src/ZF/OrdQuant.thy
author wenzelm
Tue, 08 Jan 2002 21:02:15 +0100
changeset 12678 4d36d8df29fa
parent 12667 7e6eaaa125f2
child 12763 6cecd9dfd53f
permissions -rw-r--r--
HOL-Hyperreal produces an image (again);
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2469
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
     1
(*  Title:      ZF/AC/OrdQuant.thy
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
     2
    ID:         $Id$
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
     3
    Authors:    Krzysztof Grabczewski and L C Paulson
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
     4
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
     5
Quantifiers and union operator for ordinals. 
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
     6
*)
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
     7
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
     8
theory OrdQuant = Ordinal:
2469
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
     9
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    10
constdefs
2469
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    11
  
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    12
  (* Ordinal Quantifiers *)
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    13
  oall :: "[i, i => o] => o"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    14
    "oall(A, P) == ALL x. x<A --> P(x)"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    15
  
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    16
  oex :: "[i, i => o] => o"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    17
    "oex(A, P)  == EX x. x<A & P(x)"
2469
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    18
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    19
  (* Ordinal Union *)
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    20
  OUnion :: "[i, i => i] => i"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    21
    "OUnion(i,B) == {z: UN x:i. B(x). Ord(i)}"
2469
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    22
  
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    23
syntax
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    24
  "@oall"     :: "[idt, i, o] => o"        ("(3ALL _<_./ _)" 10)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    25
  "@oex"      :: "[idt, i, o] => o"        ("(3EX _<_./ _)" 10)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    26
  "@OUNION"   :: "[idt, i, i] => i"        ("(3UN _<_./ _)" 10)
2469
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    27
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    28
translations
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    29
  "ALL x<a. P"  == "oall(a, %x. P)"
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    30
  "EX x<a. P"   == "oex(a, %x. P)"
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    31
  "UN x<a. B"   == "OUnion(a, %x. B)"
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
    32
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 6093
diff changeset
    33
syntax (xsymbols)
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    34
  "@oall"     :: "[idt, i, o] => o"        ("(3\<forall>_<_./ _)" 10)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    35
  "@oex"      :: "[idt, i, o] => o"        ("(3\<exists>_<_./ _)" 10)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    36
  "@OUNION"   :: "[idt, i, i] => i"        ("(3\<Union>_<_./ _)" 10)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    37
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    38
12667
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    39
declare Ord_Un [intro,simp,TC]
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    40
declare Ord_UN [intro,simp,TC]
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    41
declare Ord_Union [intro,simp,TC]
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    42
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    43
(** These mostly belong to theory Ordinal **)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    44
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    45
lemma Union_upper_le:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    46
     "\<lbrakk>j: J;  i\<le>j;  Ord(\<Union>(J))\<rbrakk> \<Longrightarrow> i \<le> \<Union>J"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    47
apply (subst Union_eq_UN)  
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    48
apply (rule UN_upper_le)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    49
apply auto
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    50
done
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    51
12667
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    52
lemma zero_not_Limit [iff]: "~ Limit(0)"
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    53
by (simp add: Limit_def)
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    54
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    55
lemma Limit_has_1: "Limit(i) \<Longrightarrow> 1 < i"
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    56
by (blast intro: Limit_has_0 Limit_has_succ)
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    57
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    58
lemma Limit_Union [rule_format]: "\<lbrakk>I \<noteq> 0;  \<forall>i\<in>I. Limit(i)\<rbrakk> \<Longrightarrow> Limit(\<Union>I)"
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    59
apply (simp add: Limit_def lt_def)
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    60
apply (blast intro!: equalityI)
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    61
done
7e6eaaa125f2 Added some simprules proofs.
paulson
parents: 12620
diff changeset
    62
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    63
lemma increasing_LimitI: "\<lbrakk>0<l; \<forall>x\<in>l. \<exists>y\<in>l. x<y\<rbrakk> \<Longrightarrow> Limit(l)"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    64
apply (simp add: Limit_def lt_Ord2)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    65
apply clarify
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    66
apply (drule_tac i=y in ltD) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    67
apply (blast intro: lt_trans1 succ_leI ltI lt_Ord2)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    68
done
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    69
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    70
lemma UN_upper_lt:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    71
     "\<lbrakk>a\<in> A;  i < b(a);  Ord(\<Union>x\<in>A. b(x))\<rbrakk> \<Longrightarrow> i < (\<Union>x\<in>A. b(x))"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    72
by (unfold lt_def, blast) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    73
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    74
lemma lt_imp_0_lt: "j<i \<Longrightarrow> 0<i"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    75
by (blast intro: lt_trans1 Ord_0_le [OF lt_Ord]) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    76
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    77
lemma Ord_set_cases:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    78
   "\<forall>i\<in>I. Ord(i) \<Longrightarrow> I=0 \<or> \<Union>(I) \<in> I \<or> (\<Union>(I) \<notin> I \<and> Limit(\<Union>(I)))"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    79
apply (clarify elim!: not_emptyE) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    80
apply (cases "\<Union>(I)" rule: Ord_cases) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    81
   apply (blast intro: Ord_Union)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    82
  apply (blast intro: subst_elem)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    83
 apply auto 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    84
apply (clarify elim!: equalityE succ_subsetE)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    85
apply (simp add: Union_subset_iff)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    86
apply (subgoal_tac "B = succ(j)", blast )
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    87
apply (rule le_anti_sym) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    88
 apply (simp add: le_subset_iff) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    89
apply (simp add: ltI)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    90
done
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    91
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    92
lemma Ord_Union_eq_succD: "[|\<forall>x\<in>X. Ord(x);  \<Union>X = succ(j)|] ==> succ(j) \<in> X"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    93
by (drule Ord_set_cases, auto)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    94
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    95
(*See also Transset_iff_Union_succ*)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    96
lemma Ord_Union_succ_eq: "Ord(i) \<Longrightarrow> \<Union>(succ(i)) = i"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    97
by (blast intro: Ord_trans)
2540
ba8311047f18 added symbols syntax;
wenzelm
parents: 2469
diff changeset
    98
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
    99
lemma lt_Union_iff: "\<forall>i\<in>A. Ord(i) \<Longrightarrow> (j < \<Union>(A)) <-> (\<exists>i\<in>A. j<i)"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   100
by (auto simp: lt_def Ord_Union)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   101
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   102
lemma Un_upper1_lt: "[|k < i; Ord(j)|] ==> k < i Un j"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   103
by (simp add: lt_def) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   104
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   105
lemma Un_upper2_lt: "[|k < j; Ord(i)|] ==> k < i Un j"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   106
by (simp add: lt_def) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   107
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   108
lemma Ord_OUN [intro,simp]:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   109
     "\<lbrakk>!!x. x<A \<Longrightarrow> Ord(B(x))\<rbrakk> \<Longrightarrow> Ord(\<Union>x<A. B(x))"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   110
by (simp add: OUnion_def ltI Ord_UN) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   111
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   112
lemma OUN_upper_lt:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   113
     "\<lbrakk>a<A;  i < b(a);  Ord(\<Union>x<A. b(x))\<rbrakk> \<Longrightarrow> i < (\<Union>x<A. b(x))"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   114
by (unfold OUnion_def lt_def, blast )
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   115
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   116
lemma OUN_upper_le:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   117
     "\<lbrakk>a<A;  i\<le>b(a);  Ord(\<Union>x<A. b(x))\<rbrakk> \<Longrightarrow> i \<le> (\<Union>x<A. b(x))"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   118
apply (unfold OUnion_def)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   119
apply auto
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   120
apply (rule UN_upper_le )
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   121
apply (auto simp add: lt_def) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   122
done
2469
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
   123
12620
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   124
lemma Limit_OUN_eq: "Limit(i) ==> (UN x<i. x) = i"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   125
by (simp add: OUnion_def Limit_Union_eq Limit_is_Ord)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   126
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   127
(* No < version; consider (UN i:nat.i)=nat *)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   128
lemma OUN_least:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   129
     "(!!x. x<A ==> B(x) \<subseteq> C) ==> (UN x<A. B(x)) \<subseteq> C"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   130
by (simp add: OUnion_def UN_least ltI)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   131
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   132
(* No < version; consider (UN i:nat.i)=nat *)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   133
lemma OUN_least_le:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   134
     "[| Ord(i);  !!x. x<A ==> b(x) \<le> i |] ==> (UN x<A. b(x)) \<le> i"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   135
by (simp add: OUnion_def UN_least_le ltI Ord_0_le)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   136
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   137
lemma le_implies_OUN_le_OUN:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   138
     "[| !!x. x<A ==> c(x) \<le> d(x) |] ==> (UN x<A. c(x)) \<le> (UN x<A. d(x))"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   139
by (blast intro: OUN_least_le OUN_upper_le le_Ord2 Ord_OUN)
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   140
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   141
lemma OUN_UN_eq:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   142
     "(!!x. x:A ==> Ord(B(x)))
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   143
      ==> (UN z < (UN x:A. B(x)). C(z)) = (UN  x:A. UN z < B(x). C(z))"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   144
by (simp add: OUnion_def) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   145
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   146
lemma OUN_Union_eq:
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   147
     "(!!x. x:X ==> Ord(x))
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   148
      ==> (UN z < Union(X). C(z)) = (UN x:X. UN z < x. C(z))"
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   149
by (simp add: OUnion_def) 
4e6626725e21 Some new theorems for ordinals
paulson
parents: 12552
diff changeset
   150
2469
b50b8c0eec01 Implicit simpsets and clasets for FOL and ZF
paulson
parents:
diff changeset
   151
end