V,X,Y)) & | |
| 829 | (trapezoid(a::'a,b,c,d)) & | |
| 24127 | 830 | (~eq(a::'a,c,b,c,a,d)) --> False" | 
| 831 | by meson | |
| 832 | ||
| 833 | abbreviation "GRP003_0_ax equal multiply INVERSE identity product \<equiv> | |
| 24128 | 834 | (\<forall>X. product(identity::'a,X,X)) & | 
| 835 | (\<forall>X. product(X::'a,identity,X)) & | |
| 836 | (\<forall>X. product(INVERSE(X),X,identity)) & | |
| 837 | (\<forall>X. product(X::'a,INVERSE(X),identity)) & | |
| 838 | (\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | |
| 839 | (\<forall>X Y Z W. product(X::'a,Y,Z) & product(X::'a,Y,W) --> equal(Z::'a,W)) & | |
| 840 | (\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & | |
| 24127 | 841 | (\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W))" | 
| 842 | ||
| 843 | abbreviation "GRP003_0_eq product multiply INVERSE equal \<equiv> | |
| 24128 | 844 | (\<forall>X Y. equal(X::'a,Y) --> equal(INVERSE(X),INVERSE(Y))) & | 
| 845 | (\<forall>X Y W. equal(X::'a,Y) --> equal(multiply(X::'a,W),multiply(Y::'a,W))) & | |
| 846 | (\<forall>X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & | |
| 847 | (\<forall>X Y W Z. equal(X::'a,Y) & product(X::'a,W,Z) --> product(Y::'a,W,Z)) & | |
| 848 | (\<forall>X W Y Z. equal(X::'a,Y) & product(W::'a,X,Z) --> product(W::'a,Y,Z)) & | |
| 24127 | 849 | (\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y))" | 
| 850 | ||
| 851 | (*2032008 inferences so far. Searching to depth 16. 658s (11 mins) on griffon*) | |
| 852 | lemma GRP001_1: | |
| 853 | "EQU001_0_ax equal & | |
| 854 | GRP003_0_ax equal multiply INVERSE identity product & | |
| 855 | GRP003_0_eq product multiply INVERSE equal & | |
| 24128 | 856 | (\<forall>X. product(X::'a,X,identity)) & | 
| 857 | (product(a::'a,b,c)) & | |
| 24127 | 858 | (~product(b::'a,a,c)) --> False" | 
| 859 | oops | |
| 860 | ||
| 861 | (*2386 inferences so far. Searching to depth 11. 8.7 secs*) | |
| 862 | lemma GRP008_1: | |
| 863 | "EQU001_0_ax equal & | |
| 864 | GRP003_0_ax equal multiply INVERSE identity product & | |
| 865 | GRP003_0_eq product multiply INVERSE equal & | |
| 24128 | 866 | (\<forall>A B. equal(A::'a,B) --> equal(h(A),h(B))) & | 
| 867 | (\<forall>C D. equal(C::'a,D) --> equal(j(C),j(D))) & | |
| 868 | (\<forall>A B. equal(A::'a,B) & q(A) --> q(B)) & | |
| 869 | (\<forall>B A C. q(A) & product(A::'a,B,C) --> product(B::'a,A,C)) & | |
| 870 | (\<forall>A. product(j(A),A,h(A)) | product(A::'a,j(A),h(A)) | q(A)) & | |
| 871 | (\<forall>A. product(j(A),A,h(A)) & product(A::'a,j(A),h(A)) --> q(A)) & | |
| 24127 | 872 | (~q(identity)) --> False" | 
| 873 | by meson | |
| 874 | ||
| 875 | (*8625 inferences so far. Searching to depth 11. 20 secs*) | |
| 876 | lemma GRP013_1: | |
| 877 | "EQU001_0_ax equal & | |
| 878 | GRP003_0_ax equal multiply INVERSE identity product & | |
| 879 | GRP003_0_eq product multiply INVERSE equal & | |
| 24128 | 880 | (\<forall>A. product(A::'a,A,identity)) & | 
| 881 | (product(a::'a,b,c)) & | |
| 882 | (product(INVERSE(a),INVERSE(b),d)) & | |
| 883 | (\<forall>A C B. product(INVERSE(A),INVERSE(B),C) --> product(A::'a,C,B)) & | |
| 24127 | 884 | (~product(c::'a,d,identity)) --> False" | 
| 885 | oops | |
| 886 | ||
| 887 | (*2448 inferences so far. Searching to depth 10. 7.2 secs*) | |
| 888 | lemma GRP037_3: | |
| 889 | "EQU001_0_ax equal & | |
| 890 | GRP003_0_ax equal multiply INVERSE identity product & | |
| 891 | GRP003_0_eq product multiply INVERSE equal & | |
| 24128 | 892 | (\<forall>A B C. subgroup_member(A) & subgroup_member(B) & product(A::'a,INVERSE(B),C) --> subgroup_member(C)) & | 
| 893 | (\<forall>A B. equal(A::'a,B) & subgroup_member(A) --> subgroup_member(B)) & | |
| 894 | (\<forall>A. subgroup_member(A) --> product(Gidentity::'a,A,A)) & | |
| 895 | (\<forall>A. subgroup_member(A) --> product(A::'a,Gidentity,A)) & | |
| 896 | (\<forall>A. subgroup_member(A) --> product(A::'a,Ginverse(A),Gidentity)) & | |
| 897 | (\<forall>A. subgroup_member(A) --> product(Ginverse(A),A,Gidentity)) & | |
| 898 | (\<forall>A. subgroup_member(A) --> subgroup_member(Ginverse(A))) & | |
| 899 | (\<forall>A B. equal(A::'a,B) --> equal(Ginverse(A),Ginverse(B))) & | |
| 900 | (\<forall>A C D B. product(A::'a,B,C) & product(A::'a,D,C) --> equal(D::'a,B)) & | |
| 901 | (\<forall>B C D A. product(A::'a,B,C) & product(D::'a,B,C) --> equal(D::'a,A)) & | |
| 902 | (subgroup_member(a)) & | |
| 903 | (subgroup_member(Gidentity)) & | |
| 24127 | 904 | (~equal(INVERSE(a),Ginverse(a))) --> False" | 
| 905 | by meson | |
| 906 | ||
| 907 | (*163 inferences so far. Searching to depth 11. 0.3 secs*) | |
| 908 | lemma GRP031_2: | |
| 24128 | 909 | "(\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | 
| 910 | (\<forall>X Y Z W. product(X::'a,Y,Z) & product(X::'a,Y,W) --> equal(Z::'a,W)) & | |
| 911 | (\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & | |
| 912 | (\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & | |
| 913 | (\<forall>A. product(A::'a,INVERSE(A),identity)) & | |
| 914 | (\<forall>A. product(A::'a,identity,A)) & | |
| 24127 | 915 | (\<forall>A. ~product(A::'a,a,identity)) --> False" | 
| 916 | by meson | |
| 917 | ||
| 918 | (*47 inferences so far. Searching to depth 11. 0.2 secs*) | |
| 919 | lemma GRP034_4: | |
| 24128 | 920 | "(\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | 
| 921 | (\<forall>X. product(identity::'a,X,X)) & | |
| 922 | (\<forall>X. product(X::'a,identity,X)) & | |
| 923 | (\<forall>X. product(X::'a,INVERSE(X),identity)) & | |
| 924 | (\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & | |
| 925 | (\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & | |
| 926 | (\<forall>B A C. subgroup_member(A) & subgroup_member(B) & product(B::'a,INVERSE(A),C) --> subgroup_member(C)) & | |
| 927 | (subgroup_member(a)) & | |
| 24127 | 928 | (~subgroup_member(INVERSE(a))) --> False" | 
| 929 | by meson | |
| 930 | ||
| 931 | (*3287 inferences so far. Searching to depth 14. 3.5 secs*) | |
| 932 | lemma GRP047_2: | |
| 24128 | 933 | "(\<forall>X. product(identity::'a,X,X)) & | 
| 934 | (\<forall>X. product(INVERSE(X),X,identity)) & | |
| 935 | (\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | |
| 936 | (\<forall>X Y Z W. product(X::'a,Y,Z) & product(X::'a,Y,W) --> equal(Z::'a,W)) & | |
| 937 | (\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & | |
| 938 | (\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & | |
| 939 | (\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y)) & | |
| 940 | (equal(a::'a,b)) & | |
| 24127 | 941 | (~equal(multiply(c::'a,a),multiply(c::'a,b))) --> False" | 
| 942 | by meson | |
| 943 | ||
| 944 | (*25559 inferences so far. Searching to depth 19. 16.9 secs*) | |
| 945 | lemma GRP130_1_002: | |
| 24128 | 946 | "(group_element(e_1)) & | 
| 947 | (group_element(e_2)) & | |
| 948 | (~equal(e_1::'a,e_2)) & | |
| 949 | (~equal(e_2::'a,e_1)) & | |
| 950 | (\<forall>X Y. group_element(X) & group_element(Y) --> product(X::'a,Y,e_1) | product(X::'a,Y,e_2)) & | |
| 951 | (\<forall>X Y W Z. product(X::'a,Y,W) & product(X::'a,Y,Z) --> equal(W::'a,Z)) & | |
| 952 | (\<forall>X Y W Z. product(X::'a,W,Y) & product(X::'a,Z,Y) --> equal(W::'a,Z)) & | |
| 953 | (\<forall>Y X W Z. product(W::'a,Y,X) & product(Z::'a,Y,X) --> equal(W::'a,Z)) & | |
| 24127 | 954 | (\<forall>Z1 Z2 Y X. product(X::'a,Y,Z1) & product(X::'a,Z1,Z2) --> product(Z2::'a,Y,X)) --> False" | 
| 955 | oops | |
| 956 | ||
| 957 | abbreviation "GRP004_0_ax INVERSE identity multiply equal \<equiv> | |
| 24128 | 958 | (\<forall>X. equal(multiply(identity::'a,X),X)) & | 
| 959 | (\<forall>X. equal(multiply(INVERSE(X),X),identity)) & | |
| 960 | (\<forall>X Y Z. equal(multiply(multiply(X::'a,Y),Z),multiply(X::'a,multiply(Y::'a,Z)))) & | |
| 961 | (\<forall>A B. equal(A::'a,B) --> equal(INVERSE(A),INVERSE(B))) & | |
| 962 | (\<forall>C D E. equal(C::'a,D) --> equal(multiply(C::'a,E),multiply(D::'a,E))) & | |
| 24127 | 963 | (\<forall>F' H G. equal(F'::'a,G) --> equal(multiply(H::'a,F'),multiply(H::'a,G)))" | 
| 964 | ||
| 965 | abbreviation "GRP004_2_ax multiply least_upper_bound greatest_lower_bound equal \<equiv> | |
| 24128 | 966 | (\<forall>Y X. equal(greatest_lower_bound(X::'a,Y),greatest_lower_bound(Y::'a,X))) & | 
| 967 | (\<forall>Y X. equal(least_upper_bound(X::'a,Y),least_upper_bound(Y::'a,X))) & | |
| 968 | (\<forall>X Y Z. equal(greatest_lower_bound(X::'a,greatest_lower_bound(Y::'a,Z)),greatest_lower_bound(greatest_lower_bound(X::'a,Y),Z))) & | |
| 969 | (\<forall>X Y Z. equal(least_upper_bound(X::'a,least_upper_bound(Y::'a,Z)),least_upper_bound(least_upper_bound(X::'a,Y),Z))) & | |
| 970 | (\<forall>X. equal(least_upper_bound(X::'a,X),X)) & | |
| 971 | (\<forall>X. equal(greatest_lower_bound(X::'a,X),X)) & | |
| 972 | (\<forall>Y X. equal(least_upper_bound(X::'a,greatest_lower_bound(X::'a,Y)),X)) & | |
| 973 | (\<forall>Y X. equal(greatest_lower_bound(X::'a,least_upper_bound(X::'a,Y)),X)) & | |
| 974 | (\<forall>Y X Z. equal(multiply(X::'a,least_upper_bound(Y::'a,Z)),least_upper_bound(multiply(X::'a,Y),multiply(X::'a,Z)))) & | |
| 975 | (\<forall>Y X Z. equal(multiply(X::'a,greatest_lower_bound(Y::'a,Z)),greatest_lower_bound(multiply(X::'a,Y),multiply(X::'a,Z)))) & | |
| 976 | (\<forall>Y Z X. equal(multiply(least_upper_bound(Y::'a,Z),X),least_upper_bound(multiply(Y::'a,X),multiply(Z::'a,X)))) & | |
| 977 | (\<forall>Y Z X. equal(multiply(greatest_lower_bound(Y::'a,Z),X),greatest_lower_bound(multiply(Y::'a,X),multiply(Z::'a,X)))) & | |
| 978 | (\<forall>A B C. equal(A::'a,B) --> equal(greatest_lower_bound(A::'a,C),greatest_lower_bound(B::'a,C))) & | |
| 979 | (\<forall>A C B. equal(A::'a,B) --> equal(greatest_lower_bound(C::'a,A),greatest_lower_bound(C::'a,B))) & | |
| 980 | (\<forall>A B C. equal(A::'a,B) --> equal(least_upper_bound(A::'a,C),least_upper_bound(B::'a,C))) & | |
| 981 | (\<forall>A C B. equal(A::'a,B) --> equal(least_upper_bound(C::'a,A),least_upper_bound(C::'a,B))) & | |
| 982 | (\<forall>A B C. equal(A::'a,B) --> equal(multiply(A::'a,C),multiply(B::'a,C))) & | |
| 24127 | 983 | (\<forall>A C B. equal(A::'a,B) --> equal(multiply(C::'a,A),multiply(C::'a,B)))" | 
| 984 | ||
| 985 | (*3468 inferences so far. Searching to depth 10. 9.1 secs*) | |
| 986 | lemma GRP156_1: | |
| 987 | "EQU001_0_ax equal & | |
| 988 | GRP004_0_ax INVERSE identity multiply equal & | |
| 989 | GRP004_2_ax multiply least_upper_bound greatest_lower_bound equal & | |
| 24128 | 990 | (equal(least_upper_bound(a::'a,b),b)) & | 
| 24127 | 991 | (~equal(greatest_lower_bound(multiply(a::'a,c),multiply(b::'a,c)),multiply(a::'a,c))) --> False" | 
| 24128 | 992 | by meson | 
| 24127 | 993 | |
| 994 | (*4394 inferences so far. Searching to depth 10. 8.2 secs*) | |
| 995 | lemma GRP168_1: | |
| 996 | "EQU001_0_ax equal & | |
| 997 | GRP004_0_ax INVERSE identity multiply equal & | |
| 24128 | 998 | GRP004_2_ax multiply least_upper_bound greatest_lower_bound equal & | 
| 999 | (equal(least_upper_bound(a::'a,b),b)) & | |
| 24127 | 1000 | (~equal(least_upper_bound(multiply(INVERSE(c),multiply(a::'a,c)),multiply(INVERSE(c),multiply(b::'a,c))),multiply(INVERSE(c),multiply(b::'a,c)))) --> False" | 
| 1001 | by meson | |
| 1002 | ||
| 1003 | abbreviation "HEN002_0_ax identity Zero Divide equal mless_equal \<equiv> | |
| 24128 | 1004 | (\<forall>X Y. mless_equal(X::'a,Y) --> equal(Divide(X::'a,Y),Zero)) & | 
| 1005 | (\<forall>X Y. equal(Divide(X::'a,Y),Zero) --> mless_equal(X::'a,Y)) & | |
| 1006 | (\<forall>Y X. mless_equal(Divide(X::'a,Y),X)) & | |
| 1007 | (\<forall>X Y Z. mless_equal(Divide(Divide(X::'a,Z),Divide(Y::'a,Z)),Divide(Divide(X::'a,Y),Z))) & | |
| 1008 | (\<forall>X. mless_equal(Zero::'a,X)) & | |
| 1009 | (\<forall>X Y. mless_equal(X::'a,Y) & mless_equal(Y::'a,X) --> equal(X::'a,Y)) & | |
| 24127 | 1010 | (\<forall>X. mless_equal(X::'a,identity))" | 
| 1011 | ||
| 1012 | abbreviation "HEN002_0_eq mless_equal Divide equal \<equiv> | |
| 24128 | 1013 | (\<forall>A B C. equal(A::'a,B) --> equal(Divide(A::'a,C),Divide(B::'a,C))) & | 
| 1014 | (\<forall>D F' E. equal(D::'a,E) --> equal(Divide(F'::'a,D),Divide(F'::'a,E))) & | |
| 1015 | (\<forall>G H I'. equal(G::'a,H) & mless_equal(G::'a,I') --> mless_equal(H::'a,I')) & | |
| 24127 | 1016 | (\<forall>J L K'. equal(J::'a,K') & mless_equal(L::'a,J) --> mless_equal(L::'a,K'))" | 
| 1017 | ||
| 1018 | (*250258 inferences so far. Searching to depth 16. 406.2 secs*) | |
| 1019 | lemma HEN003_3: | |
| 1020 | "EQU001_0_ax equal & | |
| 1021 | HEN002_0_ax identity Zero Divide equal mless_equal & | |
| 1022 | HEN002_0_eq mless_equal Divide equal & | |
| 1023 | (~equal(Divide(a::'a,a),Zero)) --> False" | |
| 1024 | oops | |
| 1025 | ||
| 1026 | (*202177 inferences so far. Searching to depth 14. 451 secs*) | |
| 1027 | lemma HEN007_2: | |
| 1028 | "EQU001_0_ax equal & | |
| 24128 | 1029 | (\<forall>X Y. mless_equal(X::'a,Y) --> quotient(X::'a,Y,Zero)) & | 
| 1030 | (\<forall>X Y. quotient(X::'a,Y,Zero) --> mless_equal(X::'a,Y)) & | |
| 1031 | (\<forall>Y Z X. quotient(X::'a,Y,Z) --> mless_equal(Z::'a,X)) & | |
| 1032 | (\<forall>Y X V3 V2 V1 Z V4 V5. quotient(X::'a,Y,V1) & quotient(Y::'a,Z,V2) & quotient(X::'a,Z,V3) & quotient(V3::'a,V2,V4) & quotient(V1::'a,Z,V5) --> mless_equal(V4::'a,V5)) & | |
| 1033 | (\<forall>X. mless_equal(Zero::'a,X)) & | |
| 1034 | (\<forall>X Y. mless_equal(X::'a,Y) & mless_equal(Y::'a,X) --> equal(X::'a,Y)) & | |
| 1035 | (\<forall>X. mless_equal(X::'a,identity)) & | |
| 1036 | (\<forall>X Y. quotient(X::'a,Y,Divide(X::'a,Y))) & | |
| 1037 | (\<forall>X Y Z W. quotient(X::'a,Y,Z) & quotient(X::'a,Y,W) --> equal(Z::'a,W)) & | |
| 1038 | (\<forall>X Y W Z. equal(X::'a,Y) & quotient(X::'a,W,Z) --> quotient(Y::'a,W,Z)) & | |
| 1039 | (\<forall>X W Y Z. equal(X::'a,Y) & quotient(W::'a,X,Z) --> quotient(W::'a,Y,Z)) & | |
| 1040 | (\<forall>X W Z Y. equal(X::'a,Y) & quotient(W::'a,Z,X) --> quotient(W::'a,Z,Y)) & | |
| 1041 | (\<forall>X Z Y. equal(X::'a,Y) & mless_equal(Z::'a,X) --> mless_equal(Z::'a,Y)) & | |
| 1042 | (\<forall>X Y Z. equal(X::'a,Y) & mless_equal(X::'a,Z) --> mless_equal(Y::'a,Z)) & | |
| 1043 | (\<forall>X Y W. equal(X::'a,Y) --> equal(Divide(X::'a,W),Divide(Y::'a,W))) & | |
| 1044 | (\<forall>X W Y. equal(X::'a,Y) --> equal(Divide(W::'a,X),Divide(W::'a,Y))) & | |
| 1045 | (\<forall>X. quotient(X::'a,identity,Zero)) & | |
| 1046 | (\<forall>X. quotient(Zero::'a,X,Zero)) & | |
| 1047 | (\<forall>X. quotient(X::'a,X,Zero)) & | |
| 1048 | (\<forall>X. quotient(X::'a,Zero,X)) & | |
| 1049 | (\<forall>Y X Z. mless_equal(X::'a,Y) & mless_equal(Y::'a,Z) --> mless_equal(X::'a,Z)) & | |
| 1050 | (\<forall>W1 X Z W2 Y. quotient(X::'a,Y,W1) & mless_equal(W1::'a,Z) & quotient(X::'a,Z,W2) --> mless_equal(W2::'a,Y)) & | |
| 1051 | (mless_equal(x::'a,y)) & | |
| 1052 | (quotient(z::'a,y,zQy)) & | |
| 1053 | (quotient(z::'a,x,zQx)) & | |
| 24127 | 1054 | (~mless_equal(zQy::'a,zQx)) --> False" | 
| 1055 | oops | |
| 1056 | ||
| 1057 | (*60026 inferences so far. Searching to depth 12. 42.2 secs*) | |
| 1058 | lemma HEN008_4: | |
| 1059 | "EQU001_0_ax equal & | |
| 1060 | HEN002_0_ax identity Zero Divide equal mless_equal & | |
| 1061 | HEN002_0_eq mless_equal Divide equal & | |
| 24128 | 1062 | (\<forall>X. equal(Divide(X::'a,identity),Zero)) & | 
| 1063 | (\<forall>X. equal(Divide(Zero::'a,X),Zero)) & | |
| 1064 | (\<forall>X. equal(Divide(X::'a,X),Zero)) & | |
| 1065 | (equal(Divide(a::'a,Zero),a)) & | |
| 1066 | (\<forall>Y X Z. mless_equal(X::'a,Y) & mless_equal(Y::'a,Z) --> mless_equal(X::'a,Z)) & | |
| 1067 | (\<forall>X Z Y. mless_equal(Divide(X::'a,Y),Z) --> mless_equal(Divide(X::'a,Z),Y)) & | |
| 1068 | (\<forall>Y Z X. mless_equal(X::'a,Y) --> mless_equal(Divide(Z::'a,Y),Divide(Z::'a,X))) & | |
| 1069 | (mless_equal(a::'a,b)) & | |
| 24127 | 1070 | (~mless_equal(Divide(a::'a,c),Divide(b::'a,c))) --> False" | 
| 1071 | oops | |
| 1072 | ||
| 1073 | (*3160 inferences so far. Searching to depth 11. 3.5 secs*) | |
| 1074 | lemma HEN009_5: | |
| 1075 | "EQU001_0_ax equal & | |
| 24128 | 1076 | (\<forall>Y X. equal(Divide(Divide(X::'a,Y),X),Zero)) & | 
| 1077 | (\<forall>X Y Z. equal(Divide(Divide(Divide(X::'a,Z),Divide(Y::'a,Z)),Divide(Divide(X::'a,Y),Z)),Zero)) & | |
| 1078 | (\<forall>X. equal(Divide(Zero::'a,X),Zero)) & | |
| 1079 | (\<forall>X Y. equal(Divide(X::'a,Y),Zero) & equal(Divide(Y::'a,X),Zero) --> equal(X::'a,Y)) & | |
| 1080 | (\<forall>X. equal(Divide(X::'a,identity),Zero)) & | |
| 1081 | (\<forall>A B C. equal(A::'a,B) --> equal(Divide(A::'a,C),Divide(B::'a,C))) & | |
| 1082 | (\<forall>D F' E. equal(D::'a,E) --> equal(Divide(F'::'a,D),Divide(F'::'a,E))) & | |
| 1083 | (\<forall>Y X Z. equal(Divide(X::'a,Y),Zero) & equal(Divide(Y::'a,Z),Zero) --> equal(Divide(X::'a,Z),Zero)) & | |
| 1084 | (\<forall>X Z Y. equal(Divide(Divide(X::'a,Y),Z),Zero) --> equal(Divide(Divide(X::'a,Z),Y),Zero)) & | |
| 1085 | (\<forall>Y Z X. equal(Divide(X::'a,Y),Zero) --> equal(Divide(Divide(Z::'a,Y),Divide(Z::'a,X)),Zero)) & | |
| 1086 | (~equal(Divide(identity::'a,a),Divide(identity::'a,Divide(identity::'a,Divide(identity::'a,a))))) & | |
| 1087 | (equal(Divide(identity::'a,a),b)) & | |
| 1088 | (equal(Divide(identity::'a,b),c)) & | |
| 1089 | (equal(Divide(identity::'a,c),d)) & | |
| 24127 | 1090 | (~equal(b::'a,d)) --> False" | 
| 1091 | by meson | |
| 1092 | ||
| 1093 | (*970373 inferences so far. Searching to depth 17. 890.0 secs*) | |
| 1094 | lemma HEN012_3: | |
| 1095 | "EQU001_0_ax equal & | |
| 1096 | HEN002_0_ax identity Zero Divide equal mless_equal & | |
| 1097 | HEN002_0_eq mless_equal Divide equal & | |
| 1098 | (~mless_equal(a::'a,a)) --> False" | |
| 1099 | oops | |
| 1100 | ||
| 1101 | ||
| 1102 | (*1063 inferences so far. Searching to depth 20. 1.0 secs*) | |
| 1103 | lemma LCL010_1: | |
| 24128 | 1104 | "(\<forall>X Y. is_a_theorem(equivalent(X::'a,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) & | 
| 1105 | (\<forall>X Z Y. is_a_theorem(equivalent(equivalent(X::'a,Y),equivalent(equivalent(X::'a,Z),equivalent(Z::'a,Y))))) & | |
| 24127 | 1106 | (~is_a_theorem(equivalent(equivalent(a::'a,b),equivalent(equivalent(c::'a,b),equivalent(a::'a,c))))) --> False" | 
| 1107 | by meson | |
| 1108 | ||
| 1109 | (*2549 inferences so far. Searching to depth 12. 1.4 secs*) | |
| 1110 | lemma LCL077_2: | |
| 24128 | 1111 | "(\<forall>X Y. is_a_theorem(implies(X,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) & | 
| 1112 | (\<forall>Y X. is_a_theorem(implies(X,implies(Y,X)))) & | |
| 1113 | (\<forall>Y X Z. is_a_theorem(implies(implies(X,implies(Y,Z)),implies(implies(X,Y),implies(X,Z))))) & | |
| 1114 | (\<forall>Y X. is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X)))) & | |
| 1115 | (\<forall>X2 X1 X3. is_a_theorem(implies(X1,X2)) & is_a_theorem(implies(X2,X3)) --> is_a_theorem(implies(X1,X3))) & | |
| 24127 | 1116 | (~is_a_theorem(implies(not(not(a)),a))) --> False" | 
| 1117 | by meson | |
| 1118 | ||
| 1119 | (*2036 inferences so far. Searching to depth 20. 1.5 secs*) | |
| 1120 | lemma LCL082_1: | |
| 24128 | 1121 | "(\<forall>X Y. is_a_theorem(implies(X::'a,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) & | 
| 1122 | (\<forall>Y Z U X. is_a_theorem(implies(implies(implies(X::'a,Y),Z),implies(implies(Z::'a,X),implies(U::'a,X))))) & | |
| 24127 | 1123 | (~is_a_theorem(implies(a::'a,implies(b::'a,a)))) --> False" | 
| 1124 | by meson | |
| 1125 | ||
| 1126 | (*1100 inferences so far. Searching to depth 13. 1.0 secs*) | |
| 1127 | lemma LCL111_1: | |
| 24128 | 1128 | "(\<forall>X Y. is_a_theorem(implies(X,Y)) & is_a_theorem(X) --> is_a_theorem(Y)) & | 
| 1129 | (\<forall>Y X. is_a_theorem(implies(X,implies(Y,X)))) & | |
| 1130 | (\<forall>Y X Z. is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z))))) & | |
| 1131 | (\<forall>Y X. is_a_theorem(implies(implies(implies(X,Y),Y),implies(implies(Y,X),X)))) & | |
| 1132 | (\<forall>Y X. is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X)))) & | |
| 24127 | 1133 | (~is_a_theorem(implies(implies(a,b),implies(implies(c,a),implies(c,b))))) --> False" | 
| 1134 | by meson | |
| 1135 | ||
| 1136 | (*667 inferences so far. Searching to depth 9. 1.4 secs*) | |
| 1137 | lemma LCL143_1: | |
| 24128 | 1138 | "(\<forall>X. equal(X,X)) & | 
| 1139 | (\<forall>Y X. equal(X,Y) --> equal(Y,X)) & | |
| 1140 | (\<forall>Y X Z. equal(X,Y) & equal(Y,Z) --> equal(X,Z)) & | |
| 1141 | (\<forall>X. equal(implies(true,X),X)) & | |
| 1142 | (\<forall>Y X Z. equal(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z))),true)) & | |
| 1143 | (\<forall>Y X. equal(implies(implies(X,Y),Y),implies(implies(Y,X),X))) & | |
| 1144 | (\<forall>Y X. equal(implies(implies(not(X),not(Y)),implies(Y,X)),true)) & | |
| 1145 | (\<forall>A B C. equal(A,B) --> equal(implies(A,C),implies(B,C))) & | |
| 1146 | (\<forall>D F' E. equal(D,E) --> equal(implies(F',D),implies(F',E))) & | |
| 1147 | (\<forall>G H. equal(G,H) --> equal(not(G),not(H))) & | |
| 1148 | (\<forall>X Y. equal(big_V(X,Y),implies(implies(X,Y),Y))) & | |
| 1149 | (\<forall>X Y. equal(big_hat(X,Y),not(big_V(not(X),not(Y))))) & | |
| 1150 | (\<forall>X Y. ordered(X,Y) --> equal(implies(X,Y),true)) & | |
| 1151 | (\<forall>X Y. equal(implies(X,Y),true) --> ordered(X,Y)) & | |
| 1152 | (\<forall>A B C. equal(A,B) --> equal(big_V(A,C),big_V(B,C))) & | |
| 1153 | (\<forall>D F' E. equal(D,E) --> equal(big_V(F',D),big_V(F',E))) & | |
| 1154 | (\<forall>G H I'. equal(G,H) --> equal(big_hat(G,I'),big_hat(H,I'))) & | |
| 1155 | (\<forall>J L K'. equal(J,K') --> equal(big_hat(L,J),big_hat(L,K'))) & | |
| 1156 | (\<forall>M N O'. equal(M,N) & ordered(M,O') --> ordered(N,O')) & | |
| 1157 | (\<forall>P R Q. equal(P,Q) & ordered(R,P) --> ordered(R,Q)) & | |
| 1158 | (ordered(x,y)) & | |
| 24127 | 1159 | (~ordered(implies(z,x),implies(z,y))) --> False" | 
| 1160 | by meson | |
| 1161 | ||
| 1162 | (*5245 inferences so far. Searching to depth 12. 4.6 secs*) | |
| 1163 | lemma LCL182_1: | |
| 24128 | 1164 | "(\<forall>A. axiom(or(not(or(A,A)),A))) & | 
| 1165 | (\<forall>B A. axiom(or(not(A),or(B,A)))) & | |
| 1166 | (\<forall>B A. axiom(or(not(or(A,B)),or(B,A)))) & | |
| 1167 | (\<forall>B A C. axiom(or(not(or(A,or(B,C))),or(B,or(A,C))))) & | |
| 1168 | (\<forall>A C B. axiom(or(not(or(not(A),B)),or(not(or(C,A)),or(C,B))))) & | |
| 1169 | (\<forall>X. axiom(X) --> theorem(X)) & | |
| 1170 | (\<forall>X Y. axiom(or(not(Y),X)) & theorem(Y) --> theorem(X)) & | |
| 1171 | (\<forall>X Y Z. axiom(or(not(X),Y)) & theorem(or(not(Y),Z)) --> theorem(or(not(X),Z))) & | |
| 24127 | 1172 | (~theorem(or(not(or(not(p),q)),or(not(not(q)),not(p))))) --> False" | 
| 1173 | by meson | |
| 1174 | ||
| 1175 | (*410 inferences so far. Searching to depth 10. 0.3 secs*) | |
| 1176 | lemma LCL200_1: | |
| 24128 | 1177 | "(\<forall>A. axiom(or(not(or(A,A)),A))) & | 
| 1178 | (\<forall>B A. axiom(or(not(A),or(B,A)))) & | |
| 1179 | (\<forall>B A. axiom(or(not(or(A,B)),or(B,A)))) & | |
| 1180 | (\<forall>B A C. axiom(or(not(or(A,or(B,C))),or(B,or(A,C))))) & | |
| 1181 | (\<forall>A C B. axiom(or(not(or(not(A),B)),or(not(or(C,A)),or(C,B))))) & | |
| 1182 | (\<forall>X. axiom(X) --> theorem(X)) & | |
| 1183 | (\<forall>X Y. axiom(or(not(Y),X)) & theorem(Y) --> theorem(X)) & | |
| 1184 | (\<forall>X Y Z. axiom(or(not(X),Y)) & theorem(or(not(Y),Z)) --> theorem(or(not(X),Z))) & | |
| 24127 | 1185 | (~theorem(or(not(not(or(p,q))),not(q)))) --> False" | 
| 1186 | by meson | |
| 1187 | ||
| 1188 | (*5849 inferences so far. Searching to depth 12. 5.6 secs*) | |
| 1189 | lemma LCL215_1: | |
| 24128 | 1190 | "(\<forall>A. axiom(or(not(or(A,A)),A))) & | 
| 1191 | (\<forall>B A. axiom(or(not(A),or(B,A)))) & | |
| 1192 | (\<forall>B A. axiom(or(not(or(A,B)),or(B,A)))) & | |
| 1193 | (\<forall>B A C. axiom(or(not(or(A,or(B,C))),or(B,or(A,C))))) & | |
| 1194 | (\<forall>A C B. axiom(or(not(or(not(A),B)),or(not(or(C,A)),or(C,B))))) & | |
| 1195 | (\<forall>X. axiom(X) --> theorem(X)) & | |
| 1196 | (\<forall>X Y. axiom(or(not(Y),X)) & theorem(Y) --> theorem(X)) & | |
| 1197 | (\<forall>X Y Z. axiom(or(not(X),Y)) & theorem(or(not(Y),Z)) --> theorem(or(not(X),Z))) & | |
| 24127 | 1198 | (~theorem(or(not(or(not(p),q)),or(not(or(p,q)),q)))) --> False" | 
| 1199 | by meson | |
| 1200 | ||
| 1201 | (*0 secs. Not sure that a search even starts!*) | |
| 1202 | lemma LCL230_2: | |
| 24128 | 1203 | "(q --> p | r) & | 
| 1204 | (~p) & | |
| 1205 | (q) & | |
| 24127 | 1206 | (~r) --> False" | 
| 1207 | by meson | |
| 1208 | ||
| 1209 | (*119585 inferences so far. Searching to depth 14. 262.4 secs*) | |
| 1210 | lemma LDA003_1: | |
| 1211 | "EQU001_0_ax equal & | |
| 24128 | 1212 | (\<forall>Y X Z. equal(f(X::'a,f(Y::'a,Z)),f(f(X::'a,Y),f(X::'a,Z)))) & | 
| 1213 | (\<forall>X Y. left(X::'a,f(X::'a,Y))) & | |
| 1214 | (\<forall>Y X Z. left(X::'a,Y) & left(Y::'a,Z) --> left(X::'a,Z)) & | |
| 1215 | (equal(num2::'a,f(num1::'a,num1))) & | |
| 1216 | (equal(num3::'a,f(num2::'a,num1))) & | |
| 1217 | (equal(u::'a,f(num2::'a,num2))) & | |
| 1218 | (\<forall>A B C. equal(A::'a,B) --> equal(f(A::'a,C),f(B::'a,C))) & | |
| 1219 | (\<forall>D F' E. equal(D::'a,E) --> equal(f(F'::'a,D),f(F'::'a,E))) & | |
| 1220 | (\<forall>G H I'. equal(G::'a,H) & left(G::'a,I') --> left(H::'a,I')) & | |
| 1221 | (\<forall>J L K'. equal(J::'a,K') & left(L::'a,J) --> left(L::'a,K')) & | |
| 24127 | 1222 | (~left(num3::'a,u)) --> False" | 
| 1223 | oops | |
| 1224 | ||
| 1225 | ||
| 1226 | (*2392 inferences so far. Searching to depth 12. 2.2 secs*) | |
| 1227 | lemma MSC002_1: | |
| 24128 | 1228 | "(at(something::'a,here,now)) & | 
| 1229 | (\<forall>Place Situation. hand_at(Place::'a,Situation) --> hand_at(Place::'a,let_go(Situation))) & | |
| 1230 | (\<forall>Place Another_place Situation. hand_at(Place::'a,Situation) --> hand_at(Another_place::'a,go(Another_place::'a,Situation))) & | |
| 1231 | (\<forall>Thing Situation. ~held(Thing::'a,let_go(Situation))) & | |
| 1232 | (\<forall>Situation Thing. at(Thing::'a,here,Situation) --> red(Thing)) & | |
| 1233 | (\<forall>Thing Place Situation. at(Thing::'a,Place,Situation) --> at(Thing::'a,Place,let_go(Situation))) & | |
| 1234 | (\<forall>Thing Place Situation. at(Thing::'a,Place,Situation) --> at(Thing::'a,Place,pick_up(Situation))) & | |
| 1235 | (\<forall>Thing Place Situation. at(Thing::'a,Place,Situation) --> grabbed(Thing::'a,pick_up(go(Place::'a,let_go(Situation))))) & | |
| 1236 | (\<forall>Thing Situation. red(Thing) & put(Thing::'a,there,Situation) --> answer(Situation)) & | |
| 1237 | (\<forall>Place Thing Another_place Situation. at(Thing::'a,Place,Situation) & grabbed(Thing::'a,Situation) --> put(Thing::'a,Another_place,go(Another_place::'a,Situation))) & | |
| 1238 | (\<forall>Thing Place Another_place Situation. at(Thing::'a,Place,Situation) --> held(Thing::'a,Situation) | at(Thing::'a,Place,go(Another_place::'a,Situation))) & | |
| 1239 | (\<forall>One_place Thing Place Situation. hand_at(One_place::'a,Situation) & held(Thing::'a,Situation) --> at(Thing::'a,Place,go(Place::'a,Situation))) & | |
| 1240 | (\<forall>Place Thing Situation. hand_at(Place::'a,Situation) & at(Thing::'a,Place,Situation) --> held(Thing::'a,pick_up(Situation))) & | |
| 24127 | 1241 | (\<forall>Situation. ~answer(Situation)) --> False" | 
| 1242 | by meson | |
| 1243 | ||
| 1244 | (*73 inferences so far. Searching to depth 10. 0.2 secs*) | |
| 1245 | lemma MSC003_1: | |
| 24128 | 1246 | "(\<forall>Number_of_small_parts Small_part Big_part Number_of_mid_parts Mid_part. has_parts(Big_part::'a,Number_of_mid_parts,Mid_part) --> in'(object_in(Big_part::'a,Mid_part,Small_part,Number_of_mid_parts,Number_of_small_parts),Mid_part) | has_parts(Big_part::'a,mtimes(Number_of_mid_parts::'a,Number_of_small_parts),Small_part)) & | 
| 1247 | (\<forall>Big_part Mid_part Number_of_mid_parts Number_of_small_parts Small_part. has_parts(Big_part::'a,Number_of_mid_parts,Mid_part) & has_parts(object_in(Big_part::'a,Mid_part,Small_part,Number_of_mid_parts,Number_of_small_parts),Number_of_small_parts,Small_part) --> has_parts(Big_part::'a,mtimes(Number_of_mid_parts::'a,Number_of_small_parts),Small_part)) & | |
| 1248 | (in'(john::'a,boy)) & | |
| 1249 | (\<forall>X. in'(X::'a,boy) --> in'(X::'a,human)) & | |
| 1250 | (\<forall>X. in'(X::'a,hand) --> has_parts(X::'a,num5,fingers)) & | |
| 1251 | (\<forall>X. in'(X::'a,human) --> has_parts(X::'a,num2,arm)) & | |
| 1252 | (\<forall>X. in'(X::'a,arm) --> has_parts(X::'a,num1,hand)) & | |
| 24127 | 1253 | (~has_parts(john::'a,mtimes(num2::'a,num1),hand)) --> False" | 
| 1254 | by meson | |
| 1255 | ||
| 1256 | (*1486 inferences so far. Searching to depth 20. 1.2 secs*) | |
| 1257 | lemma MSC004_1: | |
| 24128 | 1258 | "(\<forall>Number_of_small_parts Small_part Big_part Number_of_mid_parts Mid_part. has_parts(Big_part::'a,Number_of_mid_parts,Mid_part) --> in'(object_in(Big_part::'a,Mid_part,Small_part,Number_of_mid_parts,Number_of_small_parts),Mid_part) | has_parts(Big_part::'a,mtimes(Number_of_mid_parts::'a,Number_of_small_parts),Small_part)) & | 
| 1259 | (\<forall>Big_part Mid_part Number_of_mid_parts Number_of_small_parts Small_part. has_parts(Big_part::'a,Number_of_mid_parts,Mid_part) & has_parts(object_in(Big_part::'a,Mid_part,Small_part,Number_of_mid_parts,Number_of_small_parts),Number_of_small_parts,Small_part) --> has_parts(Big_part::'a,mtimes(Number_of_mid_parts::'a,Number_of_small_parts),Small_part)) & | |
| 1260 | (in'(john::'a,boy)) & | |
| 1261 | (\<forall>X. in'(X::'a,boy) --> in'(X::'a,human)) & | |
| 1262 | (\<forall>X. in'(X::'a,hand) --> has_parts(X::'a,num5,fingers)) & | |
| 1263 | (\<forall>X. in'(X::'a,human) --> has_parts(X::'a,num2,arm)) & | |
| 1264 | (\<forall>X. in'(X::'a,arm) --> has_parts(X::'a,num1,hand)) & | |
| 24127 | 1265 | (~has_parts(john::'a,mtimes(mtimes(num2::'a,num1),num5),fingers)) --> False" | 
| 1266 | by meson | |
| 1267 | ||
| 1268 | (*100 inferences so far. Searching to depth 12. 0.1 secs*) | |
| 1269 | lemma MSC005_1: | |
| 24128 | 1270 | "(value(truth::'a,truth)) & | 
| 1271 | (value(falsity::'a,falsity)) & | |
| 1272 | (\<forall>X Y. value(X::'a,truth) & value(Y::'a,truth) --> value(xor(X::'a,Y),falsity)) & | |
| 1273 | (\<forall>X Y. value(X::'a,truth) & value(Y::'a,falsity) --> value(xor(X::'a,Y),truth)) & | |
| 1274 | (\<forall>X Y. value(X::'a,falsity) & value(Y::'a,truth) --> value(xor(X::'a,Y),truth)) & | |
| 1275 | (\<forall>X Y. value(X::'a,falsity) & value(Y::'a,falsity) --> value(xor(X::'a,Y),falsity)) & | |
| 24127 | 1276 | (\<forall>Value. ~value(xor(xor(xor(xor(truth::'a,falsity),falsity),truth),falsity),Value)) --> False" | 
| 1277 | by meson | |
| 1278 | ||
| 1279 | (*19116 inferences so far. Searching to depth 16. 15.9 secs*) | |
| 1280 | lemma MSC006_1: | |
| 24128 | 1281 | "(\<forall>Y X Z. p(X::'a,Y) & p(Y::'a,Z) --> p(X::'a,Z)) & | 
| 1282 | (\<forall>Y X Z. q(X::'a,Y) & q(Y::'a,Z) --> q(X::'a,Z)) & | |
| 1283 | (\<forall>Y X. q(X::'a,Y) --> q(Y::'a,X)) & | |
| 1284 | (\<forall>X Y. p(X::'a,Y) | q(X::'a,Y)) & | |
| 1285 | (~p(a::'a,b)) & | |
| 24127 | 1286 | (~q(c::'a,d)) --> False" | 
| 1287 | by meson | |
| 1288 | ||
| 1289 | (*1713 inferences so far. Searching to depth 10. 2.8 secs*) | |
| 1290 | lemma NUM001_1: | |
| 24128 | 1291 | "(\<forall>A. equal(A::'a,A)) & | 
| 1292 | (\<forall>B A C. equal(A::'a,B) & equal(B::'a,C) --> equal(A::'a,C)) & | |
| 1293 | (\<forall>B A. equal(add(A::'a,B),add(B::'a,A))) & | |
| 1294 | (\<forall>A B C. equal(add(A::'a,add(B::'a,C)),add(add(A::'a,B),C))) & | |
| 1295 | (\<forall>B A. equal(subtract(add(A::'a,B),B),A)) & | |
| 1296 | (\<forall>A B. equal(A::'a,subtract(add(A::'a,B),B))) & | |
| 1297 | (\<forall>A C B. equal(add(subtract(A::'a,B),C),subtract(add(A::'a,C),B))) & | |
| 1298 | (\<forall>A C B. equal(subtract(add(A::'a,B),C),add(subtract(A::'a,C),B))) & | |
| 1299 | (\<forall>A C B D. equal(A::'a,B) & equal(C::'a,add(A::'a,D)) --> equal(C::'a,add(B::'a,D))) & | |
| 1300 | (\<forall>A C D B. equal(A::'a,B) & equal(C::'a,add(D::'a,A)) --> equal(C::'a,add(D::'a,B))) & | |
| 1301 | (\<forall>A C B D. equal(A::'a,B) & equal(C::'a,subtract(A::'a,D)) --> equal(C::'a,subtract(B::'a,D))) & | |
| 1302 | (\<forall>A C D B. equal(A::'a,B) & equal(C::'a,subtract(D::'a,A)) --> equal(C::'a,subtract(D::'a,B))) & | |
| 24127 | 1303 | (~equal(add(add(a::'a,b),c),add(a::'a,add(b::'a,c)))) --> False" | 
| 1304 | by meson | |
| 1305 | ||
| 1306 | abbreviation "NUM001_0_ax multiply successor num0 add equal \<equiv> | |
| 24128 | 1307 | (\<forall>A. equal(add(A::'a,num0),A)) & | 
| 1308 | (\<forall>A B. equal(add(A::'a,successor(B)),successor(add(A::'a,B)))) & | |
| 1309 | (\<forall>A. equal(multiply(A::'a,num0),num0)) & | |
| 1310 | (\<forall>B A. equal(multiply(A::'a,successor(B)),add(multiply(A::'a,B),A))) & | |
| 1311 | (\<forall>A B. equal(successor(A),successor(B)) --> equal(A::'a,B)) & | |
| 24127 | 1312 | (\<forall>A B. equal(A::'a,B) --> equal(successor(A),successor(B)))" | 
| 1313 | ||
| 1314 | abbreviation "NUM001_1_ax predecessor_of_1st_minus_2nd successor add equal mless \<equiv> | |
| 24128 | 1315 | (\<forall>A C B. mless(A::'a,B) & mless(C::'a,A) --> mless(C::'a,B)) & | 
| 1316 | (\<forall>A B C. equal(add(successor(A),B),C) --> mless(B::'a,C)) & | |
| 24127 | 1317 | (\<forall>A B. mless(A::'a,B) --> equal(add(successor(predecessor_of_1st_minus_2nd(B::'a,A)),A),B))" | 
| 1318 | ||
| 1319 | abbreviation "NUM001_2_ax equal mless divides \<equiv> | |
| 24128 | 1320 | (\<forall>A B. divides(A::'a,B) --> mless(A::'a,B) | equal(A::'a,B)) & | 
| 1321 | (\<forall>A B. mless(A::'a,B) --> divides(A::'a,B)) & | |
| 24127 | 1322 | (\<forall>A B. equal(A::'a,B) --> divides(A::'a,B))" | 
| 1323 | ||
| 1324 | (*20717 inferences so far. Searching to depth 11. 13.7 secs*) | |
| 1325 | lemma NUM021_1: | |
| 1326 | "EQU001_0_ax equal & | |
| 1327 | NUM001_0_ax multiply successor num0 add equal & | |
| 1328 | NUM001_1_ax predecessor_of_1st_minus_2nd successor add equal mless & | |
| 1329 | NUM001_2_ax equal mless divides & | |
| 24128 | 1330 | (mless(b::'a,c)) & | 
| 1331 | (~mless(b::'a,a)) & | |
| 1332 | (divides(c::'a,a)) & | |
| 24127 | 1333 | (\<forall>A. ~equal(successor(A),num0)) --> False" | 
| 1334 | by meson | |
| 1335 | ||
| 1336 | (*26320 inferences so far. Searching to depth 10. 26.4 secs*) | |
| 1337 | lemma NUM024_1: | |
| 1338 | "EQU001_0_ax equal & | |
| 1339 | NUM001_0_ax multiply successor num0 add equal & | |
| 24128 | 1340 | NUM001_1_ax predecessor_of_1st_minus_2nd successor add equal mless & | 
| 1341 | (\<forall>B A. equal(add(A::'a,B),add(B::'a,A))) & | |
| 1342 | (\<forall>B A C. equal(add(A::'a,B),add(C::'a,B)) --> equal(A::'a,C)) & | |
| 1343 | (mless(a::'a,a)) & | |
| 24127 | 1344 | (\<forall>A. ~equal(successor(A),num0)) --> False" | 
| 1345 | oops | |
| 1346 | ||
| 1347 | abbreviation "SET004_0_ax not_homomorphism2 not_homomorphism1 | |
| 1348 | homomorphism compatible operation cantor diagonalise subset_relation | |
| 1349 | one_to_one choice apply regular function identity_relation | |
| 1350 | single_valued_class compos powerClass sum_class omega inductive | |
| 1351 | successor_relation successor image' rng domain range_of INVERSE flip | |
| 1352 | rot domain_of null_class restrct difference union complement | |
| 1353 | intersection element_relation second first cross_product ordered_pair | |
| 1354 | singleton unordered_pair equal universal_class not_subclass_element | |
| 1355 | member subclass \<equiv> | |
| 24128 | 1356 | (\<forall>X U Y. subclass(X::'a,Y) & member(U::'a,X) --> member(U::'a,Y)) & | 
| 1357 | (\<forall>X Y. member(not_subclass_element(X::'a,Y),X) | subclass(X::'a,Y)) & | |
| 1358 | (\<forall>X Y. member(not_subclass_element(X::'a,Y),Y) --> subclass(X::'a,Y)) & | |
| 1359 | (\<forall>X. subclass(X::'a,universal_class)) & | |
| 1360 | (\<forall>X Y. equal(X::'a,Y) --> subclass(X::'a,Y)) & | |
| 1361 | (\<forall>Y X. equal(X::'a,Y) --> subclass(Y::'a,X)) & | |
| 1362 | (\<forall>X Y. subclass(X::'a,Y) & subclass(Y::'a,X) --> equal(X::'a,Y)) & | |
| 1363 | (\<forall>X U Y. member(U::'a,unordered_pair(X::'a,Y)) --> equal(U::'a,X) | equal(U::'a,Y)) & | |
| 1364 | (\<forall>X Y. member(X::'a,universal_class) --> member(X::'a,unordered_pair(X::'a,Y))) & | |
| 1365 | (\<forall>X Y. member(Y::'a,universal_class) --> member(Y::'a,unordered_pair(X::'a,Y))) & | |
| 1366 | (\<forall>X Y. member(unordered_pair(X::'a,Y),universal_class)) & | |
| 1367 | (\<forall>X. equal(unordered_pair(X::'a,X),singleton(X))) & | |
| 1368 | (\<forall>X Y. equal(unordered_pair(singleton(X),unordered_pair(X::'a,singleton(Y))),ordered_pair(X::'a,Y))) & | |
| 1369 | (\<forall>V Y U X. member(ordered_pair(U::'a,V),cross_product(X::'a,Y)) --> member(U::'a,X)) & | |
| 1370 | (\<forall>U X V Y. member(ordered_pair(U::'a,V),cross_product(X::'a,Y)) --> member(V::'a,Y)) & | |
| 1371 | (\<forall>U V X Y. member(U::'a,X) & member(V::'a,Y) --> member(ordered_pair(U::'a,V),cross_product(X::'a,Y))) & | |
| 1372 | (\<forall>X Y Z. member(Z::'a,cross_product(X::'a,Y)) --> equal(ordered_pair(first(Z),second(Z)),Z)) & | |
| 1373 | (subclass(element_relation::'a,cross_product(universal_class::'a,universal_class))) & | |
| 1374 | (\<forall>X Y. member(ordered_pair(X::'a,Y),element_relation) --> member(X::'a,Y)) & | |
| 1375 | (\<forall>X Y. member(ordered_pair(X::'a,Y),cross_product(universal_class::'a,universal_class)) & member(X::'a,Y) --> member(ordered_pair(X::'a,Y),element_relation)) & | |
| 1376 | (\<forall>Y Z X. member(Z::'a,intersection(X::'a,Y)) --> member(Z::'a,X)) & | |
| 1377 | (\<forall>X Z Y. member(Z::'a,intersection(X::'a,Y)) --> member(Z::'a,Y)) & | |
| 1378 | (\<forall>Z X Y. member(Z::'a,X) & member(Z::'a,Y) --> member(Z::'a,intersection(X::'a,Y))) & | |
| 1379 | (\<forall>Z X. ~(member(Z::'a,complement(X)) & member(Z::'a,X))) & | |
| 1380 | (\<forall>Z X. member(Z::'a,universal_class) --> member(Z::'a,complement(X)) | member(Z::'a,X)) & | |
| 1381 | (\<forall>X Y. equal(complement(intersection(complement(X),complement(Y))),union(X::'a,Y))) & | |
| 1382 | (\<forall>X Y. equal(intersection(complement(intersection(X::'a,Y)),complement(intersection(complement(X),complement(Y)))),difference(X::'a,Y))) & | |
| 1383 | (\<forall>Xr X Y. equal(intersection(Xr::'a,cross_product(X::'a,Y)),restrct(Xr::'a,X,Y))) & | |
| 1384 | (\<forall>Xr X Y. equal(intersection(cross_product(X::'a,Y),Xr),restrct(Xr::'a,X,Y))) & | |
| 1385 | (\<forall>Z X. ~(equal(restrct(X::'a,singleton(Z),universal_class),null_class) & member(Z::'a,domain_of(X)))) & | |
| 1386 | (\<forall>Z X. member(Z::'a,universal_class) --> equal(restrct(X::'a,singleton(Z),universal_class),null_class) | member(Z::'a,domain_of(X))) & | |
| 1387 | (\<forall>X. subclass(rot(X),cross_product(cross_product(universal_class::'a,universal_class),universal_class))) & | |
| 1388 | (\<forall>V W U X. member(ordered_pair(ordered_pair(U::'a,V),W),rot(X)) --> member(ordered_pair(ordered_pair(V::'a,W),U),X)) & | |
| 1389 | (\<forall>U V W X. member(ordered_pair(ordered_pair(V::'a,W),U),X) & member(ordered_pair(ordered_pair(U::'a,V),W),cross_product(cross_product(universal_class::'a,universal_class),universal_class)) --> member(ordered_pair(ordered_pair(U::'a,V),W),rot(X))) & | |
| 1390 | (\<forall>X. subclass(flip(X),cross_product(cross_product(universal_class::'a,universal_class),universal_class))) & | |
| 1391 | (\<forall>V U W X. member(ordered_pair(ordered_pair(U::'a,V),W),flip(X)) --> member(ordered_pair(ordered_pair(V::'a,U),W),X)) & | |
| 1392 | (\<forall>U V W X. member(ordered_pair(ordered_pair(V::'a,U),W),X) & member(ordered_pair(ordered_pair(U::'a,V),W),cross_product(cross_product(universal_class::'a,universal_class),universal_class)) --> member(ordered_pair(ordered_pair(U::'a,V),W),flip(X))) & | |
| 1393 | (\<forall>Y. equal(domain_of(flip(cross_product(Y::'a,universal_class))),INVERSE(Y))) & | |
| 1394 | (\<forall>Z. equal(domain_of(INVERSE(Z)),range_of(Z))) & | |
| 1395 | (\<forall>Z X Y. equal(first(not_subclass_element(restrct(Z::'a,X,singleton(Y)),null_class)),domain(Z::'a,X,Y))) & | |
| 1396 | (\<forall>Z X Y. equal(second(not_subclass_element(restrct(Z::'a,singleton(X),Y),null_class)),rng(Z::'a,X,Y))) & | |
| 1397 | (\<forall>Xr X. equal(range_of(restrct(Xr::'a,X,universal_class)),image'(Xr::'a,X))) & | |
| 1398 | (\<forall>X. equal(union(X::'a,singleton(X)),successor(X))) & | |
| 1399 | (subclass(successor_relation::'a,cross_product(universal_class::'a,universal_class))) & | |
| 1400 | (\<forall>X Y. member(ordered_pair(X::'a,Y),successor_relation) --> equal(successor(X),Y)) & | |
| 1401 | (\<forall>X Y. equal(successor(X),Y) & member(ordered_pair(X::'a,Y),cross_product(universal_class::'a,universal_class)) --> member(ordered_pair(X::'a,Y),successor_relation)) & | |
| 1402 | (\<forall>X. inductive(X) --> member(null_class::'a,X)) & | |
| 1403 | (\<forall>X. inductive(X) --> subclass(image'(successor_relation::'a,X),X)) & | |
| 1404 | (\<forall>X. member(null_class::'a,X) & subclass(image'(successor_relation::'a,X),X) --> inductive(X)) & | |
| 1405 | (inductive(omega)) & | |
| 1406 | (\<forall>Y. inductive(Y) --> subclass(omega::'a,Y)) & | |
| 1407 | (member(omega::'a,universal_class)) & | |
| 1408 | (\<forall>X. equal(domain_of(restrct(element_relation::'a,universal_class,X)),sum_class(X))) & | |
| 1409 | (\<forall>X. member(X::'a,universal_class) --> member(sum_class(X),universal_class)) & | |
| 1410 | (\<forall>X. equal(complement(image'(element_relation::'a,complement(X))),powerClass(X))) & | |
| 1411 | (\<forall>U. member(U::'a,universal_class) --> member(powerClass(U),universal_class)) & | |
| 1412 | (\<forall>Yr Xr. subclass(compos(Yr::'a,Xr),cross_product(universal_class::'a,universal_class))) & | |
| 1413 | (\<forall>Z Yr Xr Y. member(ordered_pair(Y::'a,Z),compos(Yr::'a,Xr)) --> member(Z::'a,image'(Yr::'a,image'(Xr::'a,singleton(Y))))) & | |
| 1414 | (\<forall>Y Z Yr Xr. member(Z::'a,image'(Yr::'a,image'(Xr::'a,singleton(Y)))) & member(ordered_pair(Y::'a,Z),cross_product(universal_class::'a,universal_class)) --> member(ordered_pair(Y::'a,Z),compos(Yr::'a,Xr))) & | |
| 1415 | (\<forall>X. single_valued_class(X) --> subclass(compos(X::'a,INVERSE(X)),identity_relation)) & | |
| 1416 | (\<forall>X. subclass(compos(X::'a,INVERSE(X)),identity_relation) --> single_valued_class(X)) & | |
| 1417 | (\<forall>Xf. function(Xf) --> subclass(Xf::'a,cross_product(universal_class::'a,universal_class))) & | |
| 1418 | (\<forall>Xf. function(Xf) --> subclass(compos(Xf::'a,INVERSE(Xf)),identity_relation)) & | |
| 1419 | (\<forall>Xf. subclass(Xf::'a,cross_product(universal_class::'a,universal_class)) & subclass(compos(Xf::'a,INVERSE(Xf)),identity_relation) --> function(Xf)) & | |
| 1420 | (\<forall>Xf X. function(Xf) & member(X::'a,universal_class) --> member(image'(Xf::'a,X),universal_class)) & | |
| 1421 | (\<forall>X. equal(X::'a,null_class) | member(regular(X),X)) & | |
| 1422 | (\<forall>X. equal(X::'a,null_class) | equal(intersection(X::'a,regular(X)),null_class)) & | |
| 1423 | (\<forall>Xf Y. equal(sum_class(image'(Xf::'a,singleton(Y))),apply(Xf::'a,Y))) & | |
| 1424 | (function(choice)) & | |
| 1425 | (\<forall>Y. member(Y::'a,universal_class) --> equal(Y::'a,null_class) | member(apply(choice::'a,Y),Y)) & | |
| 1426 | (\<forall>Xf. one_to_one(Xf) --> function(Xf)) & | |
| 1427 | (\<forall>Xf. one_to_one(Xf) --> function(INVERSE(Xf))) & | |
| 1428 | (\<forall>Xf. function(INVERSE(Xf)) & function(Xf) --> one_to_one(Xf)) & | |
| 1429 | (equal(intersection(cross_product(universal_class::'a,universal_class),intersection(cross_product(universal_class::'a,universal_class),complement(compos(complement(element_relation),INVERSE(element_relation))))),subset_relation)) & | |
| 1430 | (equal(intersection(INVERSE(subset_relation),subset_relation),identity_relation)) & | |
| 1431 | (\<forall>Xr. equal(complement(domain_of(intersection(Xr::'a,identity_relation))),diagonalise(Xr))) & | |
| 1432 | (\<forall>X. equal(intersection(domain_of(X),diagonalise(compos(INVERSE(element_relation),X))),cantor(X))) & | |
| 1433 | (\<forall>Xf. operation(Xf) --> function(Xf)) & | |
| 1434 | (\<forall>Xf. operation(Xf) --> equal(cross_product(domain_of(domain_of(Xf)),domain_of(domain_of(Xf))),domain_of(Xf))) & | |
| 1435 | (\<forall>Xf. operation(Xf) --> subclass(range_of(Xf),domain_of(domain_of(Xf)))) & | |
| 1436 | (\<forall>Xf. function(Xf) & equal(cross_product(domain_of(domain_of(Xf)),domain_of(domain_of(Xf))),domain_of(Xf)) & subclass(range_of(Xf),domain_of(domain_of(Xf))) --> operation(Xf)) & | |
| 1437 | (\<forall>Xf1 Xf2 Xh. compatible(Xh::'a,Xf1,Xf2) --> function(Xh)) & | |
| 1438 | (\<forall>Xf2 Xf1 Xh. compatible(Xh::'a,Xf1,Xf2) --> equal(domain_of(domain_of(Xf1)),domain_of(Xh))) & | |
| 1439 | (\<forall>Xf1 Xh Xf2. compatible(Xh::'a,Xf1,Xf2) --> subclass(range_of(Xh),domain_of(domain_of(Xf2)))) & | |
| 1440 | (\<forall>Xh Xh1 Xf1 Xf2. function(Xh) & equal(domain_of(domain_of(Xf1)),domain_of(Xh)) & subclass(range_of(Xh),domain_of(domain_of(Xf2))) --> compatible(Xh1::'a,Xf1,Xf2)) & | |
| 1441 | (\<forall>Xh Xf2 Xf1. homomorphism(Xh::'a,Xf1,Xf2) --> operation(Xf1)) & | |
| 1442 | (\<forall>Xh Xf1 Xf2. homomorphism(Xh::'a,Xf1,Xf2) --> operation(Xf2)) & | |
| 1443 | (\<forall>Xh Xf1 Xf2. homomorphism(Xh::'a,Xf1,Xf2) --> compatible(Xh::'a,Xf1,Xf2)) & | |
| 1444 | (\<forall>Xf2 Xh Xf1 X Y. homomorphism(Xh::'a,Xf1,Xf2) & member(ordered_pair(X::'a,Y),domain_of(Xf1)) --> equal(apply(Xf2::'a,ordered_pair(apply(Xh::'a,X),apply(Xh::'a,Y))),apply(Xh::'a,apply(Xf1::'a,ordered_pair(X::'a,Y))))) & | |
| 1445 | (\<forall>Xh Xf1 Xf2. operation(Xf1) & operation(Xf2) & compatible(Xh::'a,Xf1,Xf2) --> member(ordered_pair(not_homomorphism1(Xh::'a,Xf1,Xf2),not_homomorphism2(Xh::'a,Xf1,Xf2)),domain_of(Xf1)) | homomorphism(Xh::'a,Xf1,Xf2)) & | |
| 24127 | 1446 | (\<forall>Xh Xf1 Xf2. operation(Xf1) & operation(Xf2) & compatible(Xh::'a,Xf1,Xf2) & equal(apply(Xf2::'a,ordered_pair(apply(Xh::'a,not_homomorphism1(Xh::'a,Xf1,Xf2)),apply(Xh::'a,not_homomorphism2(Xh::'a,Xf1,Xf2)))),apply(Xh::'a,apply(Xf1::'a,ordered_pair(not_homomorphism1(Xh::'a,Xf1,Xf2),not_homomorphism2(Xh::'a,Xf1,Xf2))))) --> homomorphism(Xh::'a,Xf1,Xf2))" | 
| 1447 | ||
| 1448 | abbreviation "SET004_0_eq subclass single_valued_class operation | |
| 1449 | one_to_one member inductive homomorphism function compatible | |
| 1450 | unordered_pair union sum_class successor singleton second rot restrct | |
| 1451 | regular range_of rng powerClass ordered_pair not_subclass_element | |
| 1452 | not_homomorphism2 not_homomorphism1 INVERSE intersection image' flip | |
| 1453 | first domain_of domain difference diagonalise cross_product compos | |
| 1454 | complement cantor apply equal \<equiv> | |
| 24128 | 1455 | (\<forall>D E F'. equal(D::'a,E) --> equal(apply(D::'a,F'),apply(E::'a,F'))) & | 
| 1456 | (\<forall>G I' H. equal(G::'a,H) --> equal(apply(I'::'a,G),apply(I'::'a,H))) & | |
| 1457 | (\<forall>J K'. equal(J::'a,K') --> equal(cantor(J),cantor(K'))) & | |
| 1458 | (\<forall>L M. equal(L::'a,M) --> equal(complement(L),complement(M))) & | |
| 1459 | (\<forall>N O' P. equal(N::'a,O') --> equal(compos(N::'a,P),compos(O'::'a,P))) & | |
| 1460 | (\<forall>Q S' R. equal(Q::'a,R) --> equal(compos(S'::'a,Q),compos(S'::'a,R))) & | |
| 1461 | (\<forall>T' U V. equal(T'::'a,U) --> equal(cross_product(T'::'a,V),cross_product(U::'a,V))) & | |
| 1462 | (\<forall>W Y X. equal(W::'a,X) --> equal(cross_product(Y::'a,W),cross_product(Y::'a,X))) & | |
| 1463 | (\<forall>Z A1. equal(Z::'a,A1) --> equal(diagonalise(Z),diagonalise(A1))) & | |
| 1464 | (\<forall>B1 C1 D1. equal(B1::'a,C1) --> equal(difference(B1::'a,D1),difference(C1::'a,D1))) & | |
| 1465 | (\<forall>E1 G1 F1. equal(E1::'a,F1) --> equal(difference(G1::'a,E1),difference(G1::'a,F1))) & | |
| 1466 | (\<forall>H1 I1 J1 K1. equal(H1::'a,I1) --> equal(domain(H1::'a,J1,K1),domain(I1::'a,J1,K1))) & | |
| 1467 | (\<forall>L1 N1 M1 O1. equal(L1::'a,M1) --> equal(domain(N1::'a,L1,O1),domain(N1::'a,M1,O1))) & | |
| 1468 | (\<forall>P1 R1 S1 Q1. equal(P1::'a,Q1) --> equal(domain(R1::'a,S1,P1),domain(R1::'a,S1,Q1))) & | |
| 1469 | (\<forall>T1 U1. equal(T1::'a,U1) --> equal(domain_of(T1),domain_of(U1))) & | |
| 1470 | (\<forall>V1 W1. equal(V1::'a,W1) --> equal(first(V1),first(W1))) & | |
| 1471 | (\<forall>X1 Y1. equal(X1::'a,Y1) --> equal(flip(X1),flip(Y1))) & | |
| 1472 | (\<forall>Z1 A2 B2. equal(Z1::'a,A2) --> equal(image'(Z1::'a,B2),image'(A2::'a,B2))) & | |
| 1473 | (\<forall>C2 E2 D2. equal(C2::'a,D2) --> equal(image'(E2::'a,C2),image'(E2::'a,D2))) & | |
| 1474 | (\<forall>F2 G2 H2. equal(F2::'a,G2) --> equal(intersection(F2::'a,H2),intersection(G2::'a,H2))) & | |
| 1475 | (\<forall>I2 K2 J2. equal(I2::'a,J2) --> equal(intersection(K2::'a,I2),intersection(K2::'a,J2))) & | |
| 1476 | (\<forall>L2 M2. equal(L2::'a,M2) --> equal(INVERSE(L2),INVERSE(M2))) & | |
| 1477 | (\<forall>N2 O2 P2 Q2. equal(N2::'a,O2) --> equal(not_homomorphism1(N2::'a,P2,Q2),not_homomorphism1(O2::'a,P2,Q2))) & | |
| 1478 | (\<forall>R2 T2 S2 U2. equal(R2::'a,S2) --> equal(not_homomorphism1(T2::'a,R2,U2),not_homomorphism1(T2::'a,S2,U2))) & | |
| 1479 | (\<forall>V2 X2 Y2 W2. equal(V2::'a,W2) --> equal(not_homomorphism1(X2::'a,Y2,V2),not_homomorphism1(X2::'a,Y2,W2))) & | |
| 1480 | (\<forall>Z2 A3 B3 C3. equal(Z2::'a,A3) --> equal(not_homomorphism2(Z2::'a,B3,C3),not_homomorphism2(A3::'a,B3,C3))) & | |
| 1481 | (\<forall>D3 F3 E3 G3. equal(D3::'a,E3) --> equal(not_homomorphism2(F3::'a,D3,G3),not_homomorphism2(F3::'a,E3,G3))) & | |
| 1482 | (\<forall>H3 J3 K3 I3. equal(H3::'a,I3) --> equal(not_homomorphism2(J3::'a,K3,H3),not_homomorphism2(J3::'a,K3,I3))) & | |
| 1483 | (\<forall>L3 M3 N3. equal(L3::'a,M3) --> equal(not_subclass_element(L3::'a,N3),not_subclass_element(M3::'a,N3))) & | |
| 1484 | (\<forall>O3 Q3 P3. equal(O3::'a,P3) --> equal(not_subclass_element(Q3::'a,O3),not_subclass_element(Q3::'a,P3))) & | |
| 1485 | (\<forall>R3 S3 T3. equal(R3::'a,S3) --> equal(ordered_pair(R3::'a,T3),ordered_pair(S3::'a,T3))) & | |
| 1486 | (\<forall>U3 W3 V3. equal(U3::'a,V3) --> equal(ordered_pair(W3::'a,U3),ordered_pair(W3::'a,V3))) & | |
| 1487 | (\<forall>X3 Y3. equal(X3::'a,Y3) --> equal(powerClass(X3),powerClass(Y3))) & | |
| 1488 | (\<forall>Z3 A4 B4 C4. equal(Z3::'a,A4) --> equal(rng(Z3::'a,B4,C4),rng(A4::'a,B4,C4))) & | |
| 1489 | (\<forall>D4 F4 E4 G4. equal(D4::'a,E4) --> equal(rng(F4::'a,D4,G4),rng(F4::'a,E4,G4))) & | |
| 1490 | (\<forall>H4 J4 K4 I4. equal(H4::'a,I4) --> equal(rng(J4::'a,K4,H4),rng(J4::'a,K4,I4))) & | |
| 1491 | (\<forall>L4 M4. equal(L4::'a,M4) --> equal(range_of(L4),range_of(M4))) & | |
| 1492 | (\<forall>N4 O4. equal(N4::'a,O4) --> equal(regular(N4),regular(O4))) & | |
| 1493 | (\<forall>P4 Q4 R4 S4. equal(P4::'a,Q4) --> equal(restrct(P4::'a,R4,S4),restrct(Q4::'a,R4,S4))) & | |
| 1494 | (\<forall>T4 V4 U4 W4. equal(T4::'a,U4) --> equal(restrct(V4::'a,T4,W4),restrct(V4::'a,U4,W4))) & | |
| 1495 | (\<forall>X4 Z4 A5 Y4. equal(X4::'a,Y4) --> equal(restrct(Z4::'a,A5,X4),restrct(Z4::'a,A5,Y4))) & | |
| 1496 | (\<forall>B5 C5. equal(B5::'a,C5) --> equal(rot(B5),rot(C5))) & | |
| 1497 | (\<forall>D5 E5. equal(D5::'a,E5) --> equal(second(D5),second(E5))) & | |
| 1498 | (\<forall>F5 G5. equal(F5::'a,G5) --> equal(singleton(F5),singleton(G5))) & | |
| 1499 | (\<forall>H5 I5. equal(H5::'a,I5) --> equal(successor(H5),successor(I5))) & | |
| 1500 | (\<forall>J5 K5. equal(J5::'a,K5) --> equal(sum_class(J5),sum_class(K5))) & | |
| 1501 | (\<forall>L5 M5 N5. equal(L5::'a,M5) --> equal(union(L5::'a,N5),union(M5::'a,N5))) & | |
| 1502 | (\<forall>O5 Q5 P5. equal(O5::'a,P5) --> equal(union(Q5::'a,O5),union(Q5::'a,P5))) & | |
| 1503 | (\<forall>R5 S5 T5. equal(R5::'a,S5) --> equal(unordered_pair(R5::'a,T5),unordered_pair(S5::'a,T5))) & | |
| 1504 | (\<forall>U5 W5 V5. equal(U5::'a,V5) --> equal(unordered_pair(W5::'a,U5),unordered_pair(W5::'a,V5))) & | |
| 1505 | (\<forall>X5 Y5 Z5 A6. equal(X5::'a,Y5) & compatible(X5::'a,Z5,A6) --> compatible(Y5::'a,Z5,A6)) & | |
| 1506 | (\<forall>B6 D6 C6 E6. equal(B6::'a,C6) & compatible(D6::'a,B6,E6) --> compatible(D6::'a,C6,E6)) & | |
| 1507 | (\<forall>F6 H6 I6 G6. equal(F6::'a,G6) & compatible(H6::'a,I6,F6) --> compatible(H6::'a,I6,G6)) & | |
| 1508 | (\<forall>J6 K6. equal(J6::'a,K6) & function(J6) --> function(K6)) & | |
| 1509 | (\<forall>L6 M6 N6 O6. equal(L6::'a,M6) & homomorphism(L6::'a,N6,O6) --> homomorphism(M6::'a,N6,O6)) & | |
| 1510 | (\<forall>P6 R6 Q6 S6. equal(P6::'a,Q6) & homomorphism(R6::'a,P6,S6) --> homomorphism(R6::'a,Q6,S6)) & | |
| 1511 | (\<forall>T6 V6 W6 U6. equal(T6::'a,U6) & homomorphism(V6::'a,W6,T6) --> homomorphism(V6::'a,W6,U6)) & | |
| 1512 | (\<forall>X6 Y6. equal(X6::'a,Y6) & inductive(X6) --> inductive(Y6)) & | |
| 1513 | (\<forall>Z6 A7 B7. equal(Z6::'a,A7) & member(Z6::'a,B7) --> member(A7::'a,B7)) & | |
| 1514 | (\<forall>C7 E7 D7. equal(C7::'a,D7) & member(E7::'a,C7) --> member(E7::'a,D7)) & | |
| 1515 | (\<forall>F7 G7. equal(F7::'a,G7) & one_to_one(F7) --> one_to_one(G7)) & | |
| 1516 | (\<forall>H7 I7. equal(H7::'a,I7) & operation(H7) --> operation(I7)) & | |
| 1517 | (\<forall>J7 K7. equal(J7::'a,K7) & single_valued_class(J7) --> single_valued_class(K7)) & | |
| 1518 | (\<forall>L7 M7 N7. equal(L7::'a,M7) & subclass(L7::'a,N7) --> subclass(M7::'a,N7)) & | |
| 1519 | (\<forall>O7 Q7 P7. equal(O7::'a,P7) & subclass(Q7::'a,O7) --> subclass(Q7::'a,P7))" | |
| 24127 | 1520 | |
| 1521 | abbreviation "SET004_1_ax range_of function maps apply | |
| 1522 | application_function singleton_relation element_relation complement | |
| 1523 | intersection single_valued3 singleton image' domain single_valued2 | |
| 1524 | second single_valued1 identity_relation INVERSE not_subclass_element | |
| 1525 | first domain_of domain_relation composition_function compos equal | |
| 1526 | ordered_pair member universal_class cross_product compose_class | |
| 1527 | subclass \<equiv> | |
| 24128 | 1528 | (\<forall>X. subclass(compose_class(X),cross_product(universal_class::'a,universal_class))) & | 
| 1529 | (\<forall>X Y Z. member(ordered_pair(Y::'a,Z),compose_class(X)) --> equal(compos(X::'a,Y),Z)) & | |
| 1530 | (\<forall>Y Z X. member(ordered_pair(Y::'a,Z),cross_product(universal_class::'a,universal_class)) & equal(compos(X::'a,Y),Z) --> member(ordered_pair(Y::'a,Z),compose_class(X))) & | |
| 1531 | (subclass(composition_function::'a,cross_product(universal_class::'a,cross_product(universal_class::'a,universal_class)))) & | |
| 1532 | (\<forall>X Y Z. member(ordered_pair(X::'a,ordered_pair(Y::'a,Z)),composition_function) --> equal(compos(X::'a,Y),Z)) & | |
| 1533 | (\<forall>X Y. member(ordered_pair(X::'a,Y),cross_product(universal_class::'a,universal_class)) --> member(ordered_pair(X::'a,ordered_pair(Y::'a,compos(X::'a,Y))),composition_function)) & | |
| 1534 | (subclass(domain_relation::'a,cross_product(universal_class::'a,universal_class))) & | |
| 1535 | (\<forall>X Y. member(ordered_pair(X::'a,Y),domain_relation) --> equal(domain_of(X),Y)) & | |
| 1536 | (\<forall>X. member(X::'a,universal_class) --> member(ordered_pair(X::'a,domain_of(X)),domain_relation)) & | |
| 1537 | (\<forall>X. equal(first(not_subclass_element(compos(X::'a,INVERSE(X)),identity_relation)),single_valued1(X))) & | |
| 1538 | (\<forall>X. equal(second(not_subclass_element(compos(X::'a,INVERSE(X)),identity_relation)),single_valued2(X))) & | |
| 1539 | (\<forall>X. equal(domain(X::'a,image'(INVERSE(X),singleton(single_valued1(X))),single_valued2(X)),single_valued3(X))) & | |
| 1540 | (equal(intersection(complement(compos(element_relation::'a,complement(identity_relation))),element_relation),singleton_relation)) & | |
| 1541 | (subclass(application_function::'a,cross_product(universal_class::'a,cross_product(universal_class::'a,universal_class)))) & | |
| 1542 | (\<forall>Z Y X. member(ordered_pair(X::'a,ordered_pair(Y::'a,Z)),application_function) --> member(Y::'a,domain_of(X))) & | |
| 1543 | (\<forall>X Y Z. member(ordered_pair(X::'a,ordered_pair(Y::'a,Z)),application_function) --> equal(apply(X::'a,Y),Z)) & | |
| 1544 | (\<forall>Z X Y. member(ordered_pair(X::'a,ordered_pair(Y::'a,Z)),cross_product(universal_class::'a,cross_product(universal_class::'a,universal_class))) & member(Y::'a,domain_of(X)) --> member(ordered_pair(X::'a,ordered_pair(Y::'a,apply(X::'a,Y))),application_function)) & | |
| 1545 | (\<forall>X Y Xf. maps(Xf::'a,X,Y) --> function(Xf)) & | |
| 1546 | (\<forall>Y Xf X. maps(Xf::'a,X,Y) --> equal(domain_of(Xf),X)) & | |
| 1547 | (\<forall>X Xf Y. maps(Xf::'a,X,Y) --> subclass(range_of(Xf),Y)) & | |
| 24127 | 1548 | (\<forall>Xf Y. function(Xf) & subclass(range_of(Xf),Y) --> maps(Xf::'a,domain_of(Xf),Y))" | 
| 1549 | ||
| 1550 | abbreviation "SET004_1_eq maps single_valued3 single_valued2 single_valued1 compose_class equal \<equiv> | |
| 24128 | 1551 | (\<forall>L M. equal(L::'a,M) --> equal(compose_class(L),compose_class(M))) & | 
| 1552 | (\<forall>N2 O2. equal(N2::'a,O2) --> equal(single_valued1(N2),single_valued1(O2))) & | |
| 1553 | (\<forall>P2 Q2. equal(P2::'a,Q2) --> equal(single_valued2(P2),single_valued2(Q2))) & | |
| 1554 | (\<forall>R2 S2. equal(R2::'a,S2) --> equal(single_valued3(R2),single_valued3(S2))) & | |
| 1555 | (\<forall>X2 Y2 Z2 A3. equal(X2::'a,Y2) & maps(X2::'a,Z2,A3) --> maps(Y2::'a,Z2,A3)) & | |
| 1556 | (\<forall>B3 D3 C3 E3. equal(B3::'a,C3) & maps(D3::'a,B3,E3) --> maps(D3::'a,C3,E3)) & | |
| 24127 | 1557 | (\<forall>F3 H3 I3 G3. equal(F3::'a,G3) & maps(H3::'a,I3,F3) --> maps(H3::'a,I3,G3))" | 
| 1558 | ||
| 1559 | abbreviation "NUM004_0_ax integer_of omega ordinal_multiply | |
| 1560 | add_relation ordinal_add recursion apply range_of union_of_range_map | |
| 1561 | function recursion_equation_functions rest_relation rest_of | |
| 1562 | limit_ordinals kind_1_ordinals successor_relation image' | |
| 1563 | universal_class sum_class element_relation ordinal_numbers section | |
| 1564 | not_well_ordering ordered_pair least member well_ordering singleton | |
| 1565 | domain_of segment null_class intersection asymmetric compos transitive | |
| 1566 | cross_product connected identity_relation complement restrct subclass | |
| 1567 | irreflexive symmetrization_of INVERSE union equal \<equiv> | |
| 24128 | 1568 | (\<forall>X. equal(union(X::'a,INVERSE(X)),symmetrization_of(X))) & | 
| 1569 | (\<forall>X Y. irreflexive(X::'a,Y) --> subclass(restrct(X::'a,Y,Y),complement(identity_relation))) & | |
| 1570 | (\<forall>X Y. subclass(restrct(X::'a,Y,Y),complement(identity_relation)) --> irreflexive(X::'a,Y)) & | |
| 1571 | (\<forall>Y X. connected(X::'a,Y) --> subclass(cross_product(Y::'a,Y),union(identity_relation::'a,symmetrization_of(X)))) & | |
| 1572 | (\<forall>X Y. subclass(cross_product(Y::'a,Y),union(identity_relation::'a,symmetrization_of(X))) --> connected(X::'a,Y)) & | |
| 1573 | (\<forall>Xr Y. transitive(Xr::'a,Y) --> subclass(compos(restrct(Xr::'a,Y,Y),restrct(Xr::'a,Y,Y)),restrct(Xr::'a,Y,Y))) & | |
| 1574 | (\<forall>Xr Y. subclass(compos(restrct(Xr::'a,Y,Y),restrct(Xr::'a,Y,Y)),restrct(Xr::'a,Y,Y)) --> transitive(Xr::'a,Y)) & | |
| 1575 | (\<forall>Xr Y. asymmetric(Xr::'a,Y) --> equal(restrct(intersection(Xr::'a,INVERSE(Xr)),Y,Y),null_class)) & | |
| 1576 | (\<forall>Xr Y. equal(restrct(intersection(Xr::'a,INVERSE(Xr)),Y,Y),null_class) --> asymmetric(Xr::'a,Y)) & | |
| 1577 | (\<forall>Xr Y Z. equal(segment(Xr::'a,Y,Z),domain_of(restrct(Xr::'a,Y,singleton(Z))))) & | |
| 1578 | (\<forall>X Y. well_ordering(X::'a,Y) --> connected(X::'a,Y)) & | |
| 1579 | (\<forall>Y Xr U. well_ordering(Xr::'a,Y) & subclass(U::'a,Y) --> equal(U::'a,null_class) | member(least(Xr::'a,U),U)) & | |
| 1580 | (\<forall>Y V Xr U. well_ordering(Xr::'a,Y) & subclass(U::'a,Y) & member(V::'a,U) --> member(least(Xr::'a,U),U)) & | |
| 1581 | (\<forall>Y Xr U. well_ordering(Xr::'a,Y) & subclass(U::'a,Y) --> equal(segment(Xr::'a,U,least(Xr::'a,U)),null_class)) & | |
| 1582 | (\<forall>Y V U Xr. ~(well_ordering(Xr::'a,Y) & subclass(U::'a,Y) & member(V::'a,U) & member(ordered_pair(V::'a,least(Xr::'a,U)),Xr))) & | |
| 1583 | (\<forall>Xr Y. connected(Xr::'a,Y) & equal(not_well_ordering(Xr::'a,Y),null_class) --> well_ordering(Xr::'a,Y)) & | |
| 1584 | (\<forall>Xr Y. connected(Xr::'a,Y) --> subclass(not_well_ordering(Xr::'a,Y),Y) | well_ordering(Xr::'a,Y)) & | |
| 1585 | (\<forall>V Xr Y. member(V::'a,not_well_ordering(Xr::'a,Y)) & equal(segment(Xr::'a,not_well_ordering(Xr::'a,Y),V),null_class) & connected(Xr::'a,Y) --> well_ordering(Xr::'a,Y)) & | |
| 1586 | (\<forall>Xr Y Z. section(Xr::'a,Y,Z) --> subclass(Y::'a,Z)) & | |
| 1587 | (\<forall>Xr Z Y. section(Xr::'a,Y,Z) --> subclass(domain_of(restrct(Xr::'a,Z,Y)),Y)) & | |
| 1588 | (\<forall>Xr Y Z. subclass(Y::'a,Z) & subclass(domain_of(restrct(Xr::'a,Z,Y)),Y) --> section(Xr::'a,Y,Z)) & | |
| 1589 | (\<forall>X. member(X::'a,ordinal_numbers) --> well_ordering(element_relation::'a,X)) & | |
| 1590 | (\<forall>X. member(X::'a,ordinal_numbers) --> subclass(sum_class(X),X)) & | |
| 1591 | (\<forall>X. well_ordering(element_relation::'a,X) & subclass(sum_class(X),X) & member(X::'a,universal_class) --> member(X::'a,ordinal_numbers)) & | |
| 1592 | (\<forall>X. well_ordering(element_relation::'a,X) & subclass(sum_class(X),X) --> member(X::'a,ordinal_numbers) | equal(X::'a,ordinal_numbers)) & | |
| 1593 | (equal(union(singleton(null_class),image'(successor_relation::'a,ordinal_numbers)),kind_1_ordinals)) & | |
| 1594 | (equal(intersection(complement(kind_1_ordinals),ordinal_numbers),limit_ordinals)) & | |
| 1595 | (\<forall>X. subclass(rest_of(X),cross_product(universal_class::'a,universal_class))) & | |
| 1596 | (\<forall>V U X. member(ordered_pair(U::'a,V),rest_of(X)) --> member(U::'a,domain_of(X))) & | |
| 1597 | (\<forall>X U V. member(ordered_pair(U::'a,V),rest_of(X)) --> equal(restrct(X::'a,U,universal_class),V)) & | |
| 1598 | (\<forall>U V X. member(U::'a,domain_of(X)) & equal(restrct(X::'a,U,universal_class),V) --> member(ordered_pair(U::'a,V),rest_of(X))) & | |
| 1599 | (subclass(rest_relation::'a,cross_product(universal_class::'a,universal_class))) & | |
| 1600 | (\<forall>X Y. member(ordered_pair(X::'a,Y),rest_relation) --> equal(rest_of(X),Y)) & | |
| 1601 | (\<forall>X. member(X::'a,universal_class) --> member(ordered_pair(X::'a,rest_of(X)),rest_relation)) & | |
| 1602 | (\<forall>X Z. member(X::'a,recursion_equation_functions(Z)) --> function(Z)) & | |
| 1603 | (\<forall>Z X. member(X::'a,recursion_equation_functions(Z)) --> function(X)) & | |
| 1604 | (\<forall>Z X. member(X::'a,recursion_equation_functions(Z)) --> member(domain_of(X),ordinal_numbers)) & | |
| 1605 | (\<forall>Z X. member(X::'a,recursion_equation_functions(Z)) --> equal(compos(Z::'a,rest_of(X)),X)) & | |
| 1606 | (\<forall>X Z. function(Z) & function(X) & member(domain_of(X),ordinal_numbers) & equal(compos(Z::'a,rest_of(X)),X) --> member(X::'a,recursion_equation_functions(Z))) & | |
| 1607 | (subclass(union_of_range_map::'a,cross_product(universal_class::'a,universal_class))) & | |
| 1608 | (\<forall>X Y. member(ordered_pair(X::'a,Y),union_of_range_map) --> equal(sum_class(range_of(X)),Y)) & | |
| 1609 | (\<forall>X Y. member(ordered_pair(X::'a,Y),cross_product(universal_class::'a,universal_class)) & equal(sum_class(range_of(X)),Y) --> member(ordered_pair(X::'a,Y),union_of_range_map)) & | |
| 1610 | (\<forall>X Y. equal(apply(recursion(X::'a,successor_relation,union_of_range_map),Y),ordinal_add(X::'a,Y))) & | |
| 1611 | (\<forall>X Y. equal(recursion(null_class::'a,apply(add_relation::'a,X),union_of_range_map),ordinal_multiply(X::'a,Y))) & | |
| 1612 | (\<forall>X. member(X::'a,omega) --> equal(integer_of(X),X)) & | |
| 24127 | 1613 | (\<forall>X. member(X::'a,omega) | equal(integer_of(X),null_class))" | 
| 1614 | ||
| 1615 | abbreviation "NUM004_0_eq well_ordering transitive section irreflexive | |
| 1616 | connected asymmetric symmetrization_of segment rest_of | |
| 1617 | recursion_equation_functions recursion ordinal_multiply ordinal_add | |
| 1618 | not_well_ordering least integer_of equal \<equiv> | |
| 24128 | 1619 | (\<forall>D E. equal(D::'a,E) --> equal(integer_of(D),integer_of(E))) & | 
| 1620 | (\<forall>F' G H. equal(F'::'a,G) --> equal(least(F'::'a,H),least(G::'a,H))) & | |
| 1621 | (\<forall>I' K' J. equal(I'::'a,J) --> equal(least(K'::'a,I'),least(K'::'a,J))) & | |
| 1622 | (\<forall>L M N. equal(L::'a,M) --> equal(not_well_ordering(L::'a,N),not_well_ordering(M::'a,N))) & | |
| 1623 | (\<forall>O' Q P. equal(O'::'a,P) --> equal(not_well_ordering(Q::'a,O'),not_well_ordering(Q::'a,P))) & | |
| 1624 | (\<forall>R S' T'. equal(R::'a,S') --> equal(ordinal_add(R::'a,T'),ordinal_add(S'::'a,T'))) & | |
| 1625 | (\<forall>U W V. equal(U::'a,V) --> equal(ordinal_add(W::'a,U),ordinal_add(W::'a,V))) & | |
| 1626 | (\<forall>X Y Z. equal(X::'a,Y) --> equal(ordinal_multiply(X::'a,Z),ordinal_multiply(Y::'a,Z))) & | |
| 1627 | (\<forall>A1 C1 B1. equal(A1::'a,B1) --> equal(ordinal_multiply(C1::'a,A1),ordinal_multiply(C1::'a,B1))) & | |
| 1628 | (\<forall>F1 G1 H1 I1. equal(F1::'a,G1) --> equal(recursion(F1::'a,H1,I1),recursion(G1::'a,H1,I1))) & | |
| 1629 | (\<forall>J1 L1 K1 M1. equal(J1::'a,K1) --> equal(recursion(L1::'a,J1,M1),recursion(L1::'a,K1,M1))) & | |
| 1630 | (\<forall>N1 P1 Q1 O1. equal(N1::'a,O1) --> equal(recursion(P1::'a,Q1,N1),recursion(P1::'a,Q1,O1))) & | |
| 1631 | (\<forall>R1 S1. equal(R1::'a,S1) --> equal(recursion_equation_functions(R1),recursion_equation_functions(S1))) & | |
| 1632 | (\<forall>T1 U1. equal(T1::'a,U1) --> equal(rest_of(T1),rest_of(U1))) & | |
| 1633 | (\<forall>V1 W1 X1 Y1. equal(V1::'a,W1) --> equal(segment(V1::'a,X1,Y1),segment(W1::'a,X1,Y1))) & | |
| 1634 | (\<forall>Z1 B2 A2 C2. equal(Z1::'a,A2) --> equal(segment(B2::'a,Z1,C2),segment(B2::'a,A2,C2))) & | |
| 1635 | (\<forall>D2 F2 G2 E2. equal(D2::'a,E2) --> equal(segment(F2::'a,G2,D2),segment(F2::'a,G2,E2))) & | |
| 1636 | (\<forall>H2 I2. equal(H2::'a,I2) --> equal(symmetrization_of(H2),symmetrization_of(I2))) & | |
| 1637 | (\<forall>J2 K2 L2. equal(J2::'a,K2) & asymmetric(J2::'a,L2) --> asymmetric(K2::'a,L2)) & | |
| 1638 | (\<forall>M2 O2 N2. equal(M2::'a,N2) & asymmetric(O2::'a,M2) --> asymmetric(O2::'a,N2)) & | |
| 1639 | (\<forall>P2 Q2 R2. equal(P2::'a,Q2) & connected(P2::'a,R2) --> connected(Q2::'a,R2)) & | |
| 1640 | (\<forall>S2 U2 T2. equal(S2::'a,T2) & connected(U2::'a,S2) --> connected(U2::'a,T2)) & | |
| 1641 | (\<forall>V2 W2 X2. equal(V2::'a,W2) & irreflexive(V2::'a,X2) --> irreflexive(W2::'a,X2)) & | |
| 1642 | (\<forall>Y2 A3 Z2. equal(Y2::'a,Z2) & irreflexive(A3::'a,Y2) --> irreflexive(A3::'a,Z2)) & | |
| 1643 | (\<forall>B3 C3 D3 E3. equal(B3::'a,C3) & section(B3::'a,D3,E3) --> section(C3::'a,D3,E3)) & | |
| 1644 | (\<forall>F3 H3 G3 I3. equal(F3::'a,G3) & section(H3::'a,F3,I3) --> section(H3::'a,G3,I3)) & | |
| 1645 | (\<forall>J3 L3 M3 K3. equal(J3::'a,K3) & section(L3::'a,M3,J3) --> section(L3::'a,M3,K3)) & | |
| 1646 | (\<forall>N3 O3 P3. equal(N3::'a,O3) & transitive(N3::'a,P3) --> transitive(O3::'a,P3)) & | |
| 1647 | (\<forall>Q3 S3 R3. equal(Q3::'a,R3) & transitive(S3::'a,Q3) --> transitive(S3::'a,R3)) & | |
| 1648 | (\<forall>T3 U3 V3. equal(T3::'a,U3) & well_ordering(T3::'a,V3) --> well_ordering(U3::'a,V3)) & | |
| 24127 | 1649 | (\<forall>W3 Y3 X3. equal(W3::'a,X3) & well_ordering(Y3::'a,W3) --> well_ordering(Y3::'a,X3))" | 
| 1650 | ||
| 1651 | (*1345 inferences so far. Searching to depth 7. 23.3 secs. BIG*) | |
| 1652 | lemma NUM180_1: | |
| 1653 | "EQU001_0_ax equal & | |
| 1654 | SET004_0_ax not_homomorphism2 not_homomorphism1 | |
| 1655 | homomorphism compatible operation cantor diagonalise subset_relation | |
| 1656 | one_to_one choice apply regular function identity_relation | |
| 1657 | single_valued_class compos powerClass sum_class omega inductive | |
| 1658 | successor_relation successor image' rng domain range_of INVERSE flip | |
| 1659 | rot domain_of null_class restrct difference union complement | |
| 1660 | intersection element_relation second first cross_product ordered_pair | |
| 1661 | singleton unordered_pair equal universal_class not_subclass_element | |
| 1662 | member subclass & | |
| 1663 | SET004_0_eq subclass single_valued_class operation | |
| 1664 | one_to_one member inductive homomorphism function compatible | |
| 1665 | unordered_pair union sum_class successor singleton second rot restrct | |
| 1666 | regular range_of rng powerClass ordered_pair not_subclass_element | |
| 1667 | not_homomorphism2 not_homomorphism1 INVERSE intersection image' flip | |
| 1668 | first domain_of domain difference diagonalise cross_product compos | |
| 1669 | complement cantor apply equal & | |
| 1670 | SET004_1_ax range_of function maps apply | |
| 1671 | application_function singleton_relation element_relation complement | |
| 1672 | intersection single_valued3 singleton image' domain single_valued2 | |
| 1673 | second single_valued1 identity_relation INVERSE not_subclass_element | |
| 1674 | first domain_of domain_relation composition_function compos equal | |
| 1675 | ordered_pair member universal_class cross_product compose_class | |
| 1676 | subclass & | |
| 1677 | SET004_1_eq maps single_valued3 single_valued2 single_valued1 compose_class equal & | |
| 1678 | NUM004_0_ax integer_of omega ordinal_multiply | |
| 1679 | add_relation ordinal_add recursion apply range_of union_of_range_map | |
| 1680 | function recursion_equation_functions rest_relation rest_of | |
| 1681 | limit_ordinals kind_1_ordinals successor_relation image' | |
| 1682 | universal_class sum_class element_relation ordinal_numbers section | |
| 1683 | not_well_ordering ordered_pair least member well_ordering singleton | |
| 1684 | domain_of segment null_class intersection asymmetric compos transitive | |
| 1685 | cross_product connected identity_relation complement restrct subclass | |
| 1686 | irreflexive symmetrization_of INVERSE union equal & | |
| 1687 | NUM004_0_eq well_ordering transitive section irreflexive | |
| 1688 | connected asymmetric symmetrization_of segment rest_of | |
| 1689 | recursion_equation_functions recursion ordinal_multiply ordinal_add | |
| 1690 | not_well_ordering least integer_of equal & | |
| 1691 | (~subclass(limit_ordinals::'a,ordinal_numbers)) --> False" | |
| 1692 | by meson | |
| 1693 | ||
| 1694 | ||
| 1695 | (*0 inferences so far. Searching to depth 0. 16.8 secs. BIG*) | |
| 1696 | lemma NUM228_1: | |
| 1697 | "EQU001_0_ax equal & | |
| 1698 | SET004_0_ax not_homomorphism2 not_homomorphism1 | |
| 1699 | homomorphism compatible operation cantor diagonalise subset_relation | |
| 1700 | one_to_one choice apply regular function identity_relation | |
| 1701 | single_valued_class compos powerClass sum_class omega inductive | |
| 1702 | successor_relation successor image' rng domain range_of INVERSE flip | |
| 1703 | rot domain_of null_class restrct difference union complement | |
| 1704 | intersection element_relation second first cross_product ordered_pair | |
| 1705 | singleton unordered_pair equal universal_class not_subclass_element | |
| 1706 | member subclass & | |
| 1707 | SET004_0_eq subclass single_valued_class operation | |
| 1708 | one_to_one member inductive homomorphism function compatible | |
| 1709 | unordered_pair union sum_class successor singleton second rot restrct | |
| 1710 | regular range_of rng powerClass ordered_pair not_subclass_element | |
| 1711 | not_homomorphism2 not_homomorphism1 INVERSE intersection image' flip | |
| 1712 | first domain_of domain difference diagonalise cross_product compos | |
| 1713 | complement cantor apply equal & | |
| 1714 | SET004_1_ax range_of function maps apply | |
| 1715 | application_function singleton_relation element_relation complement | |
| 1716 | intersection single_valued3 singleton image' domain single_valued2 | |
| 1717 | second single_valued1 identity_relation INVERSE not_subclass_element | |
| 1718 | first domain_of domain_relation composition_function compos equal | |
| 1719 | ordered_pair member universal_class cross_product compose_class | |
| 1720 | subclass & | |
| 1721 | SET004_1_eq maps single_valued3 single_valued2 single_valued1 compose_class equal & | |
| 1722 | NUM004_0_ax integer_of omega ordinal_multiply | |
| 1723 | add_relation ordinal_add recursion apply range_of union_of_range_map | |
| 1724 | function recursion_equation_functions rest_relation rest_of | |
| 1725 | limit_ordinals kind_1_ordinals successor_relation image' | |
| 1726 | universal_class sum_class element_relation ordinal_numbers section | |
| 1727 | not_well_ordering ordered_pair least member well_ordering singleton | |
| 1728 | domain_of segment null_class intersection asymmetric compos transitive | |
| 1729 | cross_product connected identity_relation complement restrct subclass | |
| 1730 | irreflexive symmetrization_of INVERSE union equal & | |
| 1731 | NUM004_0_eq well_ordering transitive section irreflexive | |
| 1732 | connected asymmetric symmetrization_of segment rest_of | |
| 1733 | recursion_equation_functions recursion ordinal_multiply ordinal_add | |
| 1734 | not_well_ordering least integer_of equal & | |
| 24128 | 1735 | (~function(z)) & | 
| 24127 | 1736 | (~equal(recursion_equation_functions(z),null_class)) --> False" | 
| 1737 | by meson | |
| 1738 | ||
| 1739 | ||
| 1740 | (*4868 inferences so far. Searching to depth 12. 4.3 secs*) | |
| 1741 | lemma PLA002_1: | |
| 24128 | 1742 | "(\<forall>Situation1 Situation2. warm(Situation1) | cold(Situation2)) & | 
| 1743 | (\<forall>Situation. at(a::'a,Situation) --> at(b::'a,walk(b::'a,Situation))) & | |
| 1744 | (\<forall>Situation. at(a::'a,Situation) --> at(b::'a,drive(b::'a,Situation))) & | |
| 1745 | (\<forall>Situation. at(b::'a,Situation) --> at(a::'a,walk(a::'a,Situation))) & | |
| 1746 | (\<forall>Situation. at(b::'a,Situation) --> at(a::'a,drive(a::'a,Situation))) & | |
| 1747 | (\<forall>Situation. cold(Situation) & at(b::'a,Situation) --> at(c::'a,skate(c::'a,Situation))) & | |
| 1748 | (\<forall>Situation. cold(Situation) & at(c::'a,Situation) --> at(b::'a,skate(b::'a,Situation))) & | |
| 1749 | (\<forall>Situation. warm(Situation) & at(b::'a,Situation) --> at(d::'a,climb(d::'a,Situation))) & | |
| 1750 | (\<forall>Situation. warm(Situation) & at(d::'a,Situation) --> at(b::'a,climb(b::'a,Situation))) & | |
| 1751 | (\<forall>Situation. at(c::'a,Situation) --> at(d::'a,go(d::'a,Situation))) & | |
| 1752 | (\<forall>Situation. at(d::'a,Situation) --> at(c::'a,go(c::'a,Situation))) & | |
| 1753 | (\<forall>Situation. at(c::'a,Situation) --> at(e::'a,go(e::'a,Situation))) & | |
| 1754 | (\<forall>Situation. at(e::'a,Situation) --> at(c::'a,go(c::'a,Situation))) & | |
| 1755 | (\<forall>Situation. at(d::'a,Situation) --> at(f::'a,go(f::'a,Situation))) & | |
| 1756 | (\<forall>Situation. at(f::'a,Situation) --> at(d::'a,go(d::'a,Situation))) & | |
| 1757 | (at(f::'a,s0)) & | |
| 24127 | 1758 | (\<forall>S'. ~at(a::'a,S')) --> False" | 
| 1759 | by meson | |
| 1760 | ||
| 1761 | abbreviation "PLA001_0_ax putdown on pickup do holding table differ clear EMPTY and' holds \<equiv> | |
| 24128 | 1762 | (\<forall>X Y State. holds(X::'a,State) & holds(Y::'a,State) --> holds(and'(X::'a,Y),State)) & | 
| 1763 | (\<forall>State X. holds(EMPTY::'a,State) & holds(clear(X),State) & differ(X::'a,table) --> holds(holding(X),do(pickup(X),State))) & | |
| 1764 | (\<forall>Y X State. holds(on(X::'a,Y),State) & holds(clear(X),State) & holds(EMPTY::'a,State) --> holds(clear(Y),do(pickup(X),State))) & | |
| 1765 | (\<forall>Y State X Z. holds(on(X::'a,Y),State) & differ(X::'a,Z) --> holds(on(X::'a,Y),do(pickup(Z),State))) & | |
| 1766 | (\<forall>State X Z. holds(clear(X),State) & differ(X::'a,Z) --> holds(clear(X),do(pickup(Z),State))) & | |
| 1767 | (\<forall>X Y State. holds(holding(X),State) & holds(clear(Y),State) --> holds(EMPTY::'a,do(putdown(X::'a,Y),State))) & | |
| 1768 | (\<forall>X Y State. holds(holding(X),State) & holds(clear(Y),State) --> holds(on(X::'a,Y),do(putdown(X::'a,Y),State))) & | |
| 1769 | (\<forall>X Y State. holds(holding(X),State) & holds(clear(Y),State) --> holds(clear(X),do(putdown(X::'a,Y),State))) & | |
| 1770 | (\<forall>Z W X Y State. holds(on(X::'a,Y),State) --> holds(on(X::'a,Y),do(putdown(Z::'a,W),State))) & | |
| 24127 | 1771 | (\<forall>X State Z Y. holds(clear(Z),State) & differ(Z::'a,Y) --> holds(clear(Z),do(putdown(X::'a,Y),State)))" | 
| 1772 | ||
| 1773 | abbreviation "PLA001_1_ax EMPTY clear s0 on holds table d c b a differ \<equiv> | |
| 24128 | 1774 | (\<forall>Y X. differ(Y::'a,X) --> differ(X::'a,Y)) & | 
| 1775 | (differ(a::'a,b)) & | |
| 1776 | (differ(a::'a,c)) & | |
| 1777 | (differ(a::'a,d)) & | |
| 1778 | (differ(a::'a,table)) & | |
| 1779 | (differ(b::'a,c)) & | |
| 1780 | (differ(b::'a,d)) & | |
| 1781 | (differ(b::'a,table)) & | |
| 1782 | (differ(c::'a,d)) & | |
| 1783 | (differ(c::'a,table)) & | |
| 1784 | (differ(d::'a,table)) & | |
| 1785 | (holds(on(a::'a,table),s0)) & | |
| 1786 | (holds(on(b::'a,table),s0)) & | |
| 1787 | (holds(on(c::'a,d),s0)) & | |
| 1788 | (holds(on(d::'a,table),s0)) & | |
| 1789 | (holds(clear(a),s0)) & | |
| 1790 | (holds(clear(b),s0)) & | |
| 1791 | (holds(clear(c),s0)) & | |
| 1792 | (holds(EMPTY::'a,s0)) & | |
| 24127 | 1793 | (\<forall>State. holds(clear(table),State))" | 
| 1794 | ||
| 1795 | (*190 inferences so far. Searching to depth 10. 0.6 secs*) | |
| 1796 | lemma PLA006_1: | |
| 1797 | "PLA001_0_ax putdown on pickup do holding table differ clear EMPTY and' holds & | |
| 1798 | PLA001_1_ax EMPTY clear s0 on holds table d c b a differ & | |
| 1799 | (\<forall>State. ~holds(on(c::'a,table),State)) --> False" | |
| 1800 | by meson | |
| 1801 | ||
| 1802 | (*190 inferences so far. Searching to depth 10. 0.5 secs*) | |
| 1803 | lemma PLA017_1: | |
| 1804 | "PLA001_0_ax putdown on pickup do holding table differ clear EMPTY and' holds & | |
| 1805 | PLA001_1_ax EMPTY clear s0 on holds table d c b a differ & | |
| 1806 | (\<forall>State. ~holds(on(a::'a,c),State)) --> False" | |
| 1807 | by meson | |
| 1808 | ||
| 1809 | (*13732 inferences so far. Searching to depth 16. 9.8 secs*) | |
| 1810 | lemma PLA022_1: | |
| 1811 | "PLA001_0_ax putdown on pickup do holding table differ clear EMPTY and' holds & | |
| 1812 | PLA001_1_ax EMPTY clear s0 on holds table d c b a differ & | |
| 1813 | (\<forall>State. ~holds(and'(on(c::'a,d),on(a::'a,c)),State)) --> False" | |
| 1814 | by meson | |
| 1815 | ||
| 1816 | (*217 inferences so far. Searching to depth 13. 0.7 secs*) | |
| 1817 | lemma PLA022_2: | |
| 1818 | "PLA001_0_ax putdown on pickup do holding table differ clear EMPTY and' holds & | |
| 1819 | PLA001_1_ax EMPTY clear s0 on holds table d c b a differ & | |
| 1820 | (\<forall>State. ~holds(and'(on(a::'a,c),on(c::'a,d)),State)) --> False" | |
| 1821 | by meson | |
| 1822 | ||
| 1823 | (*948 inferences so far. Searching to depth 18. 1.1 secs*) | |
| 1824 | lemma PRV001_1: | |
| 24128 | 1825 | "(\<forall>X Y Z. q1(X::'a,Y,Z) & mless_or_equal(X::'a,Y) --> q2(X::'a,Y,Z)) & | 
| 1826 | (\<forall>X Y Z. q1(X::'a,Y,Z) --> mless_or_equal(X::'a,Y) | q3(X::'a,Y,Z)) & | |
| 1827 | (\<forall>Z X Y. q2(X::'a,Y,Z) --> q4(X::'a,Y,Y)) & | |
| 1828 | (\<forall>Z Y X. q3(X::'a,Y,Z) --> q4(X::'a,Y,X)) & | |
| 1829 | (\<forall>X. mless_or_equal(X::'a,X)) & | |
| 1830 | (\<forall>X Y. mless_or_equal(X::'a,Y) & mless_or_equal(Y::'a,X) --> equal(X::'a,Y)) & | |
| 1831 | (\<forall>Y X Z. mless_or_equal(X::'a,Y) & mless_or_equal(Y::'a,Z) --> mless_or_equal(X::'a,Z)) & | |
| 1832 | (\<forall>Y X. mless_or_equal(X::'a,Y) | mless_or_equal(Y::'a,X)) & | |
| 1833 | (\<forall>X Y. equal(X::'a,Y) --> mless_or_equal(X::'a,Y)) & | |
| 1834 | (\<forall>X Y Z. equal(X::'a,Y) & mless_or_equal(X::'a,Z) --> mless_or_equal(Y::'a,Z)) & | |
| 1835 | (\<forall>X Z Y. equal(X::'a,Y) & mless_or_equal(Z::'a,X) --> mless_or_equal(Z::'a,Y)) & | |
| 1836 | (q1(a::'a,b,c)) & | |
| 1837 | (\<forall>W. ~(q4(a::'a,b,W) & mless_or_equal(a::'a,W) & mless_or_equal(b::'a,W) & mless_or_equal(W::'a,a))) & | |
| 24127 | 1838 | (\<forall>W. ~(q4(a::'a,b,W) & mless_or_equal(a::'a,W) & mless_or_equal(b::'a,W) & mless_or_equal(W::'a,b))) --> False" | 
| 1839 | by meson | |
| 1840 | ||
| 1841 | (*PRV is now called SWV (software verification) *) | |
| 1842 | abbreviation "SWV001_1_ax mless_THAN successor predecessor equal \<equiv> | |
| 24128 | 1843 | (\<forall>X. equal(predecessor(successor(X)),X)) & | 
| 1844 | (\<forall>X. equal(successor(predecessor(X)),X)) & | |
| 1845 | (\<forall>X Y. equal(predecessor(X),predecessor(Y)) --> equal(X::'a,Y)) & | |
| 1846 | (\<forall>X Y. equal(successor(X),successor(Y)) --> equal(X::'a,Y)) & | |
| 1847 | (\<forall>X. mless_THAN(predecessor(X),X)) & | |
| 1848 | (\<forall>X. mless_THAN(X::'a,successor(X))) & | |
| 1849 | (\<forall>X Y Z. mless_THAN(X::'a,Y) & mless_THAN(Y::'a,Z) --> mless_THAN(X::'a,Z)) & | |
| 1850 | (\<forall>X Y. mless_THAN(X::'a,Y) | mless_THAN(Y::'a,X) | equal(X::'a,Y)) & | |
| 1851 | (\<forall>X. ~mless_THAN(X::'a,X)) & | |
| 1852 | (\<forall>Y X. ~(mless_THAN(X::'a,Y) & mless_THAN(Y::'a,X))) & | |
| 1853 | (\<forall>Y X Z. equal(X::'a,Y) & mless_THAN(X::'a,Z) --> mless_THAN(Y::'a,Z)) & | |
| 24127 | 1854 | (\<forall>Y Z X. equal(X::'a,Y) & mless_THAN(Z::'a,X) --> mless_THAN(Z::'a,Y))" | 
| 1855 | ||
| 1856 | abbreviation "SWV001_0_eq a successor predecessor equal \<equiv> | |
| 24128 | 1857 | (\<forall>X Y. equal(X::'a,Y) --> equal(predecessor(X),predecessor(Y))) & | 
| 1858 | (\<forall>X Y. equal(X::'a,Y) --> equal(successor(X),successor(Y))) & | |
| 24127 | 1859 | (\<forall>X Y. equal(X::'a,Y) --> equal(a(X),a(Y)))" | 
| 1860 | ||
| 1861 | (*21 inferences so far. Searching to depth 5. 0.4 secs*) | |
| 1862 | lemma PRV003_1: | |
| 1863 | "EQU001_0_ax equal & | |
| 1864 | SWV001_1_ax mless_THAN successor predecessor equal & | |
| 24128 | 1865 | SWV001_0_eq a successor predecessor equal & | 
| 1866 | (~mless_THAN(n::'a,j)) & | |
| 1867 | (mless_THAN(k::'a,j)) & | |
| 1868 | (~mless_THAN(k::'a,i)) & | |
| 1869 | (mless_THAN(i::'a,n)) & | |
| 1870 | (mless_THAN(a(j),a(k))) & | |
| 1871 | (\<forall>X. mless_THAN(X::'a,j) & mless_THAN(a(X),a(k)) --> mless_THAN(X::'a,i)) & | |
| 1872 | (\<forall>X. mless_THAN(One::'a,i) & mless_THAN(a(X),a(predecessor(i))) --> mless_THAN(X::'a,i) | mless_THAN(n::'a,X)) & | |
| 1873 | (\<forall>X. ~(mless_THAN(One::'a,X) & mless_THAN(X::'a,i) & mless_THAN(a(X),a(predecessor(X))))) & | |
| 24127 | 1874 | (mless_THAN(j::'a,i)) --> False" | 
| 1875 | by meson | |
| 1876 | ||
| 1877 | (*584 inferences so far. Searching to depth 7. 1.1 secs*) | |
| 1878 | lemma PRV005_1: | |
| 1879 | "EQU001_0_ax equal & | |
| 1880 | SWV001_1_ax mless_THAN successor predecessor equal & | |
| 24128 | 1881 | SWV001_0_eq a successor predecessor equal & | 
| 1882 | (~mless_THAN(n::'a,k)) & | |
| 1883 | (~mless_THAN(k::'a,l)) & | |
| 1884 | (~mless_THAN(k::'a,i)) & | |
| 1885 | (mless_THAN(l::'a,n)) & | |
| 1886 | (mless_THAN(One::'a,l)) & | |
| 1887 | (mless_THAN(a(k),a(predecessor(l)))) & | |
| 1888 | (\<forall>X. mless_THAN(X::'a,successor(n)) & mless_THAN(a(X),a(k)) --> mless_THAN(X::'a,l)) & | |
| 1889 | (\<forall>X. mless_THAN(One::'a,l) & mless_THAN(a(X),a(predecessor(l))) --> mless_THAN(X::'a,l) | mless_THAN(n::'a,X)) & | |
| 24127 | 1890 | (\<forall>X. ~(mless_THAN(One::'a,X) & mless_THAN(X::'a,l) & mless_THAN(a(X),a(predecessor(X))))) --> False" | 
| 1891 | by meson | |
| 1892 | ||
| 1893 | (*2343 inferences so far. Searching to depth 8. 3.5 secs*) | |
| 1894 | lemma PRV006_1: | |
| 1895 | "EQU001_0_ax equal & | |
| 1896 | SWV001_1_ax mless_THAN successor predecessor equal & | |
| 1897 | SWV001_0_eq a successor predecessor equal & | |
| 24128 | 1898 | (~mless_THAN(n::'a,m)) & | 
| 1899 | (mless_THAN(i::'a,m)) & | |
| 1900 | (mless_THAN(i::'a,n)) & | |
| 1901 | (~mless_THAN(i::'a,One)) & | |
| 1902 | (mless_THAN(a(i),a(m))) & | |
| 1903 | (\<forall>X. mless_THAN(X::'a,successor(n)) & mless_THAN(a(X),a(m)) --> mless_THAN(X::'a,i)) & | |
| 1904 | (\<forall>X. mless_THAN(One::'a,i) & mless_THAN(a(X),a(predecessor(i))) --> mless_THAN(X::'a,i) | mless_THAN(n::'a,X)) & | |
| 24127 | 1905 | (\<forall>X. ~(mless_THAN(One::'a,X) & mless_THAN(X::'a,i) & mless_THAN(a(X),a(predecessor(X))))) --> False" | 
| 1906 | by meson | |
| 1907 | ||
| 1908 | (*86 inferences so far. Searching to depth 14. 0.1 secs*) | |
| 1909 | lemma PRV009_1: | |
| 24128 | 1910 | "(\<forall>Y X. mless_or_equal(X::'a,Y) | mless(Y::'a,X)) & | 
| 1911 | (mless(j::'a,i)) & | |
| 1912 | (mless_or_equal(m::'a,p)) & | |
| 1913 | (mless_or_equal(p::'a,q)) & | |
| 1914 | (mless_or_equal(q::'a,n)) & | |
| 1915 | (\<forall>X Y. mless_or_equal(m::'a,X) & mless(X::'a,i) & mless(j::'a,Y) & mless_or_equal(Y::'a,n) --> mless_or_equal(a(X),a(Y))) & | |
| 1916 | (\<forall>X Y. mless_or_equal(m::'a,X) & mless_or_equal(X::'a,Y) & mless_or_equal(Y::'a,j) --> mless_or_equal(a(X),a(Y))) & | |
| 1917 | (\<forall>X Y. mless_or_equal(i::'a,X) & mless_or_equal(X::'a,Y) & mless_or_equal(Y::'a,n) --> mless_or_equal(a(X),a(Y))) & | |
| 24127 | 1918 | (~mless_or_equal(a(p),a(q))) --> False" | 
| 1919 | by meson | |
| 1920 | ||
| 1921 | (*222 inferences so far. Searching to depth 8. 0.4 secs*) | |
| 1922 | lemma PUZ012_1: | |
| 24128 | 1923 | "(\<forall>X. equal_fruits(X::'a,X)) & | 
| 1924 | (\<forall>X. equal_boxes(X::'a,X)) & | |
| 1925 | (\<forall>X Y. ~(label(X::'a,Y) & contains(X::'a,Y))) & | |
| 1926 | (\<forall>X. contains(boxa::'a,X) | contains(boxb::'a,X) | contains(boxc::'a,X)) & | |
| 1927 | (\<forall>X. contains(X::'a,apples) | contains(X::'a,bananas) | contains(X::'a,oranges)) & | |
| 1928 | (\<forall>X Y Z. contains(X::'a,Y) & contains(X::'a,Z) --> equal_fruits(Y::'a,Z)) & | |
| 1929 | (\<forall>Y X Z. contains(X::'a,Y) & contains(Z::'a,Y) --> equal_boxes(X::'a,Z)) & | |
| 1930 | (~equal_boxes(boxa::'a,boxb)) & | |
| 1931 | (~equal_boxes(boxb::'a,boxc)) & | |
| 1932 | (~equal_boxes(boxa::'a,boxc)) & | |
| 1933 | (~equal_fruits(apples::'a,bananas)) & | |
| 1934 | (~equal_fruits(bananas::'a,oranges)) & | |
| 1935 | (~equal_fruits(apples::'a,oranges)) & | |
| 1936 | (label(boxa::'a,apples)) & | |
| 1937 | (label(boxb::'a,oranges)) & | |
| 1938 | (label(boxc::'a,bananas)) & | |
| 1939 | (contains(boxb::'a,apples)) & | |
| 24127 | 1940 | (~(contains(boxa::'a,bananas) & contains(boxc::'a,oranges))) --> False" | 
| 1941 | by meson | |
| 1942 | ||
| 1943 | (*35 inferences so far. Searching to depth 5. 3.2 secs*) | |
| 1944 | lemma PUZ020_1: | |
| 24128 | 1945 | "EQU001_0_ax equal & | 
| 1946 | (\<forall>A B. equal(A::'a,B) --> equal(statement_by(A),statement_by(B))) & | |
| 1947 | (\<forall>X. person(X) --> knight(X) | knave(X)) & | |
| 1948 | (\<forall>X. ~(person(X) & knight(X) & knave(X))) & | |
| 1949 | (\<forall>X Y. says(X::'a,Y) & a_truth(Y) --> a_truth(Y)) & | |
| 1950 | (\<forall>X Y. ~(says(X::'a,Y) & equal(X::'a,Y))) & | |
| 1951 | (\<forall>Y X. says(X::'a,Y) --> equal(Y::'a,statement_by(X))) & | |
| 1952 | (\<forall>X Y. ~(person(X) & equal(X::'a,statement_by(Y)))) & | |
| 1953 | (\<forall>X. person(X) & a_truth(statement_by(X)) --> knight(X)) & | |
| 1954 | (\<forall>X. person(X) --> a_truth(statement_by(X)) | knave(X)) & | |
| 1955 | (\<forall>X Y. equal(X::'a,Y) & knight(X) --> knight(Y)) & | |
| 1956 | (\<forall>X Y. equal(X::'a,Y) & knave(X) --> knave(Y)) & | |
| 1957 | (\<forall>X Y. equal(X::'a,Y) & person(X) --> person(Y)) & | |
| 1958 | (\<forall>X Y Z. equal(X::'a,Y) & says(X::'a,Z) --> says(Y::'a,Z)) & | |
| 1959 | (\<forall>X Z Y. equal(X::'a,Y) & says(Z::'a,X) --> says(Z::'a,Y)) & | |
| 1960 | (\<forall>X Y. equal(X::'a,Y) & a_truth(X) --> a_truth(Y)) & | |
| 1961 | (\<forall>X Y. knight(X) & says(X::'a,Y) --> a_truth(Y)) & | |
| 1962 | (\<forall>X Y. ~(knave(X) & says(X::'a,Y) & a_truth(Y))) & | |
| 1963 | (person(husband)) & | |
| 1964 | (person(wife)) & | |
| 1965 | (~equal(husband::'a,wife)) & | |
| 1966 | (says(husband::'a,statement_by(husband))) & | |
| 1967 | (a_truth(statement_by(husband)) & knight(husband) --> knight(wife)) & | |
| 1968 | (knight(husband) --> a_truth(statement_by(husband))) & | |
| 1969 | (a_truth(statement_by(husband)) | knight(wife)) & | |
| 1970 | (knight(wife) --> a_truth(statement_by(husband))) & | |
| 24127 | 1971 | (~knight(husband)) --> False" | 
| 1972 | by meson | |
| 1973 | ||
| 1974 | (*121806 inferences so far. Searching to depth 17. 63.0 secs*) | |
| 1975 | lemma PUZ025_1: | |
| 24128 | 1976 | "(\<forall>X. a_truth(truthteller(X)) | a_truth(liar(X))) & | 
| 1977 | (\<forall>X. ~(a_truth(truthteller(X)) & a_truth(liar(X)))) & | |
| 1978 | (\<forall>Truthteller Statement. a_truth(truthteller(Truthteller)) & a_truth(says(Truthteller::'a,Statement)) --> a_truth(Statement)) & | |
| 1979 | (\<forall>Liar Statement. ~(a_truth(liar(Liar)) & a_truth(says(Liar::'a,Statement)) & a_truth(Statement))) & | |
| 1980 | (\<forall>Statement Truthteller. a_truth(Statement) & a_truth(says(Truthteller::'a,Statement)) --> a_truth(truthteller(Truthteller))) & | |
| 1981 | (\<forall>Statement Liar. a_truth(says(Liar::'a,Statement)) --> a_truth(Statement) | a_truth(liar(Liar))) & | |
| 1982 | (\<forall>Z X Y. people(X::'a,Y,Z) & a_truth(liar(X)) & a_truth(liar(Y)) --> a_truth(equal_type(X::'a,Y))) & | |
| 1983 | (\<forall>Z X Y. people(X::'a,Y,Z) & a_truth(truthteller(X)) & a_truth(truthteller(Y)) --> a_truth(equal_type(X::'a,Y))) & | |
| 1984 | (\<forall>X Y. a_truth(equal_type(X::'a,Y)) & a_truth(truthteller(X)) --> a_truth(truthteller(Y))) & | |
| 1985 | (\<forall>X Y. a_truth(equal_type(X::'a,Y)) & a_truth(liar(X)) --> a_truth(liar(Y))) & | |
| 1986 | (\<forall>X Y. a_truth(truthteller(X)) --> a_truth(equal_type(X::'a,Y)) | a_truth(liar(Y))) & | |
| 1987 | (\<forall>X Y. a_truth(liar(X)) --> a_truth(equal_type(X::'a,Y)) | a_truth(truthteller(Y))) & | |
| 1988 | (\<forall>Y X. a_truth(equal_type(X::'a,Y)) --> a_truth(equal_type(Y::'a,X))) & | |
| 1989 | (\<forall>X Y. ask_1_if_2(X::'a,Y) & a_truth(truthteller(X)) & a_truth(Y) --> answer(yes)) & | |
| 1990 | (\<forall>X Y. ask_1_if_2(X::'a,Y) & a_truth(truthteller(X)) --> a_truth(Y) | answer(no)) & | |
| 1991 | (\<forall>X Y. ask_1_if_2(X::'a,Y) & a_truth(liar(X)) & a_truth(Y) --> answer(no)) & | |
| 1992 | (\<forall>X Y. ask_1_if_2(X::'a,Y) & a_truth(liar(X)) --> a_truth(Y) | answer(yes)) & | |
| 1993 | (people(b::'a,c,a)) & | |
| 1994 | (people(a::'a,b,a)) & | |
| 1995 | (people(a::'a,c,b)) & | |
| 1996 | (people(c::'a,b,a)) & | |
| 1997 | (a_truth(says(a::'a,equal_type(b::'a,c)))) & | |
| 1998 | (ask_1_if_2(c::'a,equal_type(a::'a,b))) & | |
| 24127 | 1999 | (\<forall>Answer. ~answer(Answer)) --> False" | 
| 2000 | oops | |
| 2001 | ||
| 2002 | ||
| 2003 | (*621 inferences so far. Searching to depth 18. 0.2 secs*) | |
| 2004 | lemma PUZ029_1: | |
| 24128 | 2005 | "(\<forall>X. dances_on_tightropes(X) | eats_pennybuns(X) | old(X)) & | 
| 2006 | (\<forall>X. pig(X) & liable_to_giddiness(X) --> treated_with_respect(X)) & | |
| 2007 | (\<forall>X. wise(X) & balloonist(X) --> has_umbrella(X)) & | |
| 2008 | (\<forall>X. ~(looks_ridiculous(X) & eats_pennybuns(X) & eats_lunch_in_public(X))) & | |
| 2009 | (\<forall>X. balloonist(X) & young(X) --> liable_to_giddiness(X)) & | |
| 2010 | (\<forall>X. fat(X) & looks_ridiculous(X) --> dances_on_tightropes(X) | eats_lunch_in_public(X)) & | |
| 2011 | (\<forall>X. ~(liable_to_giddiness(X) & wise(X) & dances_on_tightropes(X))) & | |
| 2012 | (\<forall>X. pig(X) & has_umbrella(X) --> looks_ridiculous(X)) & | |
| 2013 | (\<forall>X. treated_with_respect(X) --> dances_on_tightropes(X) | fat(X)) & | |
| 2014 | (\<forall>X. young(X) | old(X)) & | |
| 2015 | (\<forall>X. ~(young(X) & old(X))) & | |
| 2016 | (wise(piggy)) & | |
| 2017 | (young(piggy)) & | |
| 2018 | (pig(piggy)) & | |
| 24127 | 2019 | (balloonist(piggy)) --> False" | 
| 2020 | by meson | |
| 2021 | ||
| 2022 | abbreviation "RNG001_0_ax equal additive_inverse add multiply product additive_identity sum \<equiv> | |
| 24128 | 2023 | (\<forall>X. sum(additive_identity::'a,X,X)) & | 
| 2024 | (\<forall>X. sum(X::'a,additive_identity,X)) & | |
| 2025 | (\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | |
| 2026 | (\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & | |
| 2027 | (\<forall>X. sum(additive_inverse(X),X,additive_identity)) & | |
| 2028 | (\<forall>X. sum(X::'a,additive_inverse(X),additive_identity)) & | |
| 2029 | (\<forall>Y U Z X V W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(U::'a,Z,W) --> sum(X::'a,V,W)) & | |
| 2030 | (\<forall>Y X V U Z W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(X::'a,V,W) --> sum(U::'a,Z,W)) & | |
| 2031 | (\<forall>Y X Z. sum(X::'a,Y,Z) --> sum(Y::'a,X,Z)) & | |
| 2032 | (\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & | |
| 2033 | (\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & | |
| 2034 | (\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & | |
| 2035 | (\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & | |
| 2036 | (\<forall>Y Z V3 X V1 V2 V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & product(V3::'a,X,V4) --> sum(V1::'a,V2,V4)) & | |
| 2037 | (\<forall>Y Z V1 V2 V3 X V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(V3::'a,X,V4)) & | |
| 2038 | (\<forall>X Y U V. sum(X::'a,Y,U) & sum(X::'a,Y,V) --> equal(U::'a,V)) & | |
| 24127 | 2039 | (\<forall>X Y U V. product(X::'a,Y,U) & product(X::'a,Y,V) --> equal(U::'a,V))" | 
| 2040 | ||
| 2041 | abbreviation "RNG001_0_eq product multiply sum add additive_inverse equal \<equiv> | |
| 24128 | 2042 | (\<forall>X Y. equal(X::'a,Y) --> equal(additive_inverse(X),additive_inverse(Y))) & | 
| 2043 | (\<forall>X Y W. equal(X::'a,Y) --> equal(add(X::'a,W),add(Y::'a,W))) & | |
| 2044 | (\<forall>X W Y. equal(X::'a,Y) --> equal(add(W::'a,X),add(W::'a,Y))) & | |
| 2045 | (\<forall>X Y W Z. equal(X::'a,Y) & sum(X::'a,W,Z) --> sum(Y::'a,W,Z)) & | |
| 2046 | (\<forall>X W Y Z. equal(X::'a,Y) & sum(W::'a,X,Z) --> sum(W::'a,Y,Z)) & | |
| 2047 | (\<forall>X W Z Y. equal(X::'a,Y) & sum(W::'a,Z,X) --> sum(W::'a,Z,Y)) & | |
| 2048 | (\<forall>X Y W. equal(X::'a,Y) --> equal(multiply(X::'a,W),multiply(Y::'a,W))) & | |
| 2049 | (\<forall>X W Y. equal(X::'a,Y) --> equal(multiply(W::'a,X),multiply(W::'a,Y))) & | |
| 2050 | (\<forall>X Y W Z. equal(X::'a,Y) & product(X::'a,W,Z) --> product(Y::'a,W,Z)) & | |
| 2051 | (\<forall>X W Y Z. equal(X::'a,Y) & product(W::'a,X,Z) --> product(W::'a,Y,Z)) & | |
| 24127 | 2052 | (\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y))" | 
| 2053 | ||
| 2054 | (*93620 inferences so far. Searching to depth 24. 65.9 secs*) | |
| 2055 | lemma RNG001_3: | |
| 24128 | 2056 | "(\<forall>X. sum(additive_identity::'a,X,X)) & | 
| 2057 | (\<forall>X. sum(additive_inverse(X),X,additive_identity)) & | |
| 2058 | (\<forall>Y U Z X V W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(U::'a,Z,W) --> sum(X::'a,V,W)) & | |
| 2059 | (\<forall>Y X V U Z W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(X::'a,V,W) --> sum(U::'a,Z,W)) & | |
| 2060 | (\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | |
| 2061 | (\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & | |
| 2062 | (\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & | |
| 24127 | 2063 | (~product(a::'a,additive_identity,additive_identity)) --> False" | 
| 2064 | oops | |
| 2065 | ||
| 2066 | abbreviation "RNG_other_ax multiply add equal product additive_identity additive_inverse sum \<equiv> | |
| 24128 | 2067 | (\<forall>X. sum(X::'a,additive_inverse(X),additive_identity)) & | 
| 2068 | (\<forall>Y U Z X V W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(U::'a,Z,W) --> sum(X::'a,V,W)) & | |
| 2069 | (\<forall>Y X V U Z W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(X::'a,V,W) --> sum(U::'a,Z,W)) & | |
| 2070 | (\<forall>Y X Z. sum(X::'a,Y,Z) --> sum(Y::'a,X,Z)) & | |
| 2071 | (\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & | |
| 2072 | (\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & | |
| 2073 | (\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & | |
| 2074 | (\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & | |
| 2075 | (\<forall>Y Z V3 X V1 V2 V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & product(V3::'a,X,V4) --> sum(V1::'a,V2,V4)) & | |
| 2076 | (\<forall>Y Z V1 V2 V3 X V4. product(Y::'a,X,V1) & product(Z::'a,X,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(V3::'a,X,V4)) & | |
| 2077 | (\<forall>X Y U V. sum(X::'a,Y,U) & sum(X::'a,Y,V) --> equal(U::'a,V)) & | |
| 2078 | (\<forall>X Y U V. product(X::'a,Y,U) & product(X::'a,Y,V) --> equal(U::'a,V)) & | |
| 2079 | (\<forall>X Y. equal(X::'a,Y) --> equal(additive_inverse(X),additive_inverse(Y))) & | |
| 2080 | (\<forall>X Y W. equal(X::'a,Y) --> equal(add(X::'a,W),add(Y::'a,W))) & | |
| 2081 | (\<forall>X Y W Z. equal(X::'a,Y) & sum(X::'a,W,Z) --> sum(Y::'a,W,Z)) & | |
| 2082 | (\<forall>X W Y Z. equal(X::'a,Y) & sum(W::'a,X,Z) --> sum(W::'a,Y,Z)) & | |
| 2083 | (\<forall>X W Z Y. equal(X::'a,Y) & sum(W::'a,Z,X) --> sum(W::'a,Z,Y)) & | |
| 2084 | (\<forall>X Y W. equal(X::'a,Y) --> equal(multiply(X::'a,W),multiply(Y::'a,W))) & | |
| 2085 | (\<forall>X Y W Z. equal(X::'a,Y) & product(X::'a,W,Z) --> product(Y::'a,W,Z)) & | |
| 2086 | (\<forall>X W Y Z. equal(X::'a,Y) & product(W::'a,X,Z) --> product(W::'a,Y,Z)) & | |
| 24127 | 2087 | (\<forall>X W Z Y. equal(X::'a,Y) & product(W::'a,Z,X) --> product(W::'a,Z,Y))" | 
| 2088 | ||
| 2089 | ||
| 2090 | (****************SLOW | |
| 2091 | 76385914 inferences so far. Searching to depth 18 | |
| 2092 | No proof after 5 1/2 hours! (griffon) | |
| 2093 | ****************) | |
| 24128 | 2094 | lemma RNG001_5: | 
| 2095 | "EQU001_0_ax equal & | |
| 2096 | (\<forall>X. sum(additive_identity::'a,X,X)) & | |
| 2097 | (\<forall>X. sum(X::'a,additive_identity,X)) & | |
| 2098 | (\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | |
| 2099 | (\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & | |
| 2100 | (\<forall>X. sum(additive_inverse(X),X,additive_identity)) & | |
| 2101 | RNG_other_ax multiply add equal product additive_identity additive_inverse sum & | |
| 2102 | (~product(a::'a,additive_identity,additive_identity)) --> False" | |
| 2103 | oops | |
| 24127 | 2104 | |
| 2105 | (*0 inferences so far. Searching to depth 0. 0.5 secs*) | |
| 2106 | lemma RNG011_5: | |
| 24128 | 2107 | "EQU001_0_ax equal & | 
| 2108 | (\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & | |
| 2109 | (\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & | |
| 2110 | (\<forall>G H. equal(G::'a,H) --> equal(additive_inverse(G),additive_inverse(H))) & | |
| 2111 | (\<forall>I' J K'. equal(I'::'a,J) --> equal(multiply(I'::'a,K'),multiply(J::'a,K'))) & | |
| 2112 | (\<forall>L N M. equal(L::'a,M) --> equal(multiply(N::'a,L),multiply(N::'a,M))) & | |
| 2113 | (\<forall>A B C D. equal(A::'a,B) --> equal(associator(A::'a,C,D),associator(B::'a,C,D))) & | |
| 2114 | (\<forall>E G F' H. equal(E::'a,F') --> equal(associator(G::'a,E,H),associator(G::'a,F',H))) & | |
| 2115 | (\<forall>I' K' L J. equal(I'::'a,J) --> equal(associator(K'::'a,L,I'),associator(K'::'a,L,J))) & | |
| 2116 | (\<forall>M N O'. equal(M::'a,N) --> equal(commutator(M::'a,O'),commutator(N::'a,O'))) & | |
| 2117 | (\<forall>P R Q. equal(P::'a,Q) --> equal(commutator(R::'a,P),commutator(R::'a,Q))) & | |
| 2118 | (\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & | |
| 2119 | (\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & | |
| 2120 | (\<forall>X. equal(add(X::'a,additive_identity),X)) & | |
| 2121 | (\<forall>X. equal(add(additive_identity::'a,X),X)) & | |
| 2122 | (\<forall>X. equal(add(X::'a,additive_inverse(X)),additive_identity)) & | |
| 2123 | (\<forall>X. equal(add(additive_inverse(X),X),additive_identity)) & | |
| 2124 | (equal(additive_inverse(additive_identity),additive_identity)) & | |
| 2125 | (\<forall>X Y. equal(add(X::'a,add(additive_inverse(X),Y)),Y)) & | |
| 2126 | (\<forall>X Y. equal(additive_inverse(add(X::'a,Y)),add(additive_inverse(X),additive_inverse(Y)))) & | |
| 2127 | (\<forall>X. equal(additive_inverse(additive_inverse(X)),X)) & | |
| 2128 | (\<forall>X. equal(multiply(X::'a,additive_identity),additive_identity)) & | |
| 2129 | (\<forall>X. equal(multiply(additive_identity::'a,X),additive_identity)) & | |
| 2130 | (\<forall>X Y. equal(multiply(additive_inverse(X),additive_inverse(Y)),multiply(X::'a,Y))) & | |
| 2131 | (\<forall>X Y. equal(multiply(X::'a,additive_inverse(Y)),additive_inverse(multiply(X::'a,Y)))) & | |
| 2132 | (\<forall>X Y. equal(multiply(additive_inverse(X),Y),additive_inverse(multiply(X::'a,Y)))) & | |
| 2133 | (\<forall>Y X Z. equal(multiply(X::'a,add(Y::'a,Z)),add(multiply(X::'a,Y),multiply(X::'a,Z)))) & | |
| 2134 | (\<forall>X Y Z. equal(multiply(add(X::'a,Y),Z),add(multiply(X::'a,Z),multiply(Y::'a,Z)))) & | |
| 2135 | (\<forall>X Y. equal(multiply(multiply(X::'a,Y),Y),multiply(X::'a,multiply(Y::'a,Y)))) & | |
| 2136 | (\<forall>X Y Z. equal(associator(X::'a,Y,Z),add(multiply(multiply(X::'a,Y),Z),additive_inverse(multiply(X::'a,multiply(Y::'a,Z)))))) & | |
| 2137 | (\<forall>X Y. equal(commutator(X::'a,Y),add(multiply(Y::'a,X),additive_inverse(multiply(X::'a,Y))))) & | |
| 2138 | (\<forall>X Y. equal(multiply(multiply(associator(X::'a,X,Y),X),associator(X::'a,X,Y)),additive_identity)) & | |
| 24127 | 2139 | (~equal(multiply(multiply(associator(a::'a,a,b),a),associator(a::'a,a,b)),additive_identity)) --> False" | 
| 2140 | by meson | |
| 2141 | ||
| 2142 | (*202 inferences so far. Searching to depth 8. 0.6 secs*) | |
| 2143 | lemma RNG023_6: | |
| 24128 | 2144 | "EQU001_0_ax equal & | 
| 2145 | (\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & | |
| 2146 | (\<forall>X Y Z. equal(add(X::'a,add(Y::'a,Z)),add(add(X::'a,Y),Z))) & | |
| 2147 | (\<forall>X. equal(add(additive_identity::'a,X),X)) & | |
| 2148 | (\<forall>X. equal(add(X::'a,additive_identity),X)) & | |
| 2149 | (\<forall>X. equal(multiply(additive_identity::'a,X),additive_identity)) & | |
| 2150 | (\<forall>X. equal(multiply(X::'a,additive_identity),additive_identity)) & | |
| 2151 | (\<forall>X. equal(add(additive_inverse(X),X),additive_identity)) & | |
| 2152 | (\<forall>X. equal(add(X::'a,additive_inverse(X)),additive_identity)) & | |
| 2153 | (\<forall>Y X Z. equal(multiply(X::'a,add(Y::'a,Z)),add(multiply(X::'a,Y),multiply(X::'a,Z)))) & | |
| 2154 | (\<forall>X Y Z. equal(multiply(add(X::'a,Y),Z),add(multiply(X::'a,Z),multiply(Y::'a,Z)))) & | |
| 2155 | (\<forall>X. equal(additive_inverse(additive_inverse(X)),X)) & | |
| 2156 | (\<forall>X Y. equal(multiply(multiply(X::'a,Y),Y),multiply(X::'a,multiply(Y::'a,Y)))) & | |
| 2157 | (\<forall>X Y. equal(multiply(multiply(X::'a,X),Y),multiply(X::'a,multiply(X::'a,Y)))) & | |
| 2158 | (\<forall>X Y Z. equal(associator(X::'a,Y,Z),add(multiply(multiply(X::'a,Y),Z),additive_inverse(multiply(X::'a,multiply(Y::'a,Z)))))) & | |
| 2159 | (\<forall>X Y. equal(commutator(X::'a,Y),add(multiply(Y::'a,X),additive_inverse(multiply(X::'a,Y))))) & | |
| 2160 | (\<forall>D E F'. equal(D::'a,E) --> equal(add(D::'a,F'),add(E::'a,F'))) & | |
| 2161 | (\<forall>G I' H. equal(G::'a,H) --> equal(add(I'::'a,G),add(I'::'a,H))) & | |
| 2162 | (\<forall>J K'. equal(J::'a,K') --> equal(additive_inverse(J),additive_inverse(K'))) & | |
| 2163 | (\<forall>L M N O'. equal(L::'a,M) --> equal(associator(L::'a,N,O'),associator(M::'a,N,O'))) & | |
| 2164 | (\<forall>P R Q S'. equal(P::'a,Q) --> equal(associator(R::'a,P,S'),associator(R::'a,Q,S'))) & | |
| 2165 | (\<forall>T' V W U. equal(T'::'a,U) --> equal(associator(V::'a,W,T'),associator(V::'a,W,U))) & | |
| 2166 | (\<forall>X Y Z. equal(X::'a,Y) --> equal(commutator(X::'a,Z),commutator(Y::'a,Z))) & | |
| 2167 | (\<forall>A1 C1 B1. equal(A1::'a,B1) --> equal(commutator(C1::'a,A1),commutator(C1::'a,B1))) & | |
| 2168 | (\<forall>D1 E1 F1. equal(D1::'a,E1) --> equal(multiply(D1::'a,F1),multiply(E1::'a,F1))) & | |
| 2169 | (\<forall>G1 I1 H1. equal(G1::'a,H1) --> equal(multiply(I1::'a,G1),multiply(I1::'a,H1))) & | |
| 24127 | 2170 | (~equal(associator(x::'a,x,y),additive_identity)) --> False" | 
| 2171 | by meson | |
| 2172 | ||
| 2173 | (*0 inferences so far. Searching to depth 0. 0.6 secs*) | |
| 2174 | lemma RNG028_2: | |
| 24128 | 2175 | "EQU001_0_ax equal & | 
| 2176 | (\<forall>X. equal(add(additive_identity::'a,X),X)) & | |
| 2177 | (\<forall>X. equal(multiply(additive_identity::'a,X),additive_identity)) & | |
| 2178 | (\<forall>X. equal(multiply(X::'a,additive_identity),additive_identity)) & | |
| 2179 | (\<forall>X. equal(add(additive_inverse(X),X),additive_identity)) & | |
| 2180 | (\<forall>X Y. equal(additive_inverse(add(X::'a,Y)),add(additive_inverse(X),additive_inverse(Y)))) & | |
| 2181 | (\<forall>X. equal(additive_inverse(additive_inverse(X)),X)) & | |
| 2182 | (\<forall>Y X Z. equal(multiply(X::'a,add(Y::'a,Z)),add(multiply(X::'a,Y),multiply(X::'a,Z)))) & | |
| 2183 | (\<forall>X Y Z. equal(multiply(add(X::'a,Y),Z),add(multiply(X::'a,Z),multiply(Y::'a,Z)))) & | |
| 2184 | (\<forall>X Y. equal(multiply(multiply(X::'a,Y),Y),multiply(X::'a,multiply(Y::'a,Y)))) & | |
| 2185 | (\<forall>X Y. equal(multiply(multiply(X::'a,X),Y),multiply(X::'a,multiply(X::'a,Y)))) & | |
| 2186 | (\<forall>X Y. equal(multiply(additive_inverse(X),Y),additive_inverse(multiply(X::'a,Y)))) & | |
| 2187 | (\<forall>X Y. equal(multiply(X::'a,additive_inverse(Y)),additive_inverse(multiply(X::'a,Y)))) & | |
| 2188 | (equal(additive_inverse(additive_identity),additive_identity)) & | |
| 2189 | (\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & | |
| 2190 | (\<forall>X Y Z. equal(add(X::'a,add(Y::'a,Z)),add(add(X::'a,Y),Z))) & | |
| 2191 | (\<forall>Z X Y. equal(add(X::'a,Z),add(Y::'a,Z)) --> equal(X::'a,Y)) & | |
| 2192 | (\<forall>Z X Y. equal(add(Z::'a,X),add(Z::'a,Y)) --> equal(X::'a,Y)) & | |
| 2193 | (\<forall>D E F'. equal(D::'a,E) --> equal(add(D::'a,F'),add(E::'a,F'))) & | |
| 2194 | (\<forall>G I' H. equal(G::'a,H) --> equal(add(I'::'a,G),add(I'::'a,H))) & | |
| 2195 | (\<forall>J K'. equal(J::'a,K') --> equal(additive_inverse(J),additive_inverse(K'))) & | |
| 2196 | (\<forall>D1 E1 F1. equal(D1::'a,E1) --> equal(multiply(D1::'a,F1),multiply(E1::'a,F1))) & | |
| 2197 | (\<forall>G1 I1 H1. equal(G1::'a,H1) --> equal(multiply(I1::'a,G1),multiply(I1::'a,H1))) & | |
| 2198 | (\<forall>X Y Z. equal(associator(X::'a,Y,Z),add(multiply(multiply(X::'a,Y),Z),additive_inverse(multiply(X::'a,multiply(Y::'a,Z)))))) & | |
| 2199 | (\<forall>L M N O'. equal(L::'a,M) --> equal(associator(L::'a,N,O'),associator(M::'a,N,O'))) & | |
| 2200 | (\<forall>P R Q S'. equal(P::'a,Q) --> equal(associator(R::'a,P,S'),associator(R::'a,Q,S'))) & | |
| 2201 | (\<forall>T' V W U. equal(T'::'a,U) --> equal(associator(V::'a,W,T'),associator(V::'a,W,U))) & | |
| 2202 | (\<forall>X Y. ~equal(multiply(multiply(Y::'a,X),Y),multiply(Y::'a,multiply(X::'a,Y)))) & | |
| 2203 | (\<forall>X Y Z. ~equal(associator(Y::'a,X,Z),additive_inverse(associator(X::'a,Y,Z)))) & | |
| 2204 | (\<forall>X Y Z. ~equal(associator(Z::'a,Y,X),additive_inverse(associator(X::'a,Y,Z)))) & | |
| 24127 | 2205 | (~equal(multiply(multiply(cx::'a,multiply(cy::'a,cx)),cz),multiply(cx::'a,multiply(cy::'a,multiply(cx::'a,cz))))) --> False" | 
| 2206 | by meson | |
| 2207 | ||
| 2208 | (*209 inferences so far. Searching to depth 9. 1.2 secs*) | |
| 2209 | lemma RNG038_2: | |
| 24128 | 2210 | "(\<forall>X. sum(X::'a,additive_identity,X)) & | 
| 2211 | (\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | |
| 24127 | 2212 | (\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & | 
| 24128 | 2213 | RNG_other_ax multiply add equal product additive_identity additive_inverse sum & | 
| 2214 | (\<forall>X. product(additive_identity::'a,X,additive_identity)) & | |
| 2215 | (\<forall>X. product(X::'a,additive_identity,additive_identity)) & | |
| 2216 | (\<forall>X Y. equal(X::'a,additive_identity) --> product(X::'a,h(X::'a,Y),Y)) & | |
| 2217 | (product(a::'a,b,additive_identity)) & | |
| 2218 | (~equal(a::'a,additive_identity)) & | |
| 24127 | 2219 | (~equal(b::'a,additive_identity)) --> False" | 
| 2220 | by meson | |
| 2221 | ||
| 2222 | (*2660 inferences so far. Searching to depth 10. 7.0 secs*) | |
| 2223 | lemma RNG040_2: | |
| 2224 | "EQU001_0_ax equal & | |
| 24128 | 2225 | RNG001_0_eq product multiply sum add additive_inverse equal & | 
| 2226 | (\<forall>X. sum(additive_identity::'a,X,X)) & | |
| 2227 | (\<forall>X. sum(X::'a,additive_identity,X)) & | |
| 2228 | (\<forall>X Y. product(X::'a,Y,multiply(X::'a,Y))) & | |
| 2229 | (\<forall>X Y. sum(X::'a,Y,add(X::'a,Y))) & | |
| 2230 | (\<forall>X. sum(additive_inverse(X),X,additive_identity)) & | |
| 2231 | (\<forall>X. sum(X::'a,additive_inverse(X),additive_identity)) & | |
| 2232 | (\<forall>Y U Z X V W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(U::'a,Z,W) --> sum(X::'a,V,W)) & | |
| 2233 | (\<forall>Y X V U Z W. sum(X::'a,Y,U) & sum(Y::'a,Z,V) & sum(X::'a,V,W) --> sum(U::'a,Z,W)) & | |
| 2234 | (\<forall>Y X Z. sum(X::'a,Y,Z) --> sum(Y::'a,X,Z)) & | |
| 2235 | (\<forall>Y U Z X V W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(U::'a,Z,W) --> product(X::'a,V,W)) & | |
| 2236 | (\<forall>Y X V U Z W. product(X::'a,Y,U) & product(Y::'a,Z,V) & product(X::'a,V,W) --> product(U::'a,Z,W)) & | |
| 2237 | (\<forall>Y Z X V3 V1 V2 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & product(X::'a,V3,V4) --> sum(V1::'a,V2,V4)) & | |
| 2238 | (\<forall>Y Z V1 V2 X V3 V4. product(X::'a,Y,V1) & product(X::'a,Z,V2) & sum(Y::'a,Z,V3) & sum(V1::'a,V2,V4) --> product(X::'a,V3,V4)) & | |
| 2239 | (\<forall>X Y U V. sum(X::'a,Y,U) & sum(X::'a,Y,V) --> equal(U::'a,V)) & | |
| 2240 | (\<forall>X Y U V. product(X::'a,Y,U) & product(X::'a,Y,V) --> equal(U::'a,V)) & | |
| 2241 | (\<forall>A. product(A::'a,multiplicative_identity,A)) & | |
| 2242 | (\<forall>A. product(multiplicative_identity::'a,A,A)) & | |
| 2243 | (\<forall>A. product(A::'a,h(A),multiplicative_identity) | equal(A::'a,additive_identity)) & | |
| 2244 | (\<forall>A. product(h(A),A,multiplicative_identity) | equal(A::'a,additive_identity)) & | |
| 2245 | (\<forall>B A C. product(A::'a,B,C) --> product(B::'a,A,C)) & | |
| 2246 | (\<forall>A B. equal(A::'a,B) --> equal(h(A),h(B))) & | |
| 2247 | (sum(b::'a,c,d)) & | |
| 2248 | (product(d::'a,a,additive_identity)) & | |
| 2249 | (product(b::'a,a,l)) & | |
| 2250 | (product(c::'a,a,n)) & | |
| 24127 | 2251 | (~sum(l::'a,n,additive_identity)) --> False" | 
| 2252 | by meson | |
| 2253 | ||
| 2254 | (*8991 inferences so far. Searching to depth 9. 22.2 secs*) | |
| 2255 | lemma RNG041_1: | |
| 2256 | "EQU001_0_ax equal & | |
| 2257 | RNG001_0_ax equal additive_inverse add multiply product additive_identity sum & | |
| 24128 | 2258 | RNG001_0_eq product multiply sum add additive_inverse equal & | 
| 2259 | (\<forall>A B. equal(A::'a,B) --> equal(h(A),h(B))) & | |
| 2260 | (\<forall>A. product(additive_identity::'a,A,additive_identity)) & | |
| 2261 | (\<forall>A. product(A::'a,additive_identity,additive_identity)) & | |
| 2262 | (\<forall>A. product(A::'a,multiplicative_identity,A)) & | |
| 2263 | (\<forall>A. product(multiplicative_identity::'a,A,A)) & | |
| 2264 | (\<forall>A. product(A::'a,h(A),multiplicative_identity) | equal(A::'a,additive_identity)) & | |
| 2265 | (\<forall>A. product(h(A),A,multiplicative_identity) | equal(A::'a,additive_identity)) & | |
| 2266 | (product(a::'a,b,additive_identity)) & | |
| 2267 | (~equal(a::'a,additive_identity)) & | |
| 24127 | 2268 | (~equal(b::'a,additive_identity)) --> False" | 
| 2269 | oops | |
| 2270 | ||
| 2271 | (*101319 inferences so far. Searching to depth 14. 76.0 secs*) | |
| 2272 | lemma ROB010_1: | |
| 24128 | 2273 | "EQU001_0_ax equal & | 
| 2274 | (\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & | |
| 2275 | (\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & | |
| 2276 | (\<forall>Y X. equal(negate(add(negate(add(X::'a,Y)),negate(add(X::'a,negate(Y))))),X)) & | |
| 2277 | (\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & | |
| 2278 | (\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & | |
| 2279 | (\<forall>G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & | |
| 2280 | (equal(negate(add(a::'a,negate(b))),c)) & | |
| 24127 | 2281 | (~equal(negate(add(c::'a,negate(add(b::'a,a)))),a)) --> False" | 
| 2282 | oops | |
| 2283 | ||
| 2284 | ||
| 2285 | (*6933 inferences so far. Searching to depth 12. 5.1 secs*) | |
| 2286 | lemma ROB013_1: | |
| 2287 | "EQU001_0_ax equal & | |
| 24128 | 2288 | (\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & | 
| 2289 | (\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & | |
| 2290 | (\<forall>Y X. equal(negate(add(negate(add(X::'a,Y)),negate(add(X::'a,negate(Y))))),X)) & | |
| 2291 | (\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & | |
| 2292 | (\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & | |
| 2293 | (\<forall>G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & | |
| 2294 | (equal(negate(add(a::'a,b)),c)) & | |
| 24127 | 2295 | (~equal(negate(add(c::'a,negate(add(negate(b),a)))),a)) --> False" | 
| 2296 | by meson | |
| 2297 | ||
| 2298 | (*6614 inferences so far. Searching to depth 11. 20.4 secs*) | |
| 2299 | lemma ROB016_1: | |
| 2300 | "EQU001_0_ax equal & | |
| 24128 | 2301 | (\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & | 
| 2302 | (\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & | |
| 2303 | (\<forall>Y X. equal(negate(add(negate(add(X::'a,Y)),negate(add(X::'a,negate(Y))))),X)) & | |
| 2304 | (\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & | |
| 2305 | (\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & | |
| 2306 | (\<forall>G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & | |
| 2307 | (\<forall>J K' L. equal(J::'a,K') --> equal(multiply(J::'a,L),multiply(K'::'a,L))) & | |
| 2308 | (\<forall>M O' N. equal(M::'a,N) --> equal(multiply(O'::'a,M),multiply(O'::'a,N))) & | |
| 2309 | (\<forall>P Q. equal(P::'a,Q) --> equal(successor(P),successor(Q))) & | |
| 2310 | (\<forall>R S'. equal(R::'a,S') & positive_integer(R) --> positive_integer(S')) & | |
| 2311 | (\<forall>X. equal(multiply(One::'a,X),X)) & | |
| 2312 | (\<forall>V X. positive_integer(X) --> equal(multiply(successor(V),X),add(X::'a,multiply(V::'a,X)))) & | |
| 2313 | (positive_integer(One)) & | |
| 2314 | (\<forall>X. positive_integer(X) --> positive_integer(successor(X))) & | |
| 2315 | (equal(negate(add(d::'a,e)),negate(e))) & | |
| 2316 | (positive_integer(k)) & | |
| 2317 | (\<forall>Vk X Y. equal(negate(add(negate(Y),negate(add(X::'a,negate(Y))))),X) & positive_integer(Vk) --> equal(negate(add(Y::'a,multiply(Vk::'a,add(X::'a,negate(add(X::'a,negate(Y))))))),negate(Y))) & | |
| 24127 | 2318 | (~equal(negate(add(e::'a,multiply(k::'a,add(d::'a,negate(add(d::'a,negate(e))))))),negate(e))) --> False" | 
| 2319 | oops | |
| 2320 | ||
| 2321 | (*14077 inferences so far. Searching to depth 11. 32.8 secs*) | |
| 2322 | lemma ROB021_1: | |
| 2323 | "EQU001_0_ax equal & | |
| 24128 | 2324 | (\<forall>Y X. equal(add(X::'a,Y),add(Y::'a,X))) & | 
| 2325 | (\<forall>X Y Z. equal(add(add(X::'a,Y),Z),add(X::'a,add(Y::'a,Z)))) & | |
| 2326 | (\<forall>Y X. equal(negate(add(negate(add(X::'a,Y)),negate(add(X::'a,negate(Y))))),X)) & | |
| 2327 | (\<forall>A B C. equal(A::'a,B) --> equal(add(A::'a,C),add(B::'a,C))) & | |
| 2328 | (\<forall>D F' E. equal(D::'a,E) --> equal(add(F'::'a,D),add(F'::'a,E))) & | |
| 2329 | (\<forall>G H. equal(G::'a,H) --> equal(negate(G),negate(H))) & | |
| 2330 | (\<forall>X Y. equal(negate(X),negate(Y)) --> equal(X::'a,Y)) & | |
| 24127 | 2331 | (~equal(add(negate(add(a::'a,negate(b))),negate(add(negate(a),negate(b)))),b)) --> False" | 
| 2332 | oops | |
| 2333 | ||
| 2334 | (*35532 inferences so far. Searching to depth 19. 54.3 secs*) | |
| 2335 | lemma SET005_1: | |
| 24128 | 2336 | "(\<forall>Subset Element Superset. member(Element::'a,Subset) & subset(Subset::'a,Superset) --> member(Element::'a,Superset)) & | 
| 2337 | (\<forall>Superset Subset. subset(Subset::'a,Superset) | member(member_of_1_not_of_2(Subset::'a,Superset),Subset)) & | |
| 2338 | (\<forall>Subset Superset. member(member_of_1_not_of_2(Subset::'a,Superset),Superset) --> subset(Subset::'a,Superset)) & | |
| 2339 | (\<forall>Subset Superset. equal_sets(Subset::'a,Superset) --> subset(Subset::'a,Superset)) & | |
| 2340 | (\<forall>Subset Superset. equal_sets(Superset::'a,Subset) --> subset(Subset::'a,Superset)) & | |
| 2341 | (\<forall>Set2 Set1. subset(Set1::'a,Set2) & subset(Set2::'a,Set1) --> equal_sets(Set2::'a,Set1)) & | |
| 2342 | (\<forall>Set2 Intersection Element Set1. intersection(Set1::'a,Set2,Intersection) & member(Element::'a,Intersection) --> member(Element::'a,Set1)) & | |
| 2343 | (\<forall>Set1 Intersection Element Set2. intersection(Set1::'a,Set2,Intersection) & member(Element::'a,Intersection) --> member(Element::'a,Set2)) & | |
| 2344 | (\<forall>Set2 Set1 Element Intersection. intersection(Set1::'a,Set2,Intersection) & member(Element::'a,Set2) & member(Element::'a,Set1) --> member(Element::'a,Intersection)) & | |
| 2345 | (\<forall>Set2 Intersection Set1. member(h(Set1::'a,Set2,Intersection),Intersection) | intersection(Set1::'a,Set2,Intersection) | member(h(Set1::'a,Set2,Intersection),Set1)) & | |
| 2346 | (\<forall>Set1 Intersection Set2. member(h(Set1::'a,Set2,Intersection),Intersection) | intersection(Set1::'a,Set2,Intersection) | member(h(Set1::'a,Set2,Intersection),Set2)) & | |
| 2347 | (\<forall>Set1 Set2 Intersection. member(h(Set1::'a,Set2,Intersection),Intersection) & member(h(Set1::'a,Set2,Intersection),Set2) & member(h(Set1::'a,Set2,Intersection),Set1) --> intersection(Set1::'a,Set2,Intersection)) & | |
| 2348 | (intersection(a::'a,b,aIb)) & | |
| 2349 | (intersection(b::'a,c,bIc)) & | |
| 2350 | (intersection(a::'a,bIc,aIbIc)) & | |
| 24127 | 2351 | (~intersection(aIb::'a,c,aIbIc)) --> False" | 
| 2352 | oops | |
| 2353 | ||
| 2354 | ||
| 2355 | (*6450 inferences so far. Searching to depth 14. 4.2 secs*) | |
| 2356 | lemma SET009_1: | |
| 24128 | 2357 | "(\<forall>Subset Element Superset. member(Element::'a,Subset) & ssubset(Subset::'a,Superset) --> member(Element::'a,Superset)) & | 
| 2358 | (\<forall>Superset Subset. ssubset(Subset::'a,Superset) | member(member_of_1_not_of_2(Subset::'a,Superset),Subset)) & | |
| 2359 | (\<forall>Subset Superset. member(member_of_1_not_of_2(Subset::'a,Superset),Superset) --> ssubset(Subset::'a,Superset)) & | |
| 2360 | (\<forall>Subset Superset. equal_sets(Subset::'a,Superset) --> ssubset(Subset::'a,Superset)) & | |
| 2361 | (\<forall>Subset Superset. equal_sets(Superset::'a,Subset) --> ssubset(Subset::'a,Superset)) & | |
| 2362 | (\<forall>Set2 Set1. ssubset(Set1::'a,Set2) & ssubset(Set2::'a,Set1) --> equal_sets(Set2::'a,Set1)) & | |
| 2363 | (\<forall>Set2 Difference Element Set1. difference(Set1::'a,Set2,Difference) & member(Element::'a,Difference) --> member(Element::'a,Set1)) & | |
| 2364 | (\<forall>Element A_set Set1 Set2. ~(member(Element::'a,Set1) & member(Element::'a,Set2) & difference(A_set::'a,Set1,Set2))) & | |
| 2365 | (\<forall>Set1 Difference Element Set2. member(Element::'a,Set1) & difference(Set1::'a,Set2,Difference) --> member(Element::'a,Difference) | member(Element::'a,Set2)) & | |
| 2366 | (\<forall>Set1 Set2 Difference. difference(Set1::'a,Set2,Difference) | member(k(Set1::'a,Set2,Difference),Set1) | member(k(Set1::'a,Set2,Difference),Difference)) & | |
| 2367 | (\<forall>Set1 Set2 Difference. member(k(Set1::'a,Set2,Difference),Set2) --> member(k(Set1::'a,Set2,Difference),Difference) | difference(Set1::'a,Set2,Difference)) & | |
| 2368 | (\<forall>Set1 Set2 Difference. member(k(Set1::'a,Set2,Difference),Difference) & member(k(Set1::'a,Set2,Difference),Set1) --> member(k(Set1::'a,Set2,Difference),Set2) | difference(Set1::'a,Set2,Difference)) & | |
| 2369 | (ssubset(d::'a,a)) & | |
| 2370 | (difference(b::'a,a,bDa)) & | |
| 2371 | (difference(b::'a,d,bDd)) & | |
| 24127 | 2372 | (~ssubset(bDa::'a,bDd)) --> False" | 
| 2373 | by meson | |
| 2374 | ||
| 2375 | (*34726 inferences so far. Searching to depth 6. 2420 secs: 40 mins! BIG*) | |
| 2376 | lemma SET025_4: | |
| 24128 | 2377 | "EQU001_0_ax equal & | 
| 2378 | (\<forall>Y X. member(X::'a,Y) --> little_set(X)) & | |
| 2379 | (\<forall>X Y. little_set(f1(X::'a,Y)) | equal(X::'a,Y)) & | |
| 2380 | (\<forall>X Y. member(f1(X::'a,Y),X) | member(f1(X::'a,Y),Y) | equal(X::'a,Y)) & | |
| 2381 | (\<forall>X Y. member(f1(X::'a,Y),X) & member(f1(X::'a,Y),Y) --> equal(X::'a,Y)) & | |
| 2382 | (\<forall>X U Y. member(U::'a,non_ordered_pair(X::'a,Y)) --> equal(U::'a,X) | equal(U::'a,Y)) & | |
| 2383 | (\<forall>Y U X. little_set(U) & equal(U::'a,X) --> member(U::'a,non_ordered_pair(X::'a,Y))) & | |
| 2384 | (\<forall>X U Y. little_set(U) & equal(U::'a,Y) --> member(U::'a,non_ordered_pair(X::'a,Y))) & | |
| 2385 | (\<forall>X Y. little_set(non_ordered_pair(X::'a,Y))) & | |
| 2386 | (\<forall>X. equal(singleton_set(X),non_ordered_pair(X::'a,X))) & | |
| 2387 | (\<forall>X Y. equal(ordered_pair(X::'a,Y),non_ordered_pair(singleton_set(X),non_ordered_pair(X::'a,Y)))) & | |
| 2388 | (\<forall>X. ordered_pair_predicate(X) --> little_set(f2(X))) & | |
| 2389 | (\<forall>X. ordered_pair_predicate(X) --> little_set(f3(X))) & | |
| 2390 | (\<forall>X. ordered_pair_predicate(X) --> equal(X::'a,ordered_pair(f2(X),f3(X)))) & | |
| 2391 | (\<forall>X Y Z. little_set(Y) & little_set(Z) & equal(X::'a,ordered_pair(Y::'a,Z)) --> ordered_pair_predicate(X)) & | |
| 2392 | (\<forall>Z X. member(Z::'a,first(X)) --> little_set(f4(Z::'a,X))) & | |
| 2393 | (\<forall>Z X. member(Z::'a,first(X)) --> little_set(f5(Z::'a,X))) & | |
| 2394 | (\<forall>Z X. member(Z::'a,first(X)) --> equal(X::'a,ordered_pair(f4(Z::'a,X),f5(Z::'a,X)))) & | |
| 2395 | (\<forall>Z X. member(Z::'a,first(X)) --> member(Z::'a,f4(Z::'a,X))) & | |
| 2396 | (\<forall>X V Z U. little_set(U) & little_set(V) & equal(X::'a,ordered_pair(U::'a,V)) & member(Z::'a,U) --> member(Z::'a,first(X))) & | |
| 2397 | (\<forall>Z X. member(Z::'a,second(X)) --> little_set(f6(Z::'a,X))) & | |
| 2398 | (\<forall>Z X. member(Z::'a,second(X)) --> little_set(f7(Z::'a,X))) & | |
| 2399 | (\<forall>Z X. member(Z::'a,second(X)) --> equal(X::'a,ordered_pair(f6(Z::'a,X),f7(Z::'a,X)))) & | |
| 2400 | (\<forall>Z X. member(Z::'a,second(X)) --> member(Z::'a,f7(Z::'a,X))) & | |
| 2401 | (\<forall>X U Z V. little_set(U) & little_set(V) & equal(X::'a,ordered_pair(U::'a,V)) & member(Z::'a,V) --> member(Z::'a,second(X))) & | |
| 2402 | (\<forall>Z. member(Z::'a,estin) --> ordered_pair_predicate(Z)) & | |
| 2403 | (\<forall>Z. member(Z::'a,estin) --> member(first(Z),second(Z))) & | |
| 2404 | (\<forall>Z. little_set(Z) & ordered_pair_predicate(Z) & member(first(Z),second(Z)) --> member(Z::'a,estin)) & | |
| 2405 | (\<forall>Y Z X. member(Z::'a,intersection(X::'a,Y)) --> member(Z::'a,X)) & | |
| 2406 | (\<forall>X Z Y. member(Z::'a,intersection(X::'a,Y)) --> member(Z::'a,Y)) & | |
| 2407 | (\<forall>X Z Y. member(Z::'a,X) & member(Z::'a,Y) --> member(Z::'a,intersection(X::'a,Y))) & | |
| 2408 | (\<forall>Z X. ~(member(Z::'a,complement(X)) & member(Z::'a,X))) & | |
| 2409 | (\<forall>Z X. little_set(Z) --> member(Z::'a,complement(X)) | member(Z::'a,X)) & | |
| 2410 | (\<forall>X Y. equal(union(X::'a,Y),complement(intersection(complement(X),complement(Y))))) & | |
| 2411 | (\<forall>Z X. member(Z::'a,domain_of(X)) --> ordered_pair_predicate(f8(Z::'a,X))) & | |
| 2412 | (\<forall>Z X. member(Z::'a,domain_of(X)) --> member(f8(Z::'a,X),X)) & | |
| 2413 | (\<forall>Z X. member(Z::'a,domain_of(X)) --> equal(Z::'a,first(f8(Z::'a,X)))) & | |
| 2414 | (\<forall>X Z Xp. little_set(Z) & ordered_pair_predicate(Xp) & member(Xp::'a,X) & equal(Z::'a,first(Xp)) --> member(Z::'a,domain_of(X))) & | |
| 2415 | (\<forall>X Y Z. member(Z::'a,cross_product(X::'a,Y)) --> ordered_pair_predicate(Z)) & | |
| 2416 | (\<forall>Y Z X. member(Z::'a,cross_product(X::'a,Y)) --> member(first(Z),X)) & | |
| 2417 | (\<forall>X Z Y. member(Z::'a,cross_product(X::'a,Y)) --> member(second(Z),Y)) & | |
| 2418 | (\<forall>X Z Y. little_set(Z) & ordered_pair_predicate(Z) & member(first(Z),X) & member(second(Z),Y) --> member(Z::'a,cross_product(X::'a,Y))) & | |
| 2419 | (\<forall>X Z. member(Z::'a,inv1 X) --> ordered_pair_predicate(Z)) & | |
| 2420 | (\<forall>Z X. member(Z::'a,inv1 X) --> member(ordered_pair(second(Z),first(Z)),X)) & | |
| 2421 | (\<forall>Z X. little_set(Z) & ordered_pair_predicate(Z) & member(ordered_pair(second(Z),first(Z)),X) --> member(Z::'a,inv1 X)) & | |
| 2422 | (\<forall>Z X. member(Z::'a,rot_right(X)) --> little_set(f9(Z::'a,X))) & | |
| 2423 | (\<forall>Z X. member(Z::'a,rot_right(X)) --> little_set(f10(Z::'a,X))) & | |
| 2424 | (\<forall>Z X. member(Z::'a,rot_right(X)) --> little_set(f11(Z::'a,X))) & | |
| 2425 | (\<forall>Z X. member(Z::'a,rot_right(X)) --> equal(Z::'a,ordered_pair(f9(Z::'a,X),ordered_pair(f10(Z::'a,X),f11(Z::'a,X))))) & | |
| 2426 | (\<forall>Z X. member(Z::'a,rot_right(X)) --> member(ordered_pair(f10(Z::'a,X),ordered_pair(f11(Z::'a,X),f9(Z::'a,X))),X)) & | |
| 2427 | (\<forall>Z V W U X. little_set(Z) & little_set(U) & little_set(V) & little_set(W) & equal(Z::'a,ordered_pair(U::'a,ordered_pair(V::'a,W))) & member(ordered_pair(V::'a,ordered_pair(W::'a,U)),X) --> member(Z::'a,rot_right(X))) & | |
| 2428 | (\<forall>Z X. member(Z::'a,flip_range_of(X)) --> little_set(f12(Z::'a,X))) & | |
| 2429 | (\<forall>Z X. member(Z::'a,flip_range_of(X)) --> little_set(f13(Z::'a,X))) & | |
| 2430 | (\<forall>Z X. member(Z::'a,flip_range_of(X)) --> little_set(f14(Z::'a,X))) & | |
| 2431 | (\<forall>Z X. member(Z::'a,flip_range_of(X)) --> equal(Z::'a,ordered_pair(f12(Z::'a,X),ordered_pair(f13(Z::'a,X),f14(Z::'a,X))))) & | |
| 2432 | (\<forall>Z X. member(Z::'a,flip_range_of(X)) --> member(ordered_pair(f12(Z::'a,X),ordered_pair(f14(Z::'a,X),f13(Z::'a,X))),X)) & | |
| 2433 | (\<forall>Z U W V X. little_set(Z) & little_set(U) & little_set(V) & little_set(W) & equal(Z::'a,ordered_pair(U::'a,ordered_pair(V::'a,W))) & member(ordered_pair(U::'a,ordered_pair(W::'a,V)),X) --> member(Z::'a,flip_range_of(X))) & | |
| 2434 | (\<forall>X. equal(successor(X),union(X::'a,singleton_set(X)))) & | |
| 2435 | (\<forall>Z. ~member(Z::'a,empty_set)) & | |
| 2436 | (\<forall>Z. little_set(Z) --> member(Z::'a,universal_set)) & | |
| 2437 | (little_set(infinity)) & | |
| 2438 | (member(empty_set::'a,infinity)) & | |
| 2439 | (\<forall>X. member(X::'a,infinity) --> member(successor(X),infinity)) & | |
| 2440 | (\<forall>Z X. member(Z::'a,sigma(X)) --> member(f16(Z::'a,X),X)) & | |
| 2441 | (\<forall>Z X. member(Z::'a,sigma(X)) --> member(Z::'a,f16(Z::'a,X))) & | |
| 2442 | (\<forall>X Z Y. member(Y::'a,X) & member(Z::'a,Y) --> member(Z::'a,sigma(X))) & | |
| 2443 | (\<forall>U. little_set(U) --> little_set(sigma(U))) & | |
| 2444 | (\<forall>X U Y. ssubset(X::'a,Y) & member(U::'a,X) --> member(U::'a,Y)) & | |
| 2445 | (\<forall>Y X. ssubset(X::'a,Y) | member(f17(X::'a,Y),X)) & | |
| 2446 | (\<forall>X Y. member(f17(X::'a,Y),Y) --> ssubset(X::'a,Y)) & | |
| 2447 | (\<forall>X Y. proper_subset(X::'a,Y) --> ssubset(X::'a,Y)) & | |
| 2448 | (\<forall>X Y. ~(proper_subset(X::'a,Y) & equal(X::'a,Y))) & | |
| 2449 | (\<forall>X Y. ssubset(X::'a,Y) --> proper_subset(X::'a,Y) | equal(X::'a,Y)) & | |
| 2450 | (\<forall>Z X. member(Z::'a,powerset(X)) --> ssubset(Z::'a,X)) & | |
| 2451 | (\<forall>Z X. little_set(Z) & ssubset(Z::'a,X) --> member(Z::'a,powerset(X))) & | |
| 2452 | (\<forall>U. little_set(U) --> little_set(powerset(U))) & | |
| 2453 | (\<forall>Z X. relation(Z) & member(X::'a,Z) --> ordered_pair_predicate(X)) & | |
| 2454 | (\<forall>Z. relation(Z) | member(f18(Z),Z)) & | |
| 2455 | (\<forall>Z. ordered_pair_predicate(f18(Z)) --> relation(Z)) & | |
| 2456 | (\<forall>U X V W. single_valued_set(X) & little_set(U) & little_set(V) & little_set(W) & member(ordered_pair(U::'a,V),X) & member(ordered_pair(U::'a,W),X) --> equal(V::'a,W)) & | |
| 2457 | (\<forall>X. single_valued_set(X) | little_set(f19(X))) & | |
| 2458 | (\<forall>X. single_valued_set(X) | little_set(f20(X))) & | |
| 2459 | (\<forall>X. single_valued_set(X) | little_set(f21(X))) & | |
| 2460 | (\<forall>X. single_valued_set(X) | member(ordered_pair(f19(X),f20(X)),X)) & | |
| 2461 | (\<forall>X. single_valued_set(X) | member(ordered_pair(f19(X),f21(X)),X)) & | |
| 2462 | (\<forall>X. equal(f20(X),f21(X)) --> single_valued_set(X)) & | |
| 2463 | (\<forall>Xf. function(Xf) --> relation(Xf)) & | |
| 2464 | (\<forall>Xf. function(Xf) --> single_valued_set(Xf)) & | |
| 2465 | (\<forall>Xf. relation(Xf) & single_valued_set(Xf) --> function(Xf)) & | |
| 2466 | (\<forall>Z X Xf. member(Z::'a,image'(X::'a,Xf)) --> ordered_pair_predicate(f22(Z::'a,X,Xf))) & | |
| 2467 | (\<forall>Z X Xf. member(Z::'a,image'(X::'a,Xf)) --> member(f22(Z::'a,X,Xf),Xf)) & | |
| 2468 | (\<forall>Z Xf X. member(Z::'a,image'(X::'a,Xf)) --> member(first(f22(Z::'a,X,Xf)),X)) & | |
| 2469 | (\<forall>X Xf Z. member(Z::'a,image'(X::'a,Xf)) --> equal(second(f22(Z::'a,X,Xf)),Z)) & | |
| 2470 | (\<forall>Xf X Y Z. little_set(Z) & ordered_pair_predicate(Y) & member(Y::'a,Xf) & member(first(Y),X) & equal(second(Y),Z) --> member(Z::'a,image'(X::'a,Xf))) & | |
| 2471 | (\<forall>X Xf. little_set(X) & function(Xf) --> little_set(image'(X::'a,Xf))) & | |
| 2472 | (\<forall>X U Y. ~(disjoint(X::'a,Y) & member(U::'a,X) & member(U::'a,Y))) & | |
| 2473 | (\<forall>Y X. disjoint(X::'a,Y) | member(f23(X::'a,Y),X)) & | |
| 2474 | (\<forall>X Y. disjoint(X::'a,Y) | member(f23(X::'a,Y),Y)) & | |
| 2475 | (\<forall>X. equal(X::'a,empty_set) | member(f24(X),X)) & | |
| 2476 | (\<forall>X. equal(X::'a,empty_set) | disjoint(f24(X),X)) & | |
| 2477 | (function(f25)) & | |
| 2478 | (\<forall>X. little_set(X) --> equal(X::'a,empty_set) | member(f26(X),X)) & | |
| 2479 | (\<forall>X. little_set(X) --> equal(X::'a,empty_set) | member(ordered_pair(X::'a,f26(X)),f25)) & | |
| 2480 | (\<forall>Z X. member(Z::'a,range_of(X)) --> ordered_pair_predicate(f27(Z::'a,X))) & | |
| 2481 | (\<forall>Z X. member(Z::'a,range_of(X)) --> member(f27(Z::'a,X),X)) & | |
| 2482 | (\<forall>Z X. member(Z::'a,range_of(X)) --> equal(Z::'a,second(f27(Z::'a,X)))) & | |
| 2483 | (\<forall>X Z Xp. little_set(Z) & ordered_pair_predicate(Xp) & member(Xp::'a,X) & equal(Z::'a,second(Xp)) --> member(Z::'a,range_of(X))) & | |
| 2484 | (\<forall>Z. member(Z::'a,identity_relation) --> ordered_pair_predicate(Z)) & | |
| 2485 | (\<forall>Z. member(Z::'a,identity_relation) --> equal(first(Z),second(Z))) & | |
| 2486 | (\<forall>Z. little_set(Z) & ordered_pair_predicate(Z) & equal(first(Z),second(Z)) --> member(Z::'a,identity_relation)) & | |
| 2487 | (\<forall>X Y. equal(restrct(X::'a,Y),intersection(X::'a,cross_product(Y::'a,universal_set)))) & | |
| 2488 | (\<forall>Xf. one_to_one_function(Xf) --> function(Xf)) & | |
| 2489 | (\<forall>Xf. one_to_one_function(Xf) --> function(inv1 Xf)) & | |
| 2490 | (\<forall>Xf. function(Xf) & function(inv1 Xf) --> one_to_one_function(Xf)) & | |
| 2491 | (\<forall>Z Xf Y. member(Z::'a,apply(Xf::'a,Y)) --> ordered_pair_predicate(f28(Z::'a,Xf,Y))) & | |
| 2492 | (\<forall>Z Y Xf. member(Z::'a,apply(Xf::'a,Y)) --> member(f28(Z::'a,Xf,Y),Xf)) & | |
| 2493 | (\<forall>Z Xf Y. member(Z::'a,apply(Xf::'a,Y)) --> equal(first(f28(Z::'a,Xf,Y)),Y)) & | |
| 2494 | (\<forall>Z Xf Y. member(Z::'a,apply(Xf::'a,Y)) --> member(Z::'a,second(f28(Z::'a,Xf,Y)))) & | |
| 2495 | (\<forall>Xf Y Z W. ordered_pair_predicate(W) & member(W::'a,Xf) & equal(first(W),Y) & member(Z::'a,second(W)) --> member(Z::'a,apply(Xf::'a,Y))) & | |
| 2496 | (\<forall>Xf X Y. equal(apply_to_two_arguments(Xf::'a,X,Y),apply(Xf::'a,ordered_pair(X::'a,Y)))) & | |
| 2497 | (\<forall>X Y Xf. maps(Xf::'a,X,Y) --> function(Xf)) & | |
| 2498 | (\<forall>Y Xf X. maps(Xf::'a,X,Y) --> equal(domain_of(Xf),X)) & | |
| 2499 | (\<forall>X Xf Y. maps(Xf::'a,X,Y) --> ssubset(range_of(Xf),Y)) & | |
| 2500 | (\<forall>X Xf Y. function(Xf) & equal(domain_of(Xf),X) & ssubset(range_of(Xf),Y) --> maps(Xf::'a,X,Y)) & | |
| 2501 | (\<forall>Xf Xs. closed(Xs::'a,Xf) --> little_set(Xs)) & | |
| 2502 | (\<forall>Xs Xf. closed(Xs::'a,Xf) --> little_set(Xf)) & | |
| 2503 | (\<forall>Xf Xs. closed(Xs::'a,Xf) --> maps(Xf::'a,cross_product(Xs::'a,Xs),Xs)) & | |
| 2504 | (\<forall>Xf Xs. little_set(Xs) & little_set(Xf) & maps(Xf::'a,cross_product(Xs::'a,Xs),Xs) --> closed(Xs::'a,Xf)) & | |
| 2505 | (\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> little_set(f29(Z::'a,Xf,Xg))) & | |
| 2506 | (\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> little_set(f30(Z::'a,Xf,Xg))) & | |
| 2507 | (\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> little_set(f31(Z::'a,Xf,Xg))) & | |
| 2508 | (\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> equal(Z::'a,ordered_pair(f29(Z::'a,Xf,Xg),f30(Z::'a,Xf,Xg)))) & | |
| 2509 | (\<forall>Z Xg Xf. member(Z::'a,composition(Xf::'a,Xg)) --> member(ordered_pair(f29(Z::'a,Xf,Xg),f31(Z::'a,Xf,Xg)),Xf)) & | |
| 2510 | (\<forall>Z Xf Xg. member(Z::'a,composition(Xf::'a,Xg)) --> member(ordered_pair(f31(Z::'a,Xf,Xg),f30(Z::'a,Xf,Xg)),Xg)) & | |
| 2511 | (\<forall>Z X Xf W Y Xg. little_set(Z) & little_set(X) & little_set(Y) & little_set(W) & equal(Z::'a,ordered_pair(X::'a,Y)) & member(ordered_pair(X::'a,W),Xf) & member(ordered_pair(W::'a,Y),Xg) --> member(Z::'a,composition(Xf::'a,Xg))) & | |
| 2512 | (\<forall>Xh Xs2 Xf2 Xs1 Xf1. homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) --> closed(Xs1::'a,Xf1)) & | |
| 2513 | (\<forall>Xh Xs1 Xf1 Xs2 Xf2. homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) --> closed(Xs2::'a,Xf2)) & | |
| 2514 | (\<forall>Xf1 Xf2 Xh Xs1 Xs2. homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) --> maps(Xh::'a,Xs1,Xs2)) & | |
| 2515 | (\<forall>Xs2 Xs1 Xf1 Xf2 X Xh Y. homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) & member(X::'a,Xs1) & member(Y::'a,Xs1) --> equal(apply(Xh::'a,apply_to_two_arguments(Xf1::'a,X,Y)),apply_to_two_arguments(Xf2::'a,apply(Xh::'a,X),apply(Xh::'a,Y)))) & | |
| 2516 | (\<forall>Xh Xf1 Xs2 Xf2 Xs1. closed(Xs1::'a,Xf1) & closed(Xs2::'a,Xf2) & maps(Xh::'a,Xs1,Xs2) --> homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) | member(f32(Xh::'a,Xs1,Xf1,Xs2,Xf2),Xs1)) & | |
| 2517 | (\<forall>Xh Xf1 Xs2 Xf2 Xs1. closed(Xs1::'a,Xf1) & closed(Xs2::'a,Xf2) & maps(Xh::'a,Xs1,Xs2) --> homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2) | member(f33(Xh::'a,Xs1,Xf1,Xs2,Xf2),Xs1)) & | |
| 2518 | (\<forall>Xh Xs1 Xf1 Xs2 Xf2. closed(Xs1::'a,Xf1) & closed(Xs2::'a,Xf2) & maps(Xh::'a,Xs1,Xs2) & equal(apply(Xh::'a,apply_to_two_arguments(Xf1::'a,f32(Xh::'a,Xs1,Xf1,Xs2,Xf2),f33(Xh::'a,Xs1,Xf1,Xs2,Xf2))),apply_to_two_arguments(Xf2::'a,apply(Xh::'a,f32(Xh::'a,Xs1,Xf1,Xs2,Xf2)),apply(Xh::'a,f33(Xh::'a,Xs1,Xf1,Xs2,Xf2)))) --> homomorphism(Xh::'a,Xs1,Xf1,Xs2,Xf2)) & | |
| 2519 | (\<forall>A B C. equal(A::'a,B) --> equal(f1(A::'a,C),f1(B::'a,C))) & | |
| 2520 | (\<forall>D F' E. equal(D::'a,E) --> equal(f1(F'::'a,D),f1(F'::'a,E))) & | |
| 2521 | (\<forall>A2 B2. equal(A2::'a,B2) --> equal(f2(A2),f2(B2))) & | |
| 2522 | (\<forall>G4 H4. equal(G4::'a,H4) --> equal(f3(G4),f3(H4))) & | |
| 2523 | (\<forall>O7 P7 Q7. equal(O7::'a,P7) --> equal(f4(O7::'a,Q7),f4(P7::'a,Q7))) & | |
| 2524 | (\<forall>R7 T7 S7. equal(R7::'a,S7) --> equal(f4(T7::'a,R7),f4(T7::'a,S7))) & | |
| 2525 | (\<forall>U7 V7 W7. equal(U7::'a,V7) --> equal(f5(U7::'a,W7),f5(V7::'a,W7))) & | |
| 2526 | (\<forall>X7 Z7 Y7. equal(X7::'a,Y7) --> equal(f5(Z7::'a,X7),f5(Z7::'a,Y7))) & | |
| 2527 | (\<forall>A8 B8 C8. equal(A8::'a,B8) --> equal(f6(A8::'a,C8),f6(B8::'a,C8))) & | |
| 2528 | (\<forall>D8 F8 E8. equal(D8::'a,E8) --> equal(f6(F8::'a,D8),f6(F8::'a,E8))) & | |
| 2529 | (\<forall>G8 H8 I8. equal(G8::'a,H8) --> equal(f7(G8::'a,I8),f7(H8::'a,I8))) & | |
| 2530 | (\<forall>J8 L8 K8. equal(J8::'a,K8) --> equal(f7(L8::'a,J8),f7(L8::'a,K8))) & | |
| 2531 | (\<forall>M8 N8 O8. equal(M8::'a,N8) --> equal(f8(M8::'a,O8),f8(N8::'a,O8))) & | |
| 2532 | (\<forall>P8 R8 Q8. equal(P8::'a,Q8) --> equal(f8(R8::'a,P8),f8(R8::'a,Q8))) & | |
| 2533 | (\<forall>S8 T8 U8. equal(S8::'a,T8) --> equal(f9(S8::'a,U8),f9(T8::'a,U8))) & | |
| 2534 | (\<forall>V8 X8 W8. equal(V8::'a,W8) --> equal(f9(X8::'a,V8),f9(X8::'a,W8))) & | |
| 2535 | (\<forall>G H I'. equal(G::'a,H) --> equal(f10(G::'a,I'),f10(H::'a,I'))) & | |
| 2536 | (\<forall>J L K'. equal(J::'a,K') --> equal(f10(L::'a,J),f10(L::'a,K'))) & | |
| 2537 | (\<forall>M N O'. equal(M::'a,N) --> equal(f11(M::'a,O'),f11(N::'a,O'))) & | |
| 2538 | (\<forall>P R Q. equal(P::'a,Q) --> equal(f11(R::'a,P),f11(R::'a,Q))) & | |
| 2539 | (\<forall>S' T' U. equal(S'::'a,T') --> equal(f12(S'::'a,U),f12(T'::'a,U))) & | |
| 2540 | (\<forall>V X W. equal(V::'a,W) --> equal(f12(X::'a,V),f12(X::'a,W))) & | |
| 2541 | (\<forall>Y Z A1. equal(Y::'a,Z) --> equal(f13(Y::'a,A1),f13(Z::'a,A1))) & | |
| 2542 | (\<forall>B1 D1 C1. equal(B1::'a,C1) --> equal(f13(D1::'a,B1),f13(D1::'a,C1))) & | |
| 2543 | (\<forall>E1 F1 G1. equal(E1::'a,F1) --> equal(f14(E1::'a,G1),f14(F1::'a,G1))) & | |
| 2544 | (\<forall>H1 J1 I1. equal(H1::'a,I1) --> equal(f14(J1::'a,H1),f14(J1::'a,I1))) & | |
| 2545 | (\<forall>K1 L1 M1. equal(K1::'a,L1) --> equal(f16(K1::'a,M1),f16(L1::'a,M1))) & | |
| 2546 | (\<forall>N1 P1 O1. equal(N1::'a,O1) --> equal(f16(P1::'a,N1),f16(P1::'a,O1))) & | |
| 2547 | (\<forall>Q1 R1 S1. equal(Q1::'a,R1) --> equal(f17(Q1::'a,S1),f17(R1::'a,S1))) & | |
| 2548 | (\<forall>T1 V1 U1. equal(T1::'a,U1) --> equal(f17(V1::'a,T1),f17(V1::'a,U1))) & | |
| 2549 | (\<forall>W1 X1. equal(W1::'a,X1) --> equal(f18(W1),f18(X1))) & | |
| 2550 | (\<forall>Y1 Z1. equal(Y1::'a,Z1) --> equal(f19(Y1),f19(Z1))) & | |
| 2551 | (\<forall>C2 D2. equal(C2::'a,D2) --> equal(f20(C2),f20(D2))) & | |
| 2552 | (\<forall>E2 F2. equal(E2::'a,F2) --> equal(f21(E2),f21(F2))) & | |
| 2553 | (\<forall>G2 H2 I2 J2. equal(G2::'a,H2) --> equal(f22(G2::'a,I2,J2),f22(H2::'a,I2,J2))) & | |
| 2554 | (\<forall>K2 M2 L2 N2. equal(K2::'a,L2) --> equal(f22(M2::'a,K2,N2),f22(M2::'a,L2,N2))) & | |
| 2555 | (\<forall>O2 Q2 R2 P2. equal(O2::'a,P2) --> equal(f22(Q2::'a,R2,O2),f22(Q2::'a,R2,P2))) & | |
| 2556 | (\<forall>S2 T2 U2. equal(S2::'a,T2) --> equal(f23(S2::'a,U2),f23(T2::'a,U2))) & | |
| 2557 | (\<forall>V2 X2 W2. equal(V2::'a,W2) --> equal(f23(X2::'a,V2),f23(X2::'a,W2))) & | |
| 2558 | (\<forall>Y2 Z2. equal(Y2::'a,Z2) --> equal(f24(Y2),f24(Z2))) & | |
| 2559 | (\<forall>A3 B3. equal(A3::'a,B3) --> equal(f26(A3),f26(B3))) & | |
| 2560 | (\<forall>C3 D3 E3. equal(C3::'a,D3) --> equal(f27(C3::'a,E3),f27(D3::'a,E3))) & | |
| 2561 | (\<forall>F3 H3 G3. equal(F3::'a,G3) --> equal(f27(H3::'a,F3),f27(H3::'a,G3))) & | |
| 2562 | (\<forall>I3 J3 K3 L3. equal(I3::'a,J3) --> equal(f28(I3::'a,K3,L3),f28(J3::'a,K3,L3))) & | |
| 2563 | (\<forall>M3 O3 N3 P3. equal(M3::'a,N3) --> equal(f28(O3::'a,M3,P3),f28(O3::'a,N3,P3))) & | |
| 2564 | (\<forall>Q3 S3 T3 R3. equal(Q3::'a,R3) --> equal(f28(S3::'a,T3,Q3),f28(S3::'a,T3,R3))) & | |
| 2565 | (\<forall>U3 V3 W3 X3. equal(U3::'a,V3) --> equal(f29(U3::'a,W3,X3),f29(V3::'a,W3,X3))) & | |
| 2566 | (\<forall>Y3 A4 Z3 B4. equal(Y3::'a,Z3) --> equal(f29(A4::'a,Y3,B4),f29(A4::'a,Z3,B4))) & | |
| 2567 | (\<forall>C4 E4 F4 D4. equal(C4::'a,D4) --> equal(f29(E4::'a,F4,C4),f29(E4::'a,F4,D4))) & | |
| 2568 | (\<forall>I4 J4 K4 L4. equal(I4::'a,J4) --> equal(f30(I4::'a,K4,L4),f30(J4::'a,K4,L4))) & | |
| 2569 | (\<forall>M4 O4 N4 P4. equal(M4::'a,N4) --> equal(f30(O4::'a,M4,P4),f30(O4::'a,N4,P4))) & | |
| 2570 | (\<forall>Q4 S4 T4 R4. equal(Q4::'a,R4) --> equal(f30(S4::'a,T4,Q4),f30(S4::'a,T4,R4))) & | |
| 2571 | (\<forall>U4 V4 W4 X4. equal(U4::'a,V4) --> equal(f31(U4::'a,W4,X4),f31(V4::'a,W4,X4))) & | |
| 2572 | (\<forall>Y4 A5 Z4 B5. equal(Y4::'a,Z4) --> equal(f31(A5::'a,Y4,B5),f31(A5::'a,Z4,B5))) & | |
| 2573 | (\<forall>C5 E5 F5 D5. equal(C5::'a,D5) --> equal(f31(E5::'a,F5,C5),f31(E5::'a,F5,D5))) & | |
| 2574 | (\<forall>G5 H5 I5 J5 K5 L5. equal(G5::'a,H5) --> equal(f32(G5::'a,I5,J5,K5,L5),f32(H5::'a,I5,J5,K5,L5))) & | |
| 2575 | (\<forall>M5 O5 N5 P5 Q5 R5. equal(M5::'a,N5) --> equal(f32(O5::'a,M5,P5,Q5,R5),f32(O5::'a,N5,P5,Q5,R5))) & | |
| 2576 | (\<forall>S5 U5 V5 T5 W5 X5. equal(S5::'a,T5) --> equal(f32(U5::'a,V5,S5,W5,X5),f32(U5::'a,V5,T5,W5,X5))) & | |
| 2577 | (\<forall>Y5 A6 B6 C6 Z5 D6. equal(Y5::'a,Z5) --> equal(f32(A6::'a,B6,C6,Y5,D6),f32(A6::'a,B6,C6,Z5,D6))) & | |
| 2578 | (\<forall>E6 G6 H6 I6 J6 F6. equal(E6::'a,F6) --> equal(f32(G6::'a,H6,I6,J6,E6),f32(G6::'a,H6,I6,J6,F6))) & | |
| 2579 | (\<forall>K6 L6 M6 N6 O6 P6. equal(K6::'a,L6) --> equal(f33(K6::'a,M6,N6,O6,P6),f33(L6::'a,M6,N6,O6,P6))) & | |
| 2580 | (\<forall>Q6 S6 R6 T6 U6 V6. equal(Q6::'a,R6) --> equal(f33(S6::'a,Q6,T6,U6,V6),f33(S6::'a,R6,T6,U6,V6))) & | |
| 2581 | (\<forall>W6 Y6 Z6 X6 A7 B7. equal(W6::'a,X6) --> equal(f33(Y6::'a,Z6,W6,A7,B7),f33(Y6::'a,Z6,X6,A7,B7))) & | |
| 2582 | (\<forall>C7 E7 F7 G7 D7 H7. equal(C7::'a,D7) --> equal(f33(E7::'a,F7,G7,C7,H7),f33(E7::'a,F7,G7,D7,H7))) & | |
| 2583 | (\<forall>I7 K7 L7 M7 N7 J7. equal(I7::'a,J7) --> equal(f33(K7::'a,L7,M7,N7,I7),f33(K7::'a,L7,M7,N7,J7))) & | |
| 2584 | (\<forall>A B C. equal(A::'a,B) --> equal(apply(A::'a,C),apply(B::'a,C))) & | |
| 2585 | (\<forall>D F' E. equal(D::'a,E) --> equal(apply(F'::'a,D),apply(F'::'a,E))) & | |
| 2586 | (\<forall>G H I' J. equal(G::'a,H) --> equal(apply_to_two_arguments(G::'a,I',J),apply_to_two_arguments(H::'a,I',J))) & | |
| 2587 | (\<forall>K' M L N. equal(K'::'a,L) --> equal(apply_to_two_arguments(M::'a,K',N),apply_to_two_arguments(M::'a,L,N))) & | |
| 2588 | (\<forall>O' Q R P. equal(O'::'a,P) --> equal(apply_to_two_arguments(Q::'a,R,O'),apply_to_two_arguments(Q::'a,R,P))) & | |
| 2589 | (\<forall>S' T'. equal(S'::'a,T') --> equal(complement(S'),complement(T'))) & | |
| 2590 | (\<forall>U V W. equal(U::'a,V) --> equal(composition(U::'a,W),composition(V::'a,W))) & | |
| 2591 | (\<forall>X Z Y. equal(X::'a,Y) --> equal(composition(Z::'a,X),composition(Z::'a,Y))) & | |
| 2592 | (\<forall>A1 B1. equal(A1::'a,B1) --> equal(inv1 A1,inv1 B1)) & | |
| 2593 | (\<forall>C1 D1 E1. equal(C1::'a,D1) --> equal(cross_product(C1::'a,E1),cross_product(D1::'a,E1))) & | |
| 2594 | (\<forall>F1 H1 G1. equal(F1::'a,G1) --> equal(cross_product(H1::'a,F1),cross_product(H1::'a,G1))) & | |
| 2595 | (\<forall>I1 J1. equal(I1::'a,J1) --> equal(domain_of(I1),domain_of(J1))) & | |
| 2596 | (\<forall>I10 J10. equal(I10::'a,J10) --> equal(first(I10),first(J10))) & | |
| 2597 | (\<forall>Q10 R10. equal(Q10::'a,R10) --> equal(flip_range_of(Q10),flip_range_of(R10))) & | |
| 2598 | (\<forall>S10 T10 U10. equal(S10::'a,T10) --> equal(image'(S10::'a,U10),image'(T10::'a,U10))) & | |
| 2599 | (\<forall>V10 X10 W10. equal(V10::'a,W10) --> equal(image'(X10::'a,V10),image'(X10::'a,W10))) & | |
| 2600 | (\<forall>Y10 Z10 A11. equal(Y10::'a,Z10) --> equal(intersection(Y10::'a,A11),intersection(Z10::'a,A11))) & | |
| 2601 | (\<forall>B11 D11 C11. equal(B11::'a,C11) --> equal(intersection(D11::'a,B11),intersection(D11::'a,C11))) & | |
| 2602 | (\<forall>E11 F11 G11. equal(E11::'a,F11) --> equal(non_ordered_pair(E11::'a,G11),non_ordered_pair(F11::'a,G11))) & | |
| 2603 | (\<forall>H11 J11 I11. equal(H11::'a,I11) --> equal(non_ordered_pair(J11::'a,H11),non_ordered_pair(J11::'a,I11))) & | |
| 2604 | (\<forall>K11 L11 M11. equal(K11::'a,L11) --> equal(ordered_pair(K11::'a,M11),ordered_pair(L11::'a,M11))) & | |
| 2605 | (\<forall>N11 P11 O11. equal(N11::'a,O11) --> equal(ordered_pair(P11::'a,N11),ordered_pair(P11::'a,O11))) & | |
| 2606 | (\<forall>Q11 R11. equal(Q11::'a,R11) --> equal(powerset(Q11),powerset(R11))) & | |
| 2607 | (\<forall>S11 T11. equal(S11::'a,T11) --> equal(range_of(S11),range_of(T11))) & | |
| 2608 | (\<forall>U11 V11 W11. equal(U11::'a,V11) --> equal(restrct(U11::'a,W11),restrct(V11::'a,W11))) & | |
| 2609 | (\<forall>X11 Z11 Y11. equal(X11::'a,Y11) --> equal(restrct(Z11::'a,X11),restrct(Z11::'a,Y11))) & | |
| 2610 | (\<forall>A12 B12. equal(A12::'a,B12) --> equal(rot_right(A12),rot_right(B12))) & | |
| 2611 | (\<forall>C12 D12. equal(C12::'a,D12) --> equal(second(C12),second(D12))) & | |
| 2612 | (\<forall>K12 L12. equal(K12::'a,L12) --> equal(sigma(K12),sigma(L12))) & | |
| 2613 | (\<forall>M12 N12. equal(M12::'a,N12) --> equal(singleton_set(M12),singleton_set(N12))) & | |
| 2614 | (\<forall>O12 P12. equal(O12::'a,P12) --> equal(successor(O12),successor(P12))) & | |
| 2615 | (\<forall>Q12 R12 S12. equal(Q12::'a,R12) --> equal(union(Q12::'a,S12),union(R12::'a,S12))) & | |
| 2616 | (\<forall>T12 V12 U12. equal(T12::'a,U12) --> equal(union(V12::'a,T12),union(V12::'a,U12))) & | |
| 2617 | (\<forall>W12 X12 Y12. equal(W12::'a,X12) & closed(W12::'a,Y12) --> closed(X12::'a,Y12)) & | |
| 2618 | (\<forall>Z12 B13 A13. equal(Z12::'a,A13) & closed(B13::'a,Z12) --> closed(B13::'a,A13)) & | |
| 2619 | (\<forall>C13 D13 E13. equal(C13::'a,D13) & disjoint(C13::'a,E13) --> disjoint(D13::'a,E13)) & | |
| 2620 | (\<forall>F13 H13 G13. equal(F13::'a,G13) & disjoint(H13::'a,F13) --> disjoint(H13::'a,G13)) & | |
| 2621 | (\<forall>I13 J13. equal(I13::'a,J13) & function(I13) --> function(J13)) & | |
| 2622 | (\<forall>K13 L13 M13 N13 O13 P13. equal(K13::'a,L13) & homomorphism(K13::'a,M13,N13,O13,P13) --> homomorphism(L13::'a,M13,N13,O13,P13)) & | |
| 2623 | (\<forall>Q13 S13 R13 T13 U13 V13. equal(Q13::'a,R13) & homomorphism(S13::'a,Q13,T13,U13,V13) --> homomorphism(S13::'a,R13,T13,U13,V13)) & | |
| 2624 | (\<forall>W13 Y13 Z13 X13 A14 B14. equal(W13::'a,X13) & homomorphism(Y13::'a,Z13,W13,A14,B14) --> homomorphism(Y13::'a,Z13,X13,A14,B14)) & | |
| 2625 | (\<forall>C14 E14 F14 G14 D14 H14. equal(C14::'a,D14) & homomorphism(E14::'a,F14,G14,C14,H14) --> homomorphism(E14::'a,F14,G14,D14,H14)) & | |
| 2626 | (\<forall>I14 K14 L14 M14 N14 J14. equal(I14::'a,J14) & homomorphism(K14::'a,L14,M14,N14,I14) --> homomorphism(K14::'a,L14,M14,N14,J14)) & | |
| 2627 | (\<forall>O14 P14. equal(O14::'a,P14) & little_set(O14) --> little_set(P14)) & | |
| 2628 | (\<forall>Q14 R14 S14 T14. equal(Q14::'a,R14) & maps(Q14::'a,S14,T14) --> maps(R14::'a,S14,T14)) & | |
| 2629 | (\<forall>U14 W14 V14 X14. equal(U14::'a,V14) & maps(W14::'a,U14,X14) --> maps(W14::'a,V14,X14)) & | |
| 2630 | (\<forall>Y14 A15 B15 Z14. equal(Y14::'a,Z14) & maps(A15::'a,B15,Y14) --> maps(A15::'a,B15,Z14)) & | |
| 2631 | (\<forall>C15 D15 E15. equal(C15::'a,D15) & member(C15::'a,E15) --> member(D15::'a,E15)) & | |
| 2632 | (\<forall>F15 H15 G15. equal(F15::'a,G15) & member(H15::'a,F15) --> member(H15::'a,G15)) & | |
| 2633 | (\<forall>I15 J15. equal(I15::'a,J15) & one_to_one_function(I15) --> one_to_one_function(J15)) & | |
| 2634 | (\<forall>K15 L15. equal(K15::'a,L15) & ordered_pair_predicate(K15) --> ordered_pair_predicate(L15)) & | |
| 2635 | (\<forall>M15 N15 O15. equal(M15::'a,N15) & proper_subset(M15::'a,O15) --> proper_subset(N15::'a,O15)) & | |
| 2636 | (\<forall>P15 R15 Q15. equal(P15::'a,Q15) & proper_subset(R15::'a,P15) --> proper_subset(R15::'a,Q15)) & | |
| 2637 | (\<forall>S15 T15. equal(S15::'a,T15) & relation(S15) --> relation(T15)) & | |
| 2638 | (\<forall>U15 V15. equal(U15::'a,V15) & single_valued_set(U15) --> single_valued_set(V15)) & | |
| 2639 | (\<forall>W15 X15 Y15. equal(W15::'a,X15) & ssubset(W15::'a,Y15) --> ssubset(X15::'a,Y15)) & | |
| 2640 | (\<forall>Z15 B16 A16. equal(Z15::'a,A16) & ssubset(B16::'a,Z15) --> ssubset(B16::'a,A16)) & | |
| 24127 | 2641 | (~little_set(ordered_pair(a::'a,b))) --> False" | 
| 2642 | oops | |
| 2643 | ||
| 2644 | ||
| 2645 | (*13 inferences so far. Searching to depth 8. 0 secs*) | |
| 2646 | lemma SET046_5: | |
| 24128 | 2647 | "(\<forall>Y X. ~(element(X::'a,a) & element(X::'a,Y) & element(Y::'a,X))) & | 
| 2648 | (\<forall>X. element(X::'a,f(X)) | element(X::'a,a)) & | |
| 24127 | 2649 | (\<forall>X. element(f(X),X) | element(X::'a,a)) --> False" | 
| 2650 | by meson | |
| 2651 | ||
| 2652 | (*33 inferences so far. Searching to depth 9. 0.2 secs*) | |
| 2653 | lemma SET047_5: | |
| 24128 | 2654 | "(\<forall>X Z Y. set_equal(X::'a,Y) & element(Z::'a,X) --> element(Z::'a,Y)) & | 
| 2655 | (\<forall>Y Z X. set_equal(X::'a,Y) & element(Z::'a,Y) --> element(Z::'a,X)) & | |
| 2656 | (\<forall>X Y. element(f(X::'a,Y),X) | element(f(X::'a,Y),Y) | set_equal(X::'a,Y)) & | |
| 2657 | (\<forall>X Y. element(f(X::'a,Y),Y) & element(f(X::'a,Y),X) --> set_equal(X::'a,Y)) & | |
| 2658 | (set_equal(a::'a,b) | set_equal(b::'a,a)) & | |
| 24127 | 2659 | (~(set_equal(b::'a,a) & set_equal(a::'a,b))) --> False" | 
| 2660 | by meson | |
| 2661 | ||
| 2662 | (*311 inferences so far. Searching to depth 12. 0.1 secs*) | |
| 2663 | lemma SYN034_1: | |
| 24128 | 2664 | "(\<forall>A. p(A::'a,a) | p(A::'a,f(A))) & | 
| 2665 | (\<forall>A. p(A::'a,a) | p(f(A),A)) & | |
| 24127 | 2666 | (\<forall>A B. ~(p(A::'a,B) & p(B::'a,A) & p(B::'a,a))) --> False" | 
| 2667 | by meson | |
| 2668 | ||
| 2669 | (*30 inferences so far. Searching to depth 6. 0.2 secs*) | |
| 2670 | lemma SYN071_1: | |
| 2671 | "EQU001_0_ax equal & | |
| 24128 | 2672 | (equal(a::'a,b) | equal(c::'a,d)) & | 
| 2673 | (equal(a::'a,c) | equal(b::'a,d)) & | |
| 2674 | (~equal(a::'a,d)) & | |
| 24127 | 2675 | (~equal(b::'a,c)) --> False" | 
| 2676 | by meson | |
| 2677 | ||
| 2678 | (*1897410 inferences so far. Searching to depth 48 | |
| 2679 | 206s, nearly 4 mins on griffon.*) | |
| 2680 | lemma SYN349_1: | |
| 24128 | 2681 | "(\<forall>X Y. f(w(X),g(X::'a,Y)) --> f(X::'a,g(X::'a,Y))) & | 
| 2682 | (\<forall>X Y. f(X::'a,g(X::'a,Y)) --> f(w(X),g(X::'a,Y))) & | |
| 2683 | (\<forall>Y X. f(X::'a,g(X::'a,Y)) & f(Y::'a,g(X::'a,Y)) --> f(g(X::'a,Y),Y) | f(g(X::'a,Y),w(X))) & | |
| 2684 | (\<forall>Y X. f(g(X::'a,Y),Y) & f(Y::'a,g(X::'a,Y)) --> f(X::'a,g(X::'a,Y)) | f(g(X::'a,Y),w(X))) & | |
| 2685 | (\<forall>Y X. f(X::'a,g(X::'a,Y)) | f(g(X::'a,Y),Y) | f(Y::'a,g(X::'a,Y)) | f(g(X::'a,Y),w(X))) & | |
| 2686 | (\<forall>Y X. f(X::'a,g(X::'a,Y)) & f(g(X::'a,Y),Y) --> f(Y::'a,g(X::'a,Y)) | f(g(X::'a,Y),w(X))) & | |
| 2687 | (\<forall>Y X. f(X::'a,g(X::'a,Y)) & f(g(X::'a,Y),w(X)) --> f(g(X::'a,Y),Y) | f(Y::'a,g(X::'a,Y))) & | |
| 2688 | (\<forall>Y X. f(g(X::'a,Y),Y) & f(g(X::'a,Y),w(X)) --> f(X::'a,g(X::'a,Y)) | f(Y::'a,g(X::'a,Y))) & | |
| 2689 | (\<forall>Y X. f(Y::'a,g(X::'a,Y)) & f(g(X::'a,Y),w(X)) --> f(X::'a,g(X::'a,Y)) | f(g(X::'a,Y),Y)) & | |
| 24127 | 2690 | (\<forall>Y X. ~(f(X::'a,g(X::'a,Y)) & f(g(X::'a,Y),Y) & f(Y::'a,g(X::'a,Y)) & f(g(X::'a,Y),w(X)))) --> False" | 
| 2691 | oops | |
| 2692 | ||
| 2693 | (*398 inferences so far. Searching to depth 12. 0.4 secs*) | |
| 2694 | lemma SYN352_1: | |
| 24128 | 2695 | "(f(a::'a,b)) & | 
| 2696 | (\<forall>X Y. f(X::'a,Y) --> f(b::'a,z(X::'a,Y)) | f(Y::'a,z(X::'a,Y))) & | |
| 2697 | (\<forall>X Y. f(X::'a,Y) | f(z(X::'a,Y),z(X::'a,Y))) & | |
| 2698 | (\<forall>X Y. f(b::'a,z(X::'a,Y)) | f(X::'a,z(X::'a,Y)) | f(z(X::'a,Y),z(X::'a,Y))) & | |
| 2699 | (\<forall>X Y. f(b::'a,z(X::'a,Y)) & f(X::'a,z(X::'a,Y)) --> f(z(X::'a,Y),z(X::'a,Y))) & | |
| 2700 | (\<forall>X Y. ~(f(X::'a,Y) & f(X::'a,z(X::'a,Y)) & f(Y::'a,z(X::'a,Y)))) & | |
| 24127 | 2701 | (\<forall>X Y. f(X::'a,Y) --> f(X::'a,z(X::'a,Y)) | f(Y::'a,z(X::'a,Y))) --> False" | 
| 2702 | by meson | |
| 2703 | ||
| 2704 | (*5336 inferences so far. Searching to depth 15. 5.3 secs*) | |
| 2705 | lemma TOP001_2: | |
| 24128 | 2706 | "(\<forall>Vf U. element_of_set(U::'a,union_of_members(Vf)) --> element_of_set(U::'a,f1(Vf::'a,U))) & | 
| 2707 | (\<forall>U Vf. element_of_set(U::'a,union_of_members(Vf)) --> element_of_collection(f1(Vf::'a,U),Vf)) & | |
| 2708 | (\<forall>U Uu1 Vf. element_of_set(U::'a,Uu1) & element_of_collection(Uu1::'a,Vf) --> element_of_set(U::'a,union_of_members(Vf))) & | |
| 2709 | (\<forall>Vf X. basis(X::'a,Vf) --> equal_sets(union_of_members(Vf),X)) & | |
| 2710 | (\<forall>Vf U X. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_set(X::'a,f10(Vf::'a,U,X))) & | |
| 2711 | (\<forall>U X Vf. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_collection(f10(Vf::'a,U,X),Vf)) & | |
| 2712 | (\<forall>X. subset_sets(X::'a,X)) & | |
| 2713 | (\<forall>X U Y. subset_sets(X::'a,Y) & element_of_set(U::'a,X) --> element_of_set(U::'a,Y)) & | |
| 2714 | (\<forall>X Y. equal_sets(X::'a,Y) --> subset_sets(X::'a,Y)) & | |
| 2715 | (\<forall>Y X. subset_sets(X::'a,Y) | element_of_set(in_1st_set(X::'a,Y),X)) & | |
| 2716 | (\<forall>X Y. element_of_set(in_1st_set(X::'a,Y),Y) --> subset_sets(X::'a,Y)) & | |
| 2717 | (basis(cx::'a,f)) & | |
| 24127 | 2718 | (~subset_sets(union_of_members(top_of_basis(f)),cx)) --> False" | 
| 2719 | by meson | |
| 2720 | ||
| 2721 | (*0 inferences so far. Searching to depth 0. 0 secs*) | |
| 2722 | lemma TOP002_2: | |
| 24128 | 2723 | "(\<forall>Vf U. element_of_collection(U::'a,top_of_basis(Vf)) | element_of_set(f11(Vf::'a,U),U)) & | 
| 2724 | (\<forall>X. ~element_of_set(X::'a,empty_set)) & | |
| 24127 | 2725 | (~element_of_collection(empty_set::'a,top_of_basis(f))) --> False" | 
| 2726 | by meson | |
| 2727 | ||
| 2728 | (*0 inferences so far. Searching to depth 0. 6.5 secs. BIG*) | |
| 2729 | lemma TOP004_1: | |
| 24128 | 2730 | "(\<forall>Vf U. element_of_set(U::'a,union_of_members(Vf)) --> element_of_set(U::'a,f1(Vf::'a,U))) & | 
| 2731 | (\<forall>U Vf. element_of_set(U::'a,union_of_members(Vf)) --> element_of_collection(f1(Vf::'a,U),Vf)) & | |
| 2732 | (\<forall>U Uu1 Vf. element_of_set(U::'a,Uu1) & element_of_collection(Uu1::'a,Vf) --> element_of_set(U::'a,union_of_members(Vf))) & | |
| 2733 | (\<forall>Vf U Va. element_of_set(U::'a,intersection_of_members(Vf)) & element_of_collection(Va::'a,Vf) --> element_of_set(U::'a,Va)) & | |
| 2734 | (\<forall>U Vf. element_of_set(U::'a,intersection_of_members(Vf)) | element_of_collection(f2(Vf::'a,U),Vf)) & | |
| 2735 | (\<forall>Vf U. element_of_set(U::'a,f2(Vf::'a,U)) --> element_of_set(U::'a,intersection_of_members(Vf))) & | |
| 2736 | (\<forall>Vt X. topological_space(X::'a,Vt) --> equal_sets(union_of_members(Vt),X)) & | |
| 2737 | (\<forall>X Vt. topological_space(X::'a,Vt) --> element_of_collection(empty_set::'a,Vt)) & | |
| 2738 | (\<forall>X Vt. topological_space(X::'a,Vt) --> element_of_collection(X::'a,Vt)) & | |
| 2739 | (\<forall>X Y Z Vt. topological_space(X::'a,Vt) & element_of_collection(Y::'a,Vt) & element_of_collection(Z::'a,Vt) --> element_of_collection(intersection_of_sets(Y::'a,Z),Vt)) & | |
| 2740 | (\<forall>X Vf Vt. topological_space(X::'a,Vt) & subset_collections(Vf::'a,Vt) --> element_of_collection(union_of_members(Vf),Vt)) & | |
| 2741 | (\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) --> topological_space(X::'a,Vt) | element_of_collection(f3(X::'a,Vt),Vt) | subset_collections(f5(X::'a,Vt),Vt)) & | |
| 2742 | (\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) & element_of_collection(union_of_members(f5(X::'a,Vt)),Vt) --> topological_space(X::'a,Vt) | element_of_collection(f3(X::'a,Vt),Vt)) & | |
| 2743 | (\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) --> topological_space(X::'a,Vt) | element_of_collection(f4(X::'a,Vt),Vt) | subset_collections(f5(X::'a,Vt),Vt)) & | |
| 2744 | (\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) & element_of_collection(union_of_members(f5(X::'a,Vt)),Vt) --> topological_space(X::'a,Vt) | element_of_collection(f4(X::'a,Vt),Vt)) & | |
| 2745 | (\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) & element_of_collection(intersection_of_sets(f3(X::'a,Vt),f4(X::'a,Vt)),Vt) --> topological_space(X::'a,Vt) | subset_collections(f5(X::'a,Vt),Vt)) & | |
| 2746 | (\<forall>X Vt. equal_sets(union_of_members(Vt),X) & element_of_collection(empty_set::'a,Vt) & element_of_collection(X::'a,Vt) & element_of_collection(intersection_of_sets(f3(X::'a,Vt),f4(X::'a,Vt)),Vt) & element_of_collection(union_of_members(f5(X::'a,Vt)),Vt) --> topological_space(X::'a,Vt)) & | |
| 2747 | (\<forall>U X Vt. open(U::'a,X,Vt) --> topological_space(X::'a,Vt)) & | |
| 2748 | (\<forall>X U Vt. open(U::'a,X,Vt) --> element_of_collection(U::'a,Vt)) & | |
| 2749 | (\<forall>X U Vt. topological_space(X::'a,Vt) & element_of_collection(U::'a,Vt) --> open(U::'a,X,Vt)) & | |
| 2750 | (\<forall>U X Vt. closed(U::'a,X,Vt) --> topological_space(X::'a,Vt)) & | |
| 2751 | (\<forall>U X Vt. closed(U::'a,X,Vt) --> open(relative_complement_sets(U::'a,X),X,Vt)) & | |
| 2752 | (\<forall>U X Vt. topological_space(X::'a,Vt) & open(relative_complement_sets(U::'a,X),X,Vt) --> closed(U::'a,X,Vt)) & | |
| 2753 | (\<forall>Vs X Vt. finer(Vt::'a,Vs,X) --> topological_space(X::'a,Vt)) & | |
| 2754 | (\<forall>Vt X Vs. finer(Vt::'a,Vs,X) --> topological_space(X::'a,Vs)) & | |
| 2755 | (\<forall>X Vs Vt. finer(Vt::'a,Vs,X) --> subset_collections(Vs::'a,Vt)) & | |
| 2756 | (\<forall>X Vs Vt. topological_space(X::'a,Vt) & topological_space(X::'a,Vs) & subset_collections(Vs::'a,Vt) --> finer(Vt::'a,Vs,X)) & | |
| 2757 | (\<forall>Vf X. basis(X::'a,Vf) --> equal_sets(union_of_members(Vf),X)) & | |
| 2758 | (\<forall>X Vf Y Vb1 Vb2. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> element_of_set(Y::'a,f6(X::'a,Vf,Y,Vb1,Vb2))) & | |
| 2759 | (\<forall>X Y Vb1 Vb2 Vf. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> element_of_collection(f6(X::'a,Vf,Y,Vb1,Vb2),Vf)) & | |
| 2760 | (\<forall>X Vf Y Vb1 Vb2. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> subset_sets(f6(X::'a,Vf,Y,Vb1,Vb2),intersection_of_sets(Vb1::'a,Vb2))) & | |
| 2761 | (\<forall>Vf X. equal_sets(union_of_members(Vf),X) --> basis(X::'a,Vf) | element_of_set(f7(X::'a,Vf),X)) & | |
| 2762 | (\<forall>X Vf. equal_sets(union_of_members(Vf),X) --> basis(X::'a,Vf) | element_of_collection(f8(X::'a,Vf),Vf)) & | |
| 2763 | (\<forall>X Vf. equal_sets(union_of_members(Vf),X) --> basis(X::'a,Vf) | element_of_collection(f9(X::'a,Vf),Vf)) & | |
| 2764 | (\<forall>X Vf. equal_sets(union_of_members(Vf),X) --> basis(X::'a,Vf) | element_of_set(f7(X::'a,Vf),intersection_of_sets(f8(X::'a,Vf),f9(X::'a,Vf)))) & | |
| 2765 | (\<forall>Uu9 X Vf. equal_sets(union_of_members(Vf),X) & element_of_set(f7(X::'a,Vf),Uu9) & element_of_collection(Uu9::'a,Vf) & subset_sets(Uu9::'a,intersection_of_sets(f8(X::'a,Vf),f9(X::'a,Vf))) --> basis(X::'a,Vf)) & | |
| 2766 | (\<forall>Vf U X. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_set(X::'a,f10(Vf::'a,U,X))) & | |
| 2767 | (\<forall>U X Vf. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_collection(f10(Vf::'a,U,X),Vf)) & | |
| 2768 | (\<forall>Vf X U. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> subset_sets(f10(Vf::'a,U,X),U)) & | |
| 2769 | (\<forall>Vf U. element_of_collection(U::'a,top_of_basis(Vf)) | element_of_set(f11(Vf::'a,U),U)) & | |
| 2770 | (\<forall>Vf Uu11 U. element_of_set(f11(Vf::'a,U),Uu11) & element_of_collection(Uu11::'a,Vf) & subset_sets(Uu11::'a,U) --> element_of_collection(U::'a,top_of_basis(Vf))) & | |
| 2771 | (\<forall>U Y X Vt. element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y)) --> topological_space(X::'a,Vt)) & | |
| 2772 | (\<forall>U Vt Y X. element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y)) --> subset_sets(Y::'a,X)) & | |
| 2773 | (\<forall>X Y U Vt. element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y)) --> element_of_collection(f12(X::'a,Vt,Y,U),Vt)) & | |
| 2774 | (\<forall>X Vt Y U. element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y)) --> equal_sets(U::'a,intersection_of_sets(Y::'a,f12(X::'a,Vt,Y,U)))) & | |
| 2775 | (\<forall>X Vt U Y Uu12. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) & element_of_collection(Uu12::'a,Vt) & equal_sets(U::'a,intersection_of_sets(Y::'a,Uu12)) --> element_of_collection(U::'a,subspace_topology(X::'a,Vt,Y))) & | |
| 2776 | (\<forall>U Y X Vt. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> topological_space(X::'a,Vt)) & | |
| 2777 | (\<forall>U Vt Y X. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> subset_sets(Y::'a,X)) & | |
| 2778 | (\<forall>Y X Vt U. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> element_of_set(U::'a,f13(Y::'a,X,Vt,U))) & | |
| 2779 | (\<forall>X Vt U Y. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> subset_sets(f13(Y::'a,X,Vt,U),Y)) & | |
| 2780 | (\<forall>Y U X Vt. element_of_set(U::'a,interior(Y::'a,X,Vt)) --> open(f13(Y::'a,X,Vt,U),X,Vt)) & | |
| 2781 | (\<forall>U Y Uu13 X Vt. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) & element_of_set(U::'a,Uu13) & subset_sets(Uu13::'a,Y) & open(Uu13::'a,X,Vt) --> element_of_set(U::'a,interior(Y::'a,X,Vt))) & | |
| 2782 | (\<forall>U Y X Vt. element_of_set(U::'a,closure(Y::'a,X,Vt)) --> topological_space(X::'a,Vt)) & | |
| 2783 | (\<forall>U Vt Y X. element_of_set(U::'a,closure(Y::'a,X,Vt)) --> subset_sets(Y::'a,X)) & | |
| 2784 | (\<forall>Y X Vt U V. element_of_set(U::'a,closure(Y::'a,X,Vt)) & subset_sets(Y::'a,V) & closed(V::'a,X,Vt) --> element_of_set(U::'a,V)) & | |
| 2785 | (\<forall>Y X Vt U. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) --> element_of_set(U::'a,closure(Y::'a,X,Vt)) | subset_sets(Y::'a,f14(Y::'a,X,Vt,U))) & | |
| 2786 | (\<forall>Y U X Vt. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) --> element_of_set(U::'a,closure(Y::'a,X,Vt)) | closed(f14(Y::'a,X,Vt,U),X,Vt)) & | |
| 2787 | (\<forall>Y X Vt U. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) & element_of_set(U::'a,f14(Y::'a,X,Vt,U)) --> element_of_set(U::'a,closure(Y::'a,X,Vt))) & | |
| 2788 | (\<forall>U Y X Vt. neighborhood(U::'a,Y,X,Vt) --> topological_space(X::'a,Vt)) & | |
| 2789 | (\<forall>Y U X Vt. neighborhood(U::'a,Y,X,Vt) --> open(U::'a,X,Vt)) & | |
| 2790 | (\<forall>X Vt Y U. neighborhood(U::'a,Y,X,Vt) --> element_of_set(Y::'a,U)) & | |
| 2791 | (\<forall>X Vt Y U. topological_space(X::'a,Vt) & open(U::'a,X,Vt) & element_of_set(Y::'a,U) --> neighborhood(U::'a,Y,X,Vt)) & | |
| 2792 | (\<forall>Z Y X Vt. limit_point(Z::'a,Y,X,Vt) --> topological_space(X::'a,Vt)) & | |
| 2793 | (\<forall>Z Vt Y X. limit_point(Z::'a,Y,X,Vt) --> subset_sets(Y::'a,X)) & | |
| 2794 | (\<forall>Z X Vt U Y. limit_point(Z::'a,Y,X,Vt) & neighborhood(U::'a,Z,X,Vt) --> element_of_set(f15(Z::'a,Y,X,Vt,U),intersection_of_sets(U::'a,Y))) & | |
| 2795 | (\<forall>Y X Vt U Z. ~(limit_point(Z::'a,Y,X,Vt) & neighborhood(U::'a,Z,X,Vt) & eq_p(f15(Z::'a,Y,X,Vt,U),Z))) & | |
| 2796 | (\<forall>Y Z X Vt. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) --> limit_point(Z::'a,Y,X,Vt) | neighborhood(f16(Z::'a,Y,X,Vt),Z,X,Vt)) & | |
| 2797 | (\<forall>X Vt Y Uu16 Z. topological_space(X::'a,Vt) & subset_sets(Y::'a,X) & element_of_set(Uu16::'a,intersection_of_sets(f16(Z::'a,Y,X,Vt),Y)) --> limit_point(Z::'a,Y,X,Vt) | eq_p(Uu16::'a,Z)) & | |
| 2798 | (\<forall>U Y X Vt. element_of_set(U::'a,boundary(Y::'a,X,Vt)) --> topological_space(X::'a,Vt)) & | |
| 2799 | (\<forall>U Y X Vt. element_of_set(U::'a,boundary(Y::'a,X,Vt)) --> element_of_set(U::'a,closure(Y::'a,X,Vt))) & | |
| 2800 | (\<forall>U Y X Vt. element_of_set(U::'a,boundary(Y::'a,X,Vt)) --> element_of_set(U::'a,closure(relative_complement_sets(Y::'a,X),X,Vt))) & | |
| 2801 | (\<forall>U Y X Vt. topological_space(X::'a,Vt) & element_of_set(U::'a,closure(Y::'a,X,Vt)) & element_of_set(U::'a,closure(relative_complement_sets(Y::'a,X),X,Vt)) --> element_of_set(U::'a,boundary(Y::'a,X,Vt))) & | |
| 2802 | (\<forall>X Vt. hausdorff(X::'a,Vt) --> topological_space(X::'a,Vt)) & | |
| 2803 | (\<forall>X_2 X_1 X Vt. hausdorff(X::'a,Vt) & element_of_set(X_1::'a,X) & element_of_set(X_2::'a,X) --> eq_p(X_1::'a,X_2) | neighborhood(f17(X::'a,Vt,X_1,X_2),X_1,X,Vt)) & | |
| 2804 | (\<forall>X_1 X_2 X Vt. hausdorff(X::'a,Vt) & element_of_set(X_1::'a,X) & element_of_set(X_2::'a,X) --> eq_p(X_1::'a,X_2) | neighborhood(f18(X::'a,Vt,X_1,X_2),X_2,X,Vt)) & | |
| 2805 | (\<forall>X Vt X_1 X_2. hausdorff(X::'a,Vt) & element_of_set(X_1::'a,X) & element_of_set(X_2::'a,X) --> eq_p(X_1::'a,X_2) | disjoint_s(f17(X::'a,Vt,X_1,X_2),f18(X::'a,Vt,X_1,X_2))) & | |
| 2806 | (\<forall>Vt X. topological_space(X::'a,Vt) --> hausdorff(X::'a,Vt) | element_of_set(f19(X::'a,Vt),X)) & | |
| 2807 | (\<forall>Vt X. topological_space(X::'a,Vt) --> hausdorff(X::'a,Vt) | element_of_set(f20(X::'a,Vt),X)) & | |
| 2808 | (\<forall>X Vt. topological_space(X::'a,Vt) & eq_p(f19(X::'a,Vt),f20(X::'a,Vt)) --> hausdorff(X::'a,Vt)) & | |
| 2809 | (\<forall>X Vt Uu19 Uu20. topological_space(X::'a,Vt) & neighborhood(Uu19::'a,f19(X::'a,Vt),X,Vt) & neighborhood(Uu20::'a,f20(X::'a,Vt),X,Vt) & disjoint_s(Uu19::'a,Uu20) --> hausdorff(X::'a,Vt)) & | |
| 2810 | (\<forall>Va1 Va2 X Vt. separation(Va1::'a,Va2,X,Vt) --> topological_space(X::'a,Vt)) & | |
| 2811 | (\<forall>Va2 X Vt Va1. ~(separation(Va1::'a,Va2,X,Vt) & equal_sets(Va1::'a,empty_set))) & | |
| 2812 | (\<forall>Va1 X Vt Va2. ~(separation(Va1::'a,Va2,X,Vt) & equal_sets(Va2::'a,empty_set))) & | |
| 2813 | (\<forall>Va2 X Va1 Vt. separation(Va1::'a,Va2,X,Vt) --> element_of_collection(Va1::'a,Vt)) & | |
| 2814 | (\<forall>Va1 X Va2 Vt. separation(Va1::'a,Va2,X,Vt) --> element_of_collection(Va2::'a,Vt)) & | |
| 2815 | (\<forall>Vt Va1 Va2 X. separation(Va1::'a,Va2,X,Vt) --> equal_sets(union_of_sets(Va1::'a,Va2),X)) & | |
| 2816 | (\<forall>X Vt Va1 Va2. separation(Va1::'a,Va2,X,Vt) --> disjoint_s(Va1::'a,Va2)) & | |
| 2817 | (\<forall>Vt X Va1 Va2. topological_space(X::'a,Vt) & element_of_collection(Va1::'a,Vt) & element_of_collection(Va2::'a,Vt) & equal_sets(union_of_sets(Va1::'a,Va2),X) & disjoint_s(Va1::'a,Va2) --> separation(Va1::'a,Va2,X,Vt) | equal_sets(Va1::'a,empty_set) | equal_sets(Va2::'a,empty_set)) & | |
| 2818 | (\<forall>X Vt. connected_space(X::'a,Vt) --> topological_space(X::'a,Vt)) & | |
| 2819 | (\<forall>Va1 Va2 X Vt. ~(connected_space(X::'a,Vt) & separation(Va1::'a,Va2,X,Vt))) & | |
| 2820 | (\<forall>X Vt. topological_space(X::'a,Vt) --> connected_space(X::'a,Vt) | separation(f21(X::'a,Vt),f22(X::'a,Vt),X,Vt)) & | |
| 2821 | (\<forall>Va X Vt. connected_set(Va::'a,X,Vt) --> topological_space(X::'a,Vt)) & | |
| 2822 | (\<forall>Vt Va X. connected_set(Va::'a,X,Vt) --> subset_sets(Va::'a,X)) & | |
| 2823 | (\<forall>X Vt Va. connected_set(Va::'a,X,Vt) --> connected_space(Va::'a,subspace_topology(X::'a,Vt,Va))) & | |
| 2824 | (\<forall>X Vt Va. topological_space(X::'a,Vt) & subset_sets(Va::'a,X) & connected_space(Va::'a,subspace_topology(X::'a,Vt,Va)) --> connected_set(Va::'a,X,Vt)) & | |
| 2825 | (\<forall>Vf X Vt. open_covering(Vf::'a,X,Vt) --> topological_space(X::'a,Vt)) & | |
| 2826 | (\<forall>X Vf Vt. open_covering(Vf::'a,X,Vt) --> subset_collections(Vf::'a,Vt)) & | |
| 2827 | (\<forall>Vt Vf X. open_covering(Vf::'a,X,Vt) --> equal_sets(union_of_members(Vf),X)) & | |
| 2828 | (\<forall>Vt Vf X. topological_space(X::'a,Vt) & subset_collections(Vf::'a,Vt) & equal_sets(union_of_members(Vf),X) --> open_covering(Vf::'a,X,Vt)) & | |
| 2829 | (\<forall>X Vt. compact_space(X::'a,Vt) --> topological_space(X::'a,Vt)) & | |
| 2830 | (\<forall>X Vt Vf1. compact_space(X::'a,Vt) & open_covering(Vf1::'a,X,Vt) --> finite'(f23(X::'a,Vt,Vf1))) & | |
| 2831 | (\<forall>X Vt Vf1. compact_space(X::'a,Vt) & open_covering(Vf1::'a,X,Vt) --> subset_collections(f23(X::'a,Vt,Vf1),Vf1)) & | |
| 2832 | (\<forall>Vf1 X Vt. compact_space(X::'a,Vt) & open_covering(Vf1::'a,X,Vt) --> open_covering(f23(X::'a,Vt,Vf1),X,Vt)) & | |
| 2833 | (\<forall>X Vt. topological_space(X::'a,Vt) --> compact_space(X::'a,Vt) | open_covering(f24(X::'a,Vt),X,Vt)) & | |
| 2834 | (\<forall>Uu24 X Vt. topological_space(X::'a,Vt) & finite'(Uu24) & subset_collections(Uu24::'a,f24(X::'a,Vt)) & open_covering(Uu24::'a,X,Vt) --> compact_space(X::'a,Vt)) & | |
| 2835 | (\<forall>Va X Vt. compact_set(Va::'a,X,Vt) --> topological_space(X::'a,Vt)) & | |
| 2836 | (\<forall>Vt Va X. compact_set(Va::'a,X,Vt) --> subset_sets(Va::'a,X)) & | |
| 2837 | (\<forall>X Vt Va. compact_set(Va::'a,X,Vt) --> compact_space(Va::'a,subspace_topology(X::'a,Vt,Va))) & | |
| 2838 | (\<forall>X Vt Va. topological_space(X::'a,Vt) & subset_sets(Va::'a,X) & compact_space(Va::'a,subspace_topology(X::'a,Vt,Va)) --> compact_set(Va::'a,X,Vt)) & | |
| 2839 | (basis(cx::'a,f)) & | |
| 2840 | (\<forall>U. element_of_collection(U::'a,top_of_basis(f))) & | |
| 2841 | (\<forall>V. element_of_collection(V::'a,top_of_basis(f))) & | |
| 24127 | 2842 | (\<forall>U V. ~element_of_collection(intersection_of_sets(U::'a,V),top_of_basis(f))) --> False" | 
| 2843 | by meson | |
| 2844 | ||
| 2845 | ||
| 2846 | (*0 inferences so far. Searching to depth 0. 0.8 secs*) | |
| 2847 | lemma TOP004_2: | |
| 24128 | 2848 | "(\<forall>U Uu1 Vf. element_of_set(U::'a,Uu1) & element_of_collection(Uu1::'a,Vf) --> element_of_set(U::'a,union_of_members(Vf))) & | 
| 2849 | (\<forall>Vf X. basis(X::'a,Vf) --> equal_sets(union_of_members(Vf),X)) & | |
| 2850 | (\<forall>X Vf Y Vb1 Vb2. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> element_of_set(Y::'a,f6(X::'a,Vf,Y,Vb1,Vb2))) & | |
| 2851 | (\<forall>X Y Vb1 Vb2 Vf. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> element_of_collection(f6(X::'a,Vf,Y,Vb1,Vb2),Vf)) & | |
| 2852 | (\<forall>X Vf Y Vb1 Vb2. basis(X::'a,Vf) & element_of_set(Y::'a,X) & element_of_collection(Vb1::'a,Vf) & element_of_collection(Vb2::'a,Vf) & element_of_set(Y::'a,intersection_of_sets(Vb1::'a,Vb2)) --> subset_sets(f6(X::'a,Vf,Y,Vb1,Vb2),intersection_of_sets(Vb1::'a,Vb2))) & | |
| 2853 | (\<forall>Vf U X. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_set(X::'a,f10(Vf::'a,U,X))) & | |
| 2854 | (\<forall>U X Vf. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_collection(f10(Vf::'a,U,X),Vf)) & | |
| 2855 | (\<forall>Vf X U. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> subset_sets(f10(Vf::'a,U,X),U)) & | |
| 2856 | (\<forall>Vf U. element_of_collection(U::'a,top_of_basis(Vf)) | element_of_set(f11(Vf::'a,U),U)) & | |
| 2857 | (\<forall>Vf Uu11 U. element_of_set(f11(Vf::'a,U),Uu11) & element_of_collection(Uu11::'a,Vf) & subset_sets(Uu11::'a,U) --> element_of_collection(U::'a,top_of_basis(Vf))) & | |
| 2858 | (\<forall>Y X Z. subset_sets(X::'a,Y) & subset_sets(Y::'a,Z) --> subset_sets(X::'a,Z)) & | |
| 2859 | (\<forall>Y Z X. element_of_set(Z::'a,intersection_of_sets(X::'a,Y)) --> element_of_set(Z::'a,X)) & | |
| 2860 | (\<forall>X Z Y. element_of_set(Z::'a,intersection_of_sets(X::'a,Y)) --> element_of_set(Z::'a,Y)) & | |
| 2861 | (\<forall>X Z Y. element_of_set(Z::'a,X) & element_of_set(Z::'a,Y) --> element_of_set(Z::'a,intersection_of_sets(X::'a,Y))) & | |
| 2862 | (\<forall>X U Y V. subset_sets(X::'a,Y) & subset_sets(U::'a,V) --> subset_sets(intersection_of_sets(X::'a,U),intersection_of_sets(Y::'a,V))) & | |
| 2863 | (\<forall>X Z Y. equal_sets(X::'a,Y) & element_of_set(Z::'a,X) --> element_of_set(Z::'a,Y)) & | |
| 2864 | (\<forall>Y X. equal_sets(intersection_of_sets(X::'a,Y),intersection_of_sets(Y::'a,X))) & | |
| 2865 | (basis(cx::'a,f)) & | |
| 2866 | (\<forall>U. element_of_collection(U::'a,top_of_basis(f))) & | |
| 2867 | (\<forall>V. element_of_collection(V::'a,top_of_basis(f))) & | |
| 24127 | 2868 | (\<forall>U V. ~element_of_collection(intersection_of_sets(U::'a,V),top_of_basis(f))) --> False" | 
| 2869 | by meson | |
| 2870 | ||
| 2871 | (*53777 inferences so far. Searching to depth 20. 68.7 secs*) | |
| 2872 | lemma TOP005_2: | |
| 24128 | 2873 | "(\<forall>Vf U. element_of_set(U::'a,union_of_members(Vf)) --> element_of_set(U::'a,f1(Vf::'a,U))) & | 
| 2874 | (\<forall>U Vf. element_of_set(U::'a,union_of_members(Vf)) --> element_of_collection(f1(Vf::'a,U),Vf)) & | |
| 2875 | (\<forall>Vf U X. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_set(X::'a,f10(Vf::'a,U,X))) & | |
| 2876 | (\<forall>U X Vf. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> element_of_collection(f10(Vf::'a,U,X),Vf)) & | |
| 2877 | (\<forall>Vf X U. element_of_collection(U::'a,top_of_basis(Vf)) & element_of_set(X::'a,U) --> subset_sets(f10(Vf::'a,U,X),U)) & | |
| 2878 | (\<forall>Vf U. element_of_collection(U::'a,top_of_basis(Vf)) | element_of_set(f11(Vf::'a,U),U)) & | |
| 2879 | (\<forall>Vf Uu11 U. element_of_set(f11(Vf::'a,U),Uu11) & element_of_collection(Uu11::'a,Vf) & subset_sets(Uu11::'a,U) --> element_of_collection(U::'a,top_of_basis(Vf))) & | |
| 2880 | (\<forall>X U Y. element_of_set(U::'a,X) --> subset_sets(X::'a,Y) | element_of_set(U::'a,Y)) & | |
| 2881 | (\<forall>Y X Z. subset_sets(X::'a,Y) & element_of_collection(Y::'a,Z) --> subset_sets(X::'a,union_of_members(Z))) & | |
| 2882 | (\<forall>X U Y. subset_collections(X::'a,Y) & element_of_collection(U::'a,X) --> element_of_collection(U::'a,Y)) & | |
| 2883 | (subset_collections(g::'a,top_of_basis(f))) & | |
| 24127 | 2884 | (~element_of_collection(union_of_members(g),top_of_basis(f))) --> False" | 
| 2885 | oops | |
| 2886 | ||
| 2887 | end |