author | dixon |
Thu, 19 May 2005 01:22:53 +0200 | |
changeset 16007 | 4dcccaa11a13 |
parent 15413 | 901d1bfedf09 |
child 17084 | fb0a80aef0be |
permissions | -rw-r--r-- |
10213 | 1 |
(* Title: HOL/Datatype_Universe.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
Could <*> be generalized to a general summation (Sigma)? |
|
7 |
*) |
|
8 |
||
15388 | 9 |
header{*Analogues of the Cartesian Product and Disjoint Sum for Datatypes*} |
10213 | 10 |
|
15388 | 11 |
theory Datatype_Universe |
12 |
imports NatArith Sum_Type |
|
13 |
begin |
|
10213 | 14 |
|
15 |
||
16 |
typedef (Node) |
|
11483 | 17 |
('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}" |
15388 | 18 |
--{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*} |
19 |
by auto |
|
10213 | 20 |
|
15388 | 21 |
text{*Datatypes will be represented by sets of type @{text node}*} |
22 |
||
23 |
types 'a item = "('a, unit) node set" |
|
24 |
('a, 'b) dtree = "('a, 'b) node set" |
|
10213 | 25 |
|
26 |
consts |
|
27 |
apfst :: "['a=>'c, 'a*'b] => 'c*'b" |
|
28 |
Push :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))" |
|
29 |
||
30 |
Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node" |
|
15388 | 31 |
ndepth :: "('a, 'b) node => nat" |
10213 | 32 |
|
33 |
Atom :: "('a + nat) => ('a, 'b) dtree" |
|
15388 | 34 |
Leaf :: "'a => ('a, 'b) dtree" |
35 |
Numb :: "nat => ('a, 'b) dtree" |
|
36 |
Scons :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree" |
|
37 |
In0 :: "('a, 'b) dtree => ('a, 'b) dtree" |
|
38 |
In1 :: "('a, 'b) dtree => ('a, 'b) dtree" |
|
39 |
Lim :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree" |
|
10213 | 40 |
|
15388 | 41 |
ntrunc :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree" |
10213 | 42 |
|
15388 | 43 |
uprod :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set" |
44 |
usum :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set" |
|
10213 | 45 |
|
15388 | 46 |
Split :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c" |
47 |
Case :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c" |
|
10213 | 48 |
|
15388 | 49 |
dprod :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] |
10213 | 50 |
=> (('a, 'b) dtree * ('a, 'b) dtree)set" |
15388 | 51 |
dsum :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set] |
10213 | 52 |
=> (('a, 'b) dtree * ('a, 'b) dtree)set" |
53 |
||
54 |
||
55 |
defs |
|
56 |
||
15388 | 57 |
Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" |
10213 | 58 |
|
59 |
(*crude "lists" of nats -- needed for the constructions*) |
|
15388 | 60 |
apfst_def: "apfst == (%f (x,y). (f(x),y))" |
61 |
Push_def: "Push == (%b h. nat_case b h)" |
|
10213 | 62 |
|
63 |
(** operations on S-expressions -- sets of nodes **) |
|
64 |
||
65 |
(*S-expression constructors*) |
|
15388 | 66 |
Atom_def: "Atom == (%x. {Abs_Node((%k. Inr 0, x))})" |
67 |
Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)" |
|
10213 | 68 |
|
69 |
(*Leaf nodes, with arbitrary or nat labels*) |
|
15388 | 70 |
Leaf_def: "Leaf == Atom o Inl" |
71 |
Numb_def: "Numb == Atom o Inr" |
|
10213 | 72 |
|
73 |
(*Injections of the "disjoint sum"*) |
|
15388 | 74 |
In0_def: "In0(M) == Scons (Numb 0) M" |
75 |
In1_def: "In1(M) == Scons (Numb 1) M" |
|
10213 | 76 |
|
77 |
(*Function spaces*) |
|
15388 | 78 |
Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}" |
10213 | 79 |
|
80 |
(*the set of nodes with depth less than k*) |
|
15388 | 81 |
ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)" |
82 |
ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}" |
|
10213 | 83 |
|
84 |
(*products and sums for the "universe"*) |
|
15388 | 85 |
uprod_def: "uprod A B == UN x:A. UN y:B. { Scons x y }" |
86 |
usum_def: "usum A B == In0`A Un In1`B" |
|
10213 | 87 |
|
88 |
(*the corresponding eliminators*) |
|
15388 | 89 |
Split_def: "Split c M == THE u. EX x y. M = Scons x y & u = c x y" |
10213 | 90 |
|
15388 | 91 |
Case_def: "Case c d M == THE u. (EX x . M = In0(x) & u = c(x)) |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
10832
diff
changeset
|
92 |
| (EX y . M = In1(y) & u = d(y))" |
10213 | 93 |
|
94 |
||
95 |
(** equality for the "universe" **) |
|
96 |
||
15388 | 97 |
dprod_def: "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}" |
10213 | 98 |
|
15388 | 99 |
dsum_def: "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un |
10213 | 100 |
(UN (y,y'):s. {(In1(y),In1(y'))})" |
101 |
||
15388 | 102 |
|
103 |
||
104 |
(** apfst -- can be used in similar type definitions **) |
|
105 |
||
106 |
lemma apfst_conv [simp]: "apfst f (a,b) = (f(a),b)" |
|
107 |
by (simp add: apfst_def) |
|
108 |
||
109 |
||
110 |
lemma apfst_convE: |
|
111 |
"[| q = apfst f p; !!x y. [| p = (x,y); q = (f(x),y) |] ==> R |
|
112 |
|] ==> R" |
|
113 |
by (force simp add: apfst_def) |
|
114 |
||
115 |
(** Push -- an injection, analogous to Cons on lists **) |
|
116 |
||
117 |
lemma Push_inject1: "Push i f = Push j g ==> i=j" |
|
118 |
apply (simp add: Push_def expand_fun_eq) |
|
119 |
apply (drule_tac x=0 in spec, simp) |
|
120 |
done |
|
121 |
||
122 |
lemma Push_inject2: "Push i f = Push j g ==> f=g" |
|
123 |
apply (auto simp add: Push_def expand_fun_eq) |
|
124 |
apply (drule_tac x="Suc x" in spec, simp) |
|
125 |
done |
|
126 |
||
127 |
lemma Push_inject: |
|
128 |
"[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P" |
|
129 |
by (blast dest: Push_inject1 Push_inject2) |
|
130 |
||
131 |
lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P" |
|
132 |
by (auto simp add: Push_def expand_fun_eq split: nat.split_asm) |
|
133 |
||
15413 | 134 |
lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard] |
15388 | 135 |
|
136 |
||
137 |
(*** Introduction rules for Node ***) |
|
138 |
||
139 |
lemma Node_K0_I: "(%k. Inr 0, a) : Node" |
|
140 |
by (simp add: Node_def) |
|
141 |
||
15413 | 142 |
lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node" |
15388 | 143 |
apply (simp add: Node_def Push_def) |
144 |
apply (fast intro!: apfst_conv nat_case_Suc [THEN trans]) |
|
145 |
done |
|
146 |
||
147 |
||
148 |
subsubsection{*Freeness: Distinctness of Constructors*} |
|
149 |
||
150 |
(** Scons vs Atom **) |
|
151 |
||
152 |
lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)" |
|
153 |
apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def) |
|
154 |
apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] |
|
155 |
dest!: Abs_Node_inj |
|
156 |
elim!: apfst_convE sym [THEN Push_neq_K0]) |
|
157 |
done |
|
158 |
||
159 |
lemmas Atom_not_Scons = Scons_not_Atom [THEN not_sym, standard, iff] |
|
160 |
||
161 |
||
162 |
(*** Injectiveness ***) |
|
163 |
||
164 |
(** Atomic nodes **) |
|
165 |
||
166 |
lemma inj_Atom: "inj(Atom)" |
|
167 |
apply (simp add: Atom_def) |
|
168 |
apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj) |
|
169 |
done |
|
170 |
lemmas Atom_inject = inj_Atom [THEN injD, standard] |
|
171 |
||
172 |
lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)" |
|
173 |
by (blast dest!: Atom_inject) |
|
174 |
||
175 |
lemma inj_Leaf: "inj(Leaf)" |
|
176 |
apply (simp add: Leaf_def o_def) |
|
177 |
apply (rule inj_onI) |
|
178 |
apply (erule Atom_inject [THEN Inl_inject]) |
|
179 |
done |
|
180 |
||
181 |
lemmas Leaf_inject = inj_Leaf [THEN injD, standard, dest!] |
|
182 |
||
183 |
lemma inj_Numb: "inj(Numb)" |
|
184 |
apply (simp add: Numb_def o_def) |
|
185 |
apply (rule inj_onI) |
|
186 |
apply (erule Atom_inject [THEN Inr_inject]) |
|
187 |
done |
|
188 |
||
189 |
lemmas Numb_inject = inj_Numb [THEN injD, standard, dest!] |
|
190 |
||
191 |
||
192 |
(** Injectiveness of Push_Node **) |
|
193 |
||
194 |
lemma Push_Node_inject: |
|
195 |
"[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P |
|
196 |
|] ==> P" |
|
197 |
apply (simp add: Push_Node_def) |
|
198 |
apply (erule Abs_Node_inj [THEN apfst_convE]) |
|
199 |
apply (rule Rep_Node [THEN Node_Push_I])+ |
|
200 |
apply (erule sym [THEN apfst_convE]) |
|
15413 | 201 |
apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject) |
15388 | 202 |
done |
203 |
||
204 |
||
205 |
(** Injectiveness of Scons **) |
|
206 |
||
207 |
lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'" |
|
208 |
apply (simp add: Scons_def One_nat_def) |
|
209 |
apply (blast dest!: Push_Node_inject) |
|
210 |
done |
|
211 |
||
212 |
lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'" |
|
213 |
apply (simp add: Scons_def One_nat_def) |
|
214 |
apply (blast dest!: Push_Node_inject) |
|
215 |
done |
|
216 |
||
217 |
lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'" |
|
218 |
apply (erule equalityE) |
|
219 |
apply (rules intro: equalityI Scons_inject_lemma1) |
|
220 |
done |
|
221 |
||
222 |
lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'" |
|
223 |
apply (erule equalityE) |
|
224 |
apply (rules intro: equalityI Scons_inject_lemma2) |
|
225 |
done |
|
226 |
||
227 |
lemma Scons_inject: |
|
228 |
"[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P" |
|
229 |
by (rules dest: Scons_inject1 Scons_inject2) |
|
230 |
||
231 |
lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')" |
|
232 |
by (blast elim!: Scons_inject) |
|
233 |
||
234 |
(*** Distinctness involving Leaf and Numb ***) |
|
235 |
||
236 |
(** Scons vs Leaf **) |
|
237 |
||
238 |
lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)" |
|
239 |
by (simp add: Leaf_def o_def Scons_not_Atom) |
|
240 |
||
241 |
lemmas Leaf_not_Scons = Scons_not_Leaf [THEN not_sym, standard, iff] |
|
242 |
||
243 |
||
244 |
(** Scons vs Numb **) |
|
245 |
||
246 |
lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)" |
|
247 |
by (simp add: Numb_def o_def Scons_not_Atom) |
|
248 |
||
249 |
lemmas Numb_not_Scons = Scons_not_Numb [THEN not_sym, standard, iff] |
|
250 |
||
251 |
||
252 |
||
253 |
(** Leaf vs Numb **) |
|
254 |
||
255 |
lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)" |
|
256 |
by (simp add: Leaf_def Numb_def) |
|
257 |
||
258 |
lemmas Numb_not_Leaf = Leaf_not_Numb [THEN not_sym, standard, iff] |
|
259 |
||
260 |
||
261 |
||
262 |
(*** ndepth -- the depth of a node ***) |
|
263 |
||
264 |
lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0" |
|
265 |
by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality) |
|
266 |
||
267 |
lemma ndepth_Push_Node_aux: |
|
268 |
"nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k" |
|
269 |
apply (induct_tac "k", auto) |
|
270 |
apply (erule Least_le) |
|
271 |
done |
|
272 |
||
273 |
lemma ndepth_Push_Node: |
|
274 |
"ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))" |
|
275 |
apply (insert Rep_Node [of n, unfolded Node_def]) |
|
276 |
apply (auto simp add: ndepth_def Push_Node_def |
|
277 |
Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse]) |
|
278 |
apply (rule Least_equality) |
|
279 |
apply (auto simp add: Push_def ndepth_Push_Node_aux) |
|
280 |
apply (erule LeastI) |
|
281 |
done |
|
282 |
||
283 |
||
284 |
(*** ntrunc applied to the various node sets ***) |
|
285 |
||
286 |
lemma ntrunc_0 [simp]: "ntrunc 0 M = {}" |
|
287 |
by (simp add: ntrunc_def) |
|
288 |
||
289 |
lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)" |
|
290 |
by (auto simp add: Atom_def ntrunc_def ndepth_K0) |
|
291 |
||
292 |
lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)" |
|
293 |
by (simp add: Leaf_def o_def ntrunc_Atom) |
|
294 |
||
295 |
lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)" |
|
296 |
by (simp add: Numb_def o_def ntrunc_Atom) |
|
297 |
||
298 |
lemma ntrunc_Scons [simp]: |
|
299 |
"ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)" |
|
300 |
by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node) |
|
301 |
||
302 |
||
303 |
||
304 |
(** Injection nodes **) |
|
305 |
||
306 |
lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}" |
|
307 |
apply (simp add: In0_def) |
|
308 |
apply (simp add: Scons_def) |
|
309 |
done |
|
310 |
||
311 |
lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)" |
|
312 |
by (simp add: In0_def) |
|
313 |
||
314 |
lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}" |
|
315 |
apply (simp add: In1_def) |
|
316 |
apply (simp add: Scons_def) |
|
317 |
done |
|
318 |
||
319 |
lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)" |
|
320 |
by (simp add: In1_def) |
|
321 |
||
322 |
||
323 |
subsection{*Set Constructions*} |
|
324 |
||
325 |
||
326 |
(*** Cartesian Product ***) |
|
327 |
||
328 |
lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B" |
|
329 |
by (simp add: uprod_def) |
|
330 |
||
331 |
(*The general elimination rule*) |
|
332 |
lemma uprodE [elim!]: |
|
333 |
"[| c : uprod A B; |
|
334 |
!!x y. [| x:A; y:B; c = Scons x y |] ==> P |
|
335 |
|] ==> P" |
|
336 |
by (auto simp add: uprod_def) |
|
337 |
||
338 |
||
339 |
(*Elimination of a pair -- introduces no eigenvariables*) |
|
340 |
lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P" |
|
341 |
by (auto simp add: uprod_def) |
|
342 |
||
343 |
||
344 |
(*** Disjoint Sum ***) |
|
345 |
||
346 |
lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B" |
|
347 |
by (simp add: usum_def) |
|
348 |
||
349 |
lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B" |
|
350 |
by (simp add: usum_def) |
|
351 |
||
352 |
lemma usumE [elim!]: |
|
353 |
"[| u : usum A B; |
|
354 |
!!x. [| x:A; u=In0(x) |] ==> P; |
|
355 |
!!y. [| y:B; u=In1(y) |] ==> P |
|
356 |
|] ==> P" |
|
357 |
by (auto simp add: usum_def) |
|
358 |
||
359 |
||
360 |
(** Injection **) |
|
361 |
||
362 |
lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)" |
|
363 |
by (auto simp add: In0_def In1_def One_nat_def) |
|
364 |
||
365 |
lemmas In1_not_In0 = In0_not_In1 [THEN not_sym, standard, iff] |
|
366 |
||
367 |
lemma In0_inject: "In0(M) = In0(N) ==> M=N" |
|
368 |
by (simp add: In0_def) |
|
369 |
||
370 |
lemma In1_inject: "In1(M) = In1(N) ==> M=N" |
|
371 |
by (simp add: In1_def) |
|
372 |
||
373 |
lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)" |
|
374 |
by (blast dest!: In0_inject) |
|
375 |
||
376 |
lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)" |
|
377 |
by (blast dest!: In1_inject) |
|
378 |
||
379 |
lemma inj_In0: "inj In0" |
|
380 |
by (blast intro!: inj_onI) |
|
381 |
||
382 |
lemma inj_In1: "inj In1" |
|
383 |
by (blast intro!: inj_onI) |
|
384 |
||
385 |
||
386 |
(*** Function spaces ***) |
|
387 |
||
388 |
lemma Lim_inject: "Lim f = Lim g ==> f = g" |
|
389 |
apply (simp add: Lim_def) |
|
390 |
apply (rule ext) |
|
391 |
apply (blast elim!: Push_Node_inject) |
|
392 |
done |
|
393 |
||
394 |
||
395 |
(*** proving equality of sets and functions using ntrunc ***) |
|
396 |
||
397 |
lemma ntrunc_subsetI: "ntrunc k M <= M" |
|
398 |
by (auto simp add: ntrunc_def) |
|
399 |
||
400 |
lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N" |
|
401 |
by (auto simp add: ntrunc_def) |
|
402 |
||
403 |
(*A generalized form of the take-lemma*) |
|
404 |
lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N" |
|
405 |
apply (rule equalityI) |
|
406 |
apply (rule_tac [!] ntrunc_subsetD) |
|
407 |
apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) |
|
408 |
done |
|
409 |
||
410 |
lemma ntrunc_o_equality: |
|
411 |
"[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2" |
|
412 |
apply (rule ntrunc_equality [THEN ext]) |
|
413 |
apply (simp add: expand_fun_eq) |
|
414 |
done |
|
415 |
||
416 |
||
417 |
(*** Monotonicity ***) |
|
418 |
||
419 |
lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'" |
|
420 |
by (simp add: uprod_def, blast) |
|
421 |
||
422 |
lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'" |
|
423 |
by (simp add: usum_def, blast) |
|
424 |
||
425 |
lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'" |
|
426 |
by (simp add: Scons_def, blast) |
|
427 |
||
428 |
lemma In0_mono: "M<=N ==> In0(M) <= In0(N)" |
|
429 |
by (simp add: In0_def subset_refl Scons_mono) |
|
430 |
||
431 |
lemma In1_mono: "M<=N ==> In1(M) <= In1(N)" |
|
432 |
by (simp add: In1_def subset_refl Scons_mono) |
|
433 |
||
434 |
||
435 |
(*** Split and Case ***) |
|
436 |
||
437 |
lemma Split [simp]: "Split c (Scons M N) = c M N" |
|
438 |
by (simp add: Split_def) |
|
439 |
||
440 |
lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)" |
|
441 |
by (simp add: Case_def) |
|
442 |
||
443 |
lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)" |
|
444 |
by (simp add: Case_def) |
|
445 |
||
446 |
||
447 |
||
448 |
(**** UN x. B(x) rules ****) |
|
449 |
||
450 |
lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))" |
|
451 |
by (simp add: ntrunc_def, blast) |
|
452 |
||
453 |
lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)" |
|
454 |
by (simp add: Scons_def, blast) |
|
455 |
||
456 |
lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))" |
|
457 |
by (simp add: Scons_def, blast) |
|
458 |
||
459 |
lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))" |
|
460 |
by (simp add: In0_def Scons_UN1_y) |
|
461 |
||
462 |
lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))" |
|
463 |
by (simp add: In1_def Scons_UN1_y) |
|
464 |
||
465 |
||
466 |
(*** Equality for Cartesian Product ***) |
|
467 |
||
468 |
lemma dprodI [intro!]: |
|
469 |
"[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s" |
|
470 |
by (auto simp add: dprod_def) |
|
471 |
||
472 |
(*The general elimination rule*) |
|
473 |
lemma dprodE [elim!]: |
|
474 |
"[| c : dprod r s; |
|
475 |
!!x y x' y'. [| (x,x') : r; (y,y') : s; |
|
476 |
c = (Scons x y, Scons x' y') |] ==> P |
|
477 |
|] ==> P" |
|
478 |
by (auto simp add: dprod_def) |
|
479 |
||
480 |
||
481 |
(*** Equality for Disjoint Sum ***) |
|
482 |
||
483 |
lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s" |
|
484 |
by (auto simp add: dsum_def) |
|
485 |
||
486 |
lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s" |
|
487 |
by (auto simp add: dsum_def) |
|
488 |
||
489 |
lemma dsumE [elim!]: |
|
490 |
"[| w : dsum r s; |
|
491 |
!!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; |
|
492 |
!!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P |
|
493 |
|] ==> P" |
|
494 |
by (auto simp add: dsum_def) |
|
495 |
||
496 |
||
497 |
(*** Monotonicity ***) |
|
498 |
||
499 |
lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'" |
|
500 |
by blast |
|
501 |
||
502 |
lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'" |
|
503 |
by blast |
|
504 |
||
505 |
||
506 |
(*** Bounding theorems ***) |
|
507 |
||
508 |
lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)" |
|
509 |
by blast |
|
510 |
||
511 |
lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard] |
|
512 |
||
513 |
(*Dependent version*) |
|
514 |
lemma dprod_subset_Sigma2: |
|
515 |
"(dprod (Sigma A B) (Sigma C D)) <= |
|
516 |
Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" |
|
517 |
by auto |
|
518 |
||
519 |
lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)" |
|
520 |
by blast |
|
521 |
||
522 |
lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard] |
|
523 |
||
524 |
||
525 |
(*** Domain ***) |
|
526 |
||
527 |
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)" |
|
528 |
by auto |
|
529 |
||
530 |
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)" |
|
531 |
by auto |
|
532 |
||
533 |
ML |
|
534 |
{* |
|
535 |
val apfst_conv = thm "apfst_conv"; |
|
536 |
val apfst_convE = thm "apfst_convE"; |
|
537 |
val Push_inject1 = thm "Push_inject1"; |
|
538 |
val Push_inject2 = thm "Push_inject2"; |
|
539 |
val Push_inject = thm "Push_inject"; |
|
540 |
val Push_neq_K0 = thm "Push_neq_K0"; |
|
541 |
val Abs_Node_inj = thm "Abs_Node_inj"; |
|
542 |
val Node_K0_I = thm "Node_K0_I"; |
|
543 |
val Node_Push_I = thm "Node_Push_I"; |
|
544 |
val Scons_not_Atom = thm "Scons_not_Atom"; |
|
545 |
val Atom_not_Scons = thm "Atom_not_Scons"; |
|
546 |
val inj_Atom = thm "inj_Atom"; |
|
547 |
val Atom_inject = thm "Atom_inject"; |
|
548 |
val Atom_Atom_eq = thm "Atom_Atom_eq"; |
|
549 |
val inj_Leaf = thm "inj_Leaf"; |
|
550 |
val Leaf_inject = thm "Leaf_inject"; |
|
551 |
val inj_Numb = thm "inj_Numb"; |
|
552 |
val Numb_inject = thm "Numb_inject"; |
|
553 |
val Push_Node_inject = thm "Push_Node_inject"; |
|
554 |
val Scons_inject1 = thm "Scons_inject1"; |
|
555 |
val Scons_inject2 = thm "Scons_inject2"; |
|
556 |
val Scons_inject = thm "Scons_inject"; |
|
557 |
val Scons_Scons_eq = thm "Scons_Scons_eq"; |
|
558 |
val Scons_not_Leaf = thm "Scons_not_Leaf"; |
|
559 |
val Leaf_not_Scons = thm "Leaf_not_Scons"; |
|
560 |
val Scons_not_Numb = thm "Scons_not_Numb"; |
|
561 |
val Numb_not_Scons = thm "Numb_not_Scons"; |
|
562 |
val Leaf_not_Numb = thm "Leaf_not_Numb"; |
|
563 |
val Numb_not_Leaf = thm "Numb_not_Leaf"; |
|
564 |
val ndepth_K0 = thm "ndepth_K0"; |
|
565 |
val ndepth_Push_Node_aux = thm "ndepth_Push_Node_aux"; |
|
566 |
val ndepth_Push_Node = thm "ndepth_Push_Node"; |
|
567 |
val ntrunc_0 = thm "ntrunc_0"; |
|
568 |
val ntrunc_Atom = thm "ntrunc_Atom"; |
|
569 |
val ntrunc_Leaf = thm "ntrunc_Leaf"; |
|
570 |
val ntrunc_Numb = thm "ntrunc_Numb"; |
|
571 |
val ntrunc_Scons = thm "ntrunc_Scons"; |
|
572 |
val ntrunc_one_In0 = thm "ntrunc_one_In0"; |
|
573 |
val ntrunc_In0 = thm "ntrunc_In0"; |
|
574 |
val ntrunc_one_In1 = thm "ntrunc_one_In1"; |
|
575 |
val ntrunc_In1 = thm "ntrunc_In1"; |
|
576 |
val uprodI = thm "uprodI"; |
|
577 |
val uprodE = thm "uprodE"; |
|
578 |
val uprodE2 = thm "uprodE2"; |
|
579 |
val usum_In0I = thm "usum_In0I"; |
|
580 |
val usum_In1I = thm "usum_In1I"; |
|
581 |
val usumE = thm "usumE"; |
|
582 |
val In0_not_In1 = thm "In0_not_In1"; |
|
583 |
val In1_not_In0 = thm "In1_not_In0"; |
|
584 |
val In0_inject = thm "In0_inject"; |
|
585 |
val In1_inject = thm "In1_inject"; |
|
586 |
val In0_eq = thm "In0_eq"; |
|
587 |
val In1_eq = thm "In1_eq"; |
|
588 |
val inj_In0 = thm "inj_In0"; |
|
589 |
val inj_In1 = thm "inj_In1"; |
|
590 |
val Lim_inject = thm "Lim_inject"; |
|
591 |
val ntrunc_subsetI = thm "ntrunc_subsetI"; |
|
592 |
val ntrunc_subsetD = thm "ntrunc_subsetD"; |
|
593 |
val ntrunc_equality = thm "ntrunc_equality"; |
|
594 |
val ntrunc_o_equality = thm "ntrunc_o_equality"; |
|
595 |
val uprod_mono = thm "uprod_mono"; |
|
596 |
val usum_mono = thm "usum_mono"; |
|
597 |
val Scons_mono = thm "Scons_mono"; |
|
598 |
val In0_mono = thm "In0_mono"; |
|
599 |
val In1_mono = thm "In1_mono"; |
|
600 |
val Split = thm "Split"; |
|
601 |
val Case_In0 = thm "Case_In0"; |
|
602 |
val Case_In1 = thm "Case_In1"; |
|
603 |
val ntrunc_UN1 = thm "ntrunc_UN1"; |
|
604 |
val Scons_UN1_x = thm "Scons_UN1_x"; |
|
605 |
val Scons_UN1_y = thm "Scons_UN1_y"; |
|
606 |
val In0_UN1 = thm "In0_UN1"; |
|
607 |
val In1_UN1 = thm "In1_UN1"; |
|
608 |
val dprodI = thm "dprodI"; |
|
609 |
val dprodE = thm "dprodE"; |
|
610 |
val dsum_In0I = thm "dsum_In0I"; |
|
611 |
val dsum_In1I = thm "dsum_In1I"; |
|
612 |
val dsumE = thm "dsumE"; |
|
613 |
val dprod_mono = thm "dprod_mono"; |
|
614 |
val dsum_mono = thm "dsum_mono"; |
|
615 |
val dprod_Sigma = thm "dprod_Sigma"; |
|
616 |
val dprod_subset_Sigma = thm "dprod_subset_Sigma"; |
|
617 |
val dprod_subset_Sigma2 = thm "dprod_subset_Sigma2"; |
|
618 |
val dsum_Sigma = thm "dsum_Sigma"; |
|
619 |
val dsum_subset_Sigma = thm "dsum_subset_Sigma"; |
|
620 |
val Domain_dprod = thm "Domain_dprod"; |
|
621 |
val Domain_dsum = thm "Domain_dsum"; |
|
622 |
*} |
|
623 |
||
10213 | 624 |
end |