author | wenzelm |
Sun, 13 Sep 2015 22:56:52 +0200 | |
changeset 61169 | 4de9ff3ea29a |
parent 61076 | bdc1e2f0a86a |
child 62430 | 9527ff088c15 |
permissions | -rw-r--r-- |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32689
diff
changeset
|
1 |
(* Title: HOL/UNITY/Follows.thy |
6706 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1998 University of Cambridge |
|
13798 | 4 |
*) |
6706 | 5 |
|
58889 | 6 |
section{*The Follows Relation of Charpentier and Sivilotte*} |
6706 | 7 |
|
41413
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
35416
diff
changeset
|
8 |
theory Follows |
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
35416
diff
changeset
|
9 |
imports SubstAx ListOrder "~~/src/HOL/Library/Multiset" |
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
wenzelm
parents:
35416
diff
changeset
|
10 |
begin |
6706 | 11 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35274
diff
changeset
|
12 |
definition Follows :: "['a => 'b::{order}, 'a => 'b::{order}] => 'a program set" (infixl "Fols" 65) where |
13805 | 13 |
"f Fols g == Increasing g \<inter> Increasing f Int |
14 |
Always {s. f s \<le> g s} Int |
|
15 |
(\<Inter>k. {s. k \<le> g s} LeadsTo {s. k \<le> f s})" |
|
6706 | 16 |
|
17 |
||
13796 | 18 |
(*Does this hold for "invariant"?*) |
19 |
lemma mono_Always_o: |
|
13805 | 20 |
"mono h ==> Always {s. f s \<le> g s} \<subseteq> Always {s. h (f s) \<le> h (g s)}" |
13796 | 21 |
apply (simp add: Always_eq_includes_reachable) |
22 |
apply (blast intro: monoD) |
|
23 |
done |
|
24 |
||
25 |
lemma mono_LeadsTo_o: |
|
26 |
"mono (h::'a::order => 'b::order) |
|
13805 | 27 |
==> (\<Inter>j. {s. j \<le> g s} LeadsTo {s. j \<le> f s}) \<subseteq> |
28 |
(\<Inter>k. {s. k \<le> h (g s)} LeadsTo {s. k \<le> h (f s)})" |
|
13796 | 29 |
apply auto |
30 |
apply (rule single_LeadsTo_I) |
|
31 |
apply (drule_tac x = "g s" in spec) |
|
32 |
apply (erule LeadsTo_weaken) |
|
33 |
apply (blast intro: monoD order_trans)+ |
|
34 |
done |
|
35 |
||
13805 | 36 |
lemma Follows_constant [iff]: "F \<in> (%s. c) Fols (%s. c)" |
15102 | 37 |
by (simp add: Follows_def) |
13796 | 38 |
|
13805 | 39 |
lemma mono_Follows_o: "mono h ==> f Fols g \<subseteq> (h o f) Fols (h o g)" |
15102 | 40 |
by (auto simp add: Follows_def mono_Increasing_o [THEN [2] rev_subsetD] |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32689
diff
changeset
|
41 |
mono_Always_o [THEN [2] rev_subsetD] |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32689
diff
changeset
|
42 |
mono_LeadsTo_o [THEN [2] rev_subsetD, THEN INT_D]) |
13796 | 43 |
|
44 |
lemma mono_Follows_apply: |
|
13805 | 45 |
"mono h ==> f Fols g \<subseteq> (%x. h (f x)) Fols (%x. h (g x))" |
13796 | 46 |
apply (drule mono_Follows_o) |
47 |
apply (force simp add: o_def) |
|
48 |
done |
|
49 |
||
50 |
lemma Follows_trans: |
|
13805 | 51 |
"[| F \<in> f Fols g; F \<in> g Fols h |] ==> F \<in> f Fols h" |
15102 | 52 |
apply (simp add: Follows_def) |
13796 | 53 |
apply (simp add: Always_eq_includes_reachable) |
54 |
apply (blast intro: order_trans LeadsTo_Trans) |
|
55 |
done |
|
56 |
||
57 |
||
13798 | 58 |
subsection{*Destruction rules*} |
13796 | 59 |
|
13805 | 60 |
lemma Follows_Increasing1: "F \<in> f Fols g ==> F \<in> Increasing f" |
15102 | 61 |
by (simp add: Follows_def) |
13796 | 62 |
|
13805 | 63 |
lemma Follows_Increasing2: "F \<in> f Fols g ==> F \<in> Increasing g" |
15102 | 64 |
by (simp add: Follows_def) |
13796 | 65 |
|
21710 | 66 |
lemma Follows_Bounded: "F \<in> f Fols g ==> F \<in> Always {s. f s \<le> g s}" |
15102 | 67 |
by (simp add: Follows_def) |
13796 | 68 |
|
69 |
lemma Follows_LeadsTo: |
|
13805 | 70 |
"F \<in> f Fols g ==> F \<in> {s. k \<le> g s} LeadsTo {s. k \<le> f s}" |
15102 | 71 |
by (simp add: Follows_def) |
13796 | 72 |
|
73 |
lemma Follows_LeadsTo_pfixLe: |
|
13805 | 74 |
"F \<in> f Fols g ==> F \<in> {s. k pfixLe g s} LeadsTo {s. k pfixLe f s}" |
13796 | 75 |
apply (rule single_LeadsTo_I, clarify) |
76 |
apply (drule_tac k="g s" in Follows_LeadsTo) |
|
77 |
apply (erule LeadsTo_weaken) |
|
78 |
apply blast |
|
79 |
apply (blast intro: pfixLe_trans prefix_imp_pfixLe) |
|
80 |
done |
|
81 |
||
82 |
lemma Follows_LeadsTo_pfixGe: |
|
13805 | 83 |
"F \<in> f Fols g ==> F \<in> {s. k pfixGe g s} LeadsTo {s. k pfixGe f s}" |
13796 | 84 |
apply (rule single_LeadsTo_I, clarify) |
85 |
apply (drule_tac k="g s" in Follows_LeadsTo) |
|
86 |
apply (erule LeadsTo_weaken) |
|
87 |
apply blast |
|
88 |
apply (blast intro: pfixGe_trans prefix_imp_pfixGe) |
|
89 |
done |
|
90 |
||
91 |
||
92 |
lemma Always_Follows1: |
|
13805 | 93 |
"[| F \<in> Always {s. f s = f' s}; F \<in> f Fols g |] ==> F \<in> f' Fols g" |
13796 | 94 |
|
15102 | 95 |
apply (simp add: Follows_def Increasing_def Stable_def, auto) |
13796 | 96 |
apply (erule_tac [3] Always_LeadsTo_weaken) |
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
97 |
apply (erule_tac A = "{s. x \<le> f s}" and A' = "{s. x \<le> f s}" |
13798 | 98 |
in Always_Constrains_weaken, auto) |
13796 | 99 |
apply (drule Always_Int_I, assumption) |
100 |
apply (force intro: Always_weaken) |
|
101 |
done |
|
102 |
||
103 |
lemma Always_Follows2: |
|
13805 | 104 |
"[| F \<in> Always {s. g s = g' s}; F \<in> f Fols g |] ==> F \<in> f Fols g'" |
15102 | 105 |
apply (simp add: Follows_def Increasing_def Stable_def, auto) |
13796 | 106 |
apply (erule_tac [3] Always_LeadsTo_weaken) |
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
107 |
apply (erule_tac A = "{s. x \<le> g s}" and A' = "{s. x \<le> g s}" |
13798 | 108 |
in Always_Constrains_weaken, auto) |
13796 | 109 |
apply (drule Always_Int_I, assumption) |
110 |
apply (force intro: Always_weaken) |
|
111 |
done |
|
112 |
||
113 |
||
13798 | 114 |
subsection{*Union properties (with the subset ordering)*} |
13796 | 115 |
|
116 |
(*Can replace "Un" by any sup. But existing max only works for linorders.*) |
|
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
117 |
|
13796 | 118 |
lemma increasing_Un: |
13805 | 119 |
"[| F \<in> increasing f; F \<in> increasing g |] |
120 |
==> F \<in> increasing (%s. (f s) \<union> (g s))" |
|
15102 | 121 |
apply (simp add: increasing_def stable_def constrains_def, auto) |
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
122 |
apply (drule_tac x = "f xb" in spec) |
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
123 |
apply (drule_tac x = "g xb" in spec) |
13796 | 124 |
apply (blast dest!: bspec) |
125 |
done |
|
126 |
||
127 |
lemma Increasing_Un: |
|
13805 | 128 |
"[| F \<in> Increasing f; F \<in> Increasing g |] |
129 |
==> F \<in> Increasing (%s. (f s) \<union> (g s))" |
|
13798 | 130 |
apply (auto simp add: Increasing_def Stable_def Constrains_def |
131 |
stable_def constrains_def) |
|
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
132 |
apply (drule_tac x = "f xb" in spec) |
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
133 |
apply (drule_tac x = "g xb" in spec) |
13796 | 134 |
apply (blast dest!: bspec) |
135 |
done |
|
136 |
||
137 |
||
138 |
lemma Always_Un: |
|
13805 | 139 |
"[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |] |
140 |
==> F \<in> Always {s. f' s \<union> g' s \<le> f s \<union> g s}" |
|
13798 | 141 |
by (simp add: Always_eq_includes_reachable, blast) |
13796 | 142 |
|
143 |
(*Lemma to re-use the argument that one variable increases (progress) |
|
144 |
while the other variable doesn't decrease (safety)*) |
|
145 |
lemma Follows_Un_lemma: |
|
13805 | 146 |
"[| F \<in> Increasing f; F \<in> Increasing g; |
147 |
F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s}; |
|
148 |
\<forall>k. F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |] |
|
149 |
==> F \<in> {s. k \<le> f s \<union> g s} LeadsTo {s. k \<le> f' s \<union> g s}" |
|
13796 | 150 |
apply (rule single_LeadsTo_I) |
151 |
apply (drule_tac x = "f s" in IncreasingD) |
|
152 |
apply (drule_tac x = "g s" in IncreasingD) |
|
153 |
apply (rule LeadsTo_weaken) |
|
154 |
apply (rule PSP_Stable) |
|
155 |
apply (erule_tac x = "f s" in spec) |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
156 |
apply (erule Stable_Int, assumption, blast+) |
13796 | 157 |
done |
158 |
||
159 |
lemma Follows_Un: |
|
13805 | 160 |
"[| F \<in> f' Fols f; F \<in> g' Fols g |] |
161 |
==> F \<in> (%s. (f' s) \<union> (g' s)) Fols (%s. (f s) \<union> (g s))" |
|
54859 | 162 |
apply (simp add: Follows_def Increasing_Un Always_Un del: Un_subset_iff sup.bounded_iff, auto) |
13796 | 163 |
apply (rule LeadsTo_Trans) |
164 |
apply (blast intro: Follows_Un_lemma) |
|
165 |
(*Weakening is used to exchange Un's arguments*) |
|
166 |
apply (blast intro: Follows_Un_lemma [THEN LeadsTo_weaken]) |
|
167 |
done |
|
168 |
||
169 |
||
13798 | 170 |
subsection{*Multiset union properties (with the multiset ordering)*} |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
171 |
(*TODO: remove when multiset is of sort ord again*) |
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
172 |
instantiation multiset :: (order) ordered_ab_semigroup_add |
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
173 |
begin |
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
174 |
|
61076 | 175 |
definition less_multiset :: "'a::order multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" where |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
176 |
"M' < M \<longleftrightarrow> M' #<# M" |
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
177 |
|
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
178 |
definition less_eq_multiset :: "'a multiset \<Rightarrow> 'a multiset \<Rightarrow> bool" where |
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
179 |
"(M'::'a multiset) \<le> M \<longleftrightarrow> M' #<=# M" |
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
180 |
|
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
181 |
instance |
61169 | 182 |
by standard (auto simp add: less_eq_multiset_def less_multiset_def multiset_order.less_le_not_le add.commute multiset_order.add_right_mono) |
60397
f8a513fedb31
Renaming multiset operators < ~> <#,...
Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents:
58889
diff
changeset
|
183 |
end |
13796 | 184 |
|
185 |
lemma increasing_union: |
|
13805 | 186 |
"[| F \<in> increasing f; F \<in> increasing g |] |
187 |
==> F \<in> increasing (%s. (f s) + (g s :: ('a::order) multiset))" |
|
15102 | 188 |
apply (simp add: increasing_def stable_def constrains_def, auto) |
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
189 |
apply (drule_tac x = "f xb" in spec) |
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
190 |
apply (drule_tac x = "g xb" in spec) |
13796 | 191 |
apply (drule bspec, assumption) |
35274 | 192 |
apply (blast intro: add_mono order_trans) |
13796 | 193 |
done |
194 |
||
195 |
lemma Increasing_union: |
|
13805 | 196 |
"[| F \<in> Increasing f; F \<in> Increasing g |] |
197 |
==> F \<in> Increasing (%s. (f s) + (g s :: ('a::order) multiset))" |
|
13798 | 198 |
apply (auto simp add: Increasing_def Stable_def Constrains_def |
199 |
stable_def constrains_def) |
|
56248
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
200 |
apply (drule_tac x = "f xb" in spec) |
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
haftmann
parents:
54859
diff
changeset
|
201 |
apply (drule_tac x = "g xb" in spec) |
13796 | 202 |
apply (drule bspec, assumption) |
35274 | 203 |
apply (blast intro: add_mono order_trans) |
13796 | 204 |
done |
205 |
||
206 |
lemma Always_union: |
|
13805 | 207 |
"[| F \<in> Always {s. f' s \<le> f s}; F \<in> Always {s. g' s \<le> g s} |] |
208 |
==> F \<in> Always {s. f' s + g' s \<le> f s + (g s :: ('a::order) multiset)}" |
|
13796 | 209 |
apply (simp add: Always_eq_includes_reachable) |
35274 | 210 |
apply (blast intro: add_mono) |
13796 | 211 |
done |
212 |
||
213 |
(*Except the last line, IDENTICAL to the proof script for Follows_Un_lemma*) |
|
214 |
lemma Follows_union_lemma: |
|
13805 | 215 |
"[| F \<in> Increasing f; F \<in> Increasing g; |
216 |
F \<in> Increasing g'; F \<in> Always {s. f' s \<le> f s}; |
|
217 |
\<forall>k::('a::order) multiset. |
|
218 |
F \<in> {s. k \<le> f s} LeadsTo {s. k \<le> f' s} |] |
|
219 |
==> F \<in> {s. k \<le> f s + g s} LeadsTo {s. k \<le> f' s + g s}" |
|
13796 | 220 |
apply (rule single_LeadsTo_I) |
221 |
apply (drule_tac x = "f s" in IncreasingD) |
|
222 |
apply (drule_tac x = "g s" in IncreasingD) |
|
223 |
apply (rule LeadsTo_weaken) |
|
224 |
apply (rule PSP_Stable) |
|
225 |
apply (erule_tac x = "f s" in spec) |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
226 |
apply (erule Stable_Int, assumption, blast) |
35274 | 227 |
apply (blast intro: add_mono order_trans) |
13796 | 228 |
done |
229 |
||
230 |
(*The !! is there to influence to effect of permutative rewriting at the end*) |
|
231 |
lemma Follows_union: |
|
232 |
"!!g g' ::'b => ('a::order) multiset. |
|
13805 | 233 |
[| F \<in> f' Fols f; F \<in> g' Fols g |] |
234 |
==> F \<in> (%s. (f' s) + (g' s)) Fols (%s. (f s) + (g s))" |
|
15102 | 235 |
apply (simp add: Follows_def) |
13796 | 236 |
apply (simp add: Increasing_union Always_union, auto) |
237 |
apply (rule LeadsTo_Trans) |
|
238 |
apply (blast intro: Follows_union_lemma) |
|
239 |
(*now exchange union's arguments*) |
|
240 |
apply (simp add: union_commute) |
|
241 |
apply (blast intro: Follows_union_lemma) |
|
242 |
done |
|
243 |
||
244 |
lemma Follows_setsum: |
|
245 |
"!!f ::['c,'b] => ('a::order) multiset. |
|
13805 | 246 |
[| \<forall>i \<in> I. F \<in> f' i Fols f i; finite I |] |
247 |
==> F \<in> (%s. \<Sum>i \<in> I. f' i s) Fols (%s. \<Sum>i \<in> I. f i s)" |
|
13796 | 248 |
apply (erule rev_mp) |
249 |
apply (erule finite_induct, simp) |
|
250 |
apply (simp add: Follows_union) |
|
251 |
done |
|
252 |
||
253 |
||
254 |
(*Currently UNUSED, but possibly of interest*) |
|
255 |
lemma Increasing_imp_Stable_pfixGe: |
|
13805 | 256 |
"F \<in> Increasing func ==> F \<in> Stable {s. h pfixGe (func s)}" |
13796 | 257 |
apply (simp add: Increasing_def Stable_def Constrains_def constrains_def) |
258 |
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] |
|
259 |
prefix_imp_pfixGe) |
|
260 |
done |
|
261 |
||
262 |
(*Currently UNUSED, but possibly of interest*) |
|
263 |
lemma LeadsTo_le_imp_pfixGe: |
|
13805 | 264 |
"\<forall>z. F \<in> {s. z \<le> f s} LeadsTo {s. z \<le> g s} |
265 |
==> F \<in> {s. z pfixGe f s} LeadsTo {s. z pfixGe g s}" |
|
13796 | 266 |
apply (rule single_LeadsTo_I) |
267 |
apply (drule_tac x = "f s" in spec) |
|
268 |
apply (erule LeadsTo_weaken) |
|
269 |
prefer 2 |
|
270 |
apply (blast intro: trans_Ge [THEN trans_genPrefix, THEN transD] |
|
271 |
prefix_imp_pfixGe, blast) |
|
272 |
done |
|
273 |
||
6706 | 274 |
end |