| 
14551
 | 
     1  | 
(*
  | 
| 
 | 
     2  | 
  Title:     Orders and Lattices
  | 
| 
 | 
     3  | 
  Id:        $Id$
  | 
| 
 | 
     4  | 
  Author:    Clemens Ballarin, started 7 November 2003
  | 
| 
 | 
     5  | 
  Copyright: Clemens Ballarin
  | 
| 
 | 
     6  | 
*)
  | 
| 
 | 
     7  | 
  | 
| 
14577
 | 
     8  | 
header {* Order and Lattices *}
 | 
| 
14551
 | 
     9  | 
  | 
| 
14577
 | 
    10  | 
theory Lattice = Group:
  | 
| 
14551
 | 
    11  | 
  | 
| 
 | 
    12  | 
subsection {* Partial Orders *}
 | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
record 'a order = "'a partial_object" +
  | 
| 
 | 
    15  | 
  le :: "['a, 'a] => bool" (infixl "\<sqsubseteq>\<index>" 50)
  | 
| 
 | 
    16  | 
  | 
| 
14693
 | 
    17  | 
locale partial_order = struct L +
  | 
| 
14551
 | 
    18  | 
  assumes refl [intro, simp]:
  | 
| 
 | 
    19  | 
                  "x \<in> carrier L ==> x \<sqsubseteq> x"
  | 
| 
 | 
    20  | 
    and anti_sym [intro]:
  | 
| 
 | 
    21  | 
                  "[| x \<sqsubseteq> y; y \<sqsubseteq> x; x \<in> carrier L; y \<in> carrier L |] ==> x = y"
  | 
| 
 | 
    22  | 
    and trans [trans]:
  | 
| 
 | 
    23  | 
                  "[| x \<sqsubseteq> y; y \<sqsubseteq> z;
  | 
| 
 | 
    24  | 
                   x \<in> carrier L; y \<in> carrier L; z \<in> carrier L |] ==> x \<sqsubseteq> z"
  | 
| 
 | 
    25  | 
  | 
| 
14651
 | 
    26  | 
constdefs (structure L)
  | 
| 
 | 
    27  | 
  less :: "[_, 'a, 'a] => bool" (infixl "\<sqsubset>\<index>" 50)
  | 
| 
 | 
    28  | 
  "x \<sqsubset> y == x \<sqsubseteq> y & x ~= y"
  | 
| 
14551
 | 
    29  | 
  | 
| 
14651
 | 
    30  | 
  -- {* Upper and lower bounds of a set. *}
 | 
| 
 | 
    31  | 
  Upper :: "[_, 'a set] => 'a set"
  | 
| 
14693
 | 
    32  | 
  "Upper L A == {u. (ALL x. x \<in> A \<inter> carrier L --> x \<sqsubseteq> u)} \<inter>
 | 
| 
14551
 | 
    33  | 
                carrier L"
  | 
| 
 | 
    34  | 
  | 
| 
14651
 | 
    35  | 
  Lower :: "[_, 'a set] => 'a set"
  | 
| 
14693
 | 
    36  | 
  "Lower L A == {l. (ALL x. x \<in> A \<inter> carrier L --> l \<sqsubseteq> x)} \<inter>
 | 
| 
14551
 | 
    37  | 
                carrier L"
  | 
| 
 | 
    38  | 
  | 
| 
14651
 | 
    39  | 
  -- {* Least and greatest, as predicate. *}
 | 
| 
 | 
    40  | 
  least :: "[_, 'a, 'a set] => bool"
  | 
| 
14693
 | 
    41  | 
  "least L l A == A \<subseteq> carrier L & l \<in> A & (ALL x : A. l \<sqsubseteq> x)"
  | 
| 
14551
 | 
    42  | 
  | 
| 
14651
 | 
    43  | 
  greatest :: "[_, 'a, 'a set] => bool"
  | 
| 
14693
 | 
    44  | 
  "greatest L g A == A \<subseteq> carrier L & g \<in> A & (ALL x : A. x \<sqsubseteq> g)"
  | 
| 
14551
 | 
    45  | 
  | 
| 
14651
 | 
    46  | 
  -- {* Supremum and infimum *}
 | 
| 
 | 
    47  | 
  sup :: "[_, 'a set] => 'a" ("\<Squnion>\<index>_" [90] 90)
 | 
| 
 | 
    48  | 
  "\<Squnion>A == THE x. least L x (Upper L A)"
  | 
| 
14551
 | 
    49  | 
  | 
| 
14651
 | 
    50  | 
  inf :: "[_, 'a set] => 'a" ("\<Sqinter>\<index>_" [90] 90)
 | 
| 
 | 
    51  | 
  "\<Sqinter>A == THE x. greatest L x (Lower L A)"
  | 
| 
14551
 | 
    52  | 
  | 
| 
14651
 | 
    53  | 
  join :: "[_, 'a, 'a] => 'a" (infixl "\<squnion>\<index>" 65)
  | 
| 
 | 
    54  | 
  "x \<squnion> y == sup L {x, y}"
 | 
| 
14551
 | 
    55  | 
  | 
| 
14651
 | 
    56  | 
  meet :: "[_, 'a, 'a] => 'a" (infixl "\<sqinter>\<index>" 65)
  | 
| 
 | 
    57  | 
  "x \<sqinter> y == inf L {x, y}"
 | 
| 
14551
 | 
    58  | 
  | 
| 
14651
 | 
    59  | 
  | 
| 
 | 
    60  | 
subsubsection {* Upper *}
 | 
| 
14551
 | 
    61  | 
  | 
| 
 | 
    62  | 
lemma Upper_closed [intro, simp]:
  | 
| 
 | 
    63  | 
  "Upper L A \<subseteq> carrier L"
  | 
| 
 | 
    64  | 
  by (unfold Upper_def) clarify
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
lemma UpperD [dest]:
  | 
| 
14693
 | 
    67  | 
  includes struct L
  | 
| 
14551
 | 
    68  | 
  shows "[| u \<in> Upper L A; x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> u"
  | 
| 
14693
 | 
    69  | 
  by (unfold Upper_def) blast
  | 
| 
14551
 | 
    70  | 
  | 
| 
 | 
    71  | 
lemma Upper_memI:
  | 
| 
14693
 | 
    72  | 
  includes struct L
  | 
| 
14551
 | 
    73  | 
  shows "[| !! y. y \<in> A ==> y \<sqsubseteq> x; x \<in> carrier L |] ==> x \<in> Upper L A"
  | 
| 
14693
 | 
    74  | 
  by (unfold Upper_def) blast
  | 
| 
14551
 | 
    75  | 
  | 
| 
 | 
    76  | 
lemma Upper_antimono:
  | 
| 
 | 
    77  | 
  "A \<subseteq> B ==> Upper L B \<subseteq> Upper L A"
  | 
| 
 | 
    78  | 
  by (unfold Upper_def) blast
  | 
| 
 | 
    79  | 
  | 
| 
14651
 | 
    80  | 
  | 
| 
 | 
    81  | 
subsubsection {* Lower *}
 | 
| 
14551
 | 
    82  | 
  | 
| 
 | 
    83  | 
lemma Lower_closed [intro, simp]:
  | 
| 
 | 
    84  | 
  "Lower L A \<subseteq> carrier L"
  | 
| 
 | 
    85  | 
  by (unfold Lower_def) clarify
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
lemma LowerD [dest]:
  | 
| 
14693
 | 
    88  | 
  includes struct L
  | 
| 
14551
 | 
    89  | 
  shows "[| l \<in> Lower L A; x \<in> A; A \<subseteq> carrier L |] ==> l \<sqsubseteq> x"
  | 
| 
14693
 | 
    90  | 
  by (unfold Lower_def) blast
  | 
| 
14551
 | 
    91  | 
  | 
| 
 | 
    92  | 
lemma Lower_memI:
  | 
| 
14693
 | 
    93  | 
  includes struct L
  | 
| 
14551
 | 
    94  | 
  shows "[| !! y. y \<in> A ==> x \<sqsubseteq> y; x \<in> carrier L |] ==> x \<in> Lower L A"
  | 
| 
14693
 | 
    95  | 
  by (unfold Lower_def) blast
  | 
| 
14551
 | 
    96  | 
  | 
| 
 | 
    97  | 
lemma Lower_antimono:
  | 
| 
 | 
    98  | 
  "A \<subseteq> B ==> Lower L B \<subseteq> Lower L A"
  | 
| 
 | 
    99  | 
  by (unfold Lower_def) blast
  | 
| 
 | 
   100  | 
  | 
| 
14651
 | 
   101  | 
  | 
| 
 | 
   102  | 
subsubsection {* least *}
 | 
| 
14551
 | 
   103  | 
  | 
| 
 | 
   104  | 
lemma least_carrier [intro, simp]:
  | 
| 
 | 
   105  | 
  shows "least L l A ==> l \<in> carrier L"
  | 
| 
 | 
   106  | 
  by (unfold least_def) fast
  | 
| 
 | 
   107  | 
  | 
| 
 | 
   108  | 
lemma least_mem:
  | 
| 
 | 
   109  | 
  "least L l A ==> l \<in> A"
  | 
| 
 | 
   110  | 
  by (unfold least_def) fast
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
lemma (in partial_order) least_unique:
  | 
| 
 | 
   113  | 
  "[| least L x A; least L y A |] ==> x = y"
  | 
| 
 | 
   114  | 
  by (unfold least_def) blast
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
lemma least_le:
  | 
| 
14693
 | 
   117  | 
  includes struct L
  | 
| 
14551
 | 
   118  | 
  shows "[| least L x A; a \<in> A |] ==> x \<sqsubseteq> a"
  | 
| 
 | 
   119  | 
  by (unfold least_def) fast
  | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
lemma least_UpperI:
  | 
| 
14693
 | 
   122  | 
  includes struct L
  | 
| 
14551
 | 
   123  | 
  assumes above: "!! x. x \<in> A ==> x \<sqsubseteq> s"
  | 
| 
 | 
   124  | 
    and below: "!! y. y \<in> Upper L A ==> s \<sqsubseteq> y"
  | 
| 
14693
 | 
   125  | 
    and L: "A \<subseteq> carrier L"  "s \<in> carrier L"
  | 
| 
14551
 | 
   126  | 
  shows "least L s (Upper L A)"
  | 
| 
14693
 | 
   127  | 
proof -
  | 
| 
 | 
   128  | 
  have "Upper L A \<subseteq> carrier L" by simp
  | 
| 
 | 
   129  | 
  moreover from above L have "s \<in> Upper L A" by (simp add: Upper_def)
  | 
| 
 | 
   130  | 
  moreover from below have "ALL x : Upper L A. s \<sqsubseteq> x" by fast
  | 
| 
 | 
   131  | 
  ultimately show ?thesis by (simp add: least_def)
  | 
| 
14551
 | 
   132  | 
qed
  | 
| 
 | 
   133  | 
  | 
| 
14651
 | 
   134  | 
  | 
| 
 | 
   135  | 
subsubsection {* greatest *}
 | 
| 
14551
 | 
   136  | 
  | 
| 
 | 
   137  | 
lemma greatest_carrier [intro, simp]:
  | 
| 
 | 
   138  | 
  shows "greatest L l A ==> l \<in> carrier L"
  | 
| 
 | 
   139  | 
  by (unfold greatest_def) fast
  | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
lemma greatest_mem:
  | 
| 
 | 
   142  | 
  "greatest L l A ==> l \<in> A"
  | 
| 
 | 
   143  | 
  by (unfold greatest_def) fast
  | 
| 
 | 
   144  | 
  | 
| 
 | 
   145  | 
lemma (in partial_order) greatest_unique:
  | 
| 
 | 
   146  | 
  "[| greatest L x A; greatest L y A |] ==> x = y"
  | 
| 
 | 
   147  | 
  by (unfold greatest_def) blast
  | 
| 
 | 
   148  | 
  | 
| 
 | 
   149  | 
lemma greatest_le:
  | 
| 
14693
 | 
   150  | 
  includes struct L
  | 
| 
14551
 | 
   151  | 
  shows "[| greatest L x A; a \<in> A |] ==> a \<sqsubseteq> x"
  | 
| 
 | 
   152  | 
  by (unfold greatest_def) fast
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
lemma greatest_LowerI:
  | 
| 
14693
 | 
   155  | 
  includes struct L
  | 
| 
14551
 | 
   156  | 
  assumes below: "!! x. x \<in> A ==> i \<sqsubseteq> x"
  | 
| 
 | 
   157  | 
    and above: "!! y. y \<in> Lower L A ==> y \<sqsubseteq> i"
  | 
| 
14693
 | 
   158  | 
    and L: "A \<subseteq> carrier L"  "i \<in> carrier L"
  | 
| 
14551
 | 
   159  | 
  shows "greatest L i (Lower L A)"
  | 
| 
14693
 | 
   160  | 
proof -
  | 
| 
 | 
   161  | 
  have "Lower L A \<subseteq> carrier L" by simp
  | 
| 
 | 
   162  | 
  moreover from below L have "i \<in> Lower L A" by (simp add: Lower_def)
  | 
| 
 | 
   163  | 
  moreover from above have "ALL x : Lower L A. x \<sqsubseteq> i" by fast
  | 
| 
 | 
   164  | 
  ultimately show ?thesis by (simp add: greatest_def)
  | 
| 
14551
 | 
   165  | 
qed
  | 
| 
 | 
   166  | 
  | 
| 
14693
 | 
   167  | 
  | 
| 
14551
 | 
   168  | 
subsection {* Lattices *}
 | 
| 
 | 
   169  | 
  | 
| 
 | 
   170  | 
locale lattice = partial_order +
  | 
| 
 | 
   171  | 
  assumes sup_of_two_exists:
  | 
| 
 | 
   172  | 
    "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. least L s (Upper L {x, y})"
 | 
| 
 | 
   173  | 
    and inf_of_two_exists:
  | 
| 
 | 
   174  | 
    "[| x \<in> carrier L; y \<in> carrier L |] ==> EX s. greatest L s (Lower L {x, y})"
 | 
| 
 | 
   175  | 
  | 
| 
 | 
   176  | 
lemma least_Upper_above:
  | 
| 
14693
 | 
   177  | 
  includes struct L
  | 
| 
14551
 | 
   178  | 
  shows "[| least L s (Upper L A); x \<in> A; A \<subseteq> carrier L |] ==> x \<sqsubseteq> s"
  | 
| 
 | 
   179  | 
  by (unfold least_def) blast
  | 
| 
 | 
   180  | 
  | 
| 
 | 
   181  | 
lemma greatest_Lower_above:
  | 
| 
14693
 | 
   182  | 
  includes struct L
  | 
| 
14551
 | 
   183  | 
  shows "[| greatest L i (Lower L A); x \<in> A; A \<subseteq> carrier L |] ==> i \<sqsubseteq> x"
  | 
| 
 | 
   184  | 
  by (unfold greatest_def) blast
  | 
| 
 | 
   185  | 
  | 
| 
14666
 | 
   186  | 
  | 
| 
14551
 | 
   187  | 
subsubsection {* Supremum *}
 | 
| 
 | 
   188  | 
  | 
| 
 | 
   189  | 
lemma (in lattice) joinI:
  | 
| 
 | 
   190  | 
  "[| !!l. least L l (Upper L {x, y}) ==> P l; x \<in> carrier L; y \<in> carrier L |]
 | 
| 
 | 
   191  | 
  ==> P (x \<squnion> y)"
  | 
| 
 | 
   192  | 
proof (unfold join_def sup_def)
  | 
| 
14693
 | 
   193  | 
  assume L: "x \<in> carrier L"  "y \<in> carrier L"
  | 
| 
14551
 | 
   194  | 
    and P: "!!l. least L l (Upper L {x, y}) ==> P l"
 | 
| 
 | 
   195  | 
  with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
 | 
| 
 | 
   196  | 
  with L show "P (THE l. least L l (Upper L {x, y}))"
 | 
| 
14693
 | 
   197  | 
    by (fast intro: theI2 least_unique P)
  | 
| 
14551
 | 
   198  | 
qed
  | 
| 
 | 
   199  | 
  | 
| 
 | 
   200  | 
lemma (in lattice) join_closed [simp]:
  | 
| 
 | 
   201  | 
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<squnion> y \<in> carrier L"
  | 
| 
 | 
   202  | 
  by (rule joinI) (rule least_carrier)
  | 
| 
 | 
   203  | 
  | 
| 
14651
 | 
   204  | 
lemma (in partial_order) sup_of_singletonI:      (* only reflexivity needed ? *)
  | 
| 
14551
 | 
   205  | 
  "x \<in> carrier L ==> least L x (Upper L {x})"
 | 
| 
 | 
   206  | 
  by (rule least_UpperI) fast+
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
lemma (in partial_order) sup_of_singleton [simp]:
  | 
| 
14693
 | 
   209  | 
  includes struct L
  | 
| 
 | 
   210  | 
  shows "x \<in> carrier L ==> \<Squnion>{x} = x"
 | 
| 
14551
 | 
   211  | 
  by (unfold sup_def) (blast intro: least_unique least_UpperI sup_of_singletonI)
  | 
| 
 | 
   212  | 
  | 
| 
14666
 | 
   213  | 
  | 
| 
 | 
   214  | 
text {* Condition on @{text A}: supremum exists. *}
 | 
| 
14551
 | 
   215  | 
  | 
| 
 | 
   216  | 
lemma (in lattice) sup_insertI:
  | 
| 
 | 
   217  | 
  "[| !!s. least L s (Upper L (insert x A)) ==> P s;
  | 
| 
 | 
   218  | 
  least L a (Upper L A); x \<in> carrier L; A \<subseteq> carrier L |]
  | 
| 
14693
 | 
   219  | 
  ==> P (\<Squnion>(insert x A))"
  | 
| 
14551
 | 
   220  | 
proof (unfold sup_def)
  | 
| 
14693
 | 
   221  | 
  assume L: "x \<in> carrier L"  "A \<subseteq> carrier L"
  | 
| 
14551
 | 
   222  | 
    and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
  | 
| 
 | 
   223  | 
    and least_a: "least L a (Upper L A)"
  | 
| 
 | 
   224  | 
  from L least_a have La: "a \<in> carrier L" by simp
  | 
| 
 | 
   225  | 
  from L sup_of_two_exists least_a
  | 
| 
 | 
   226  | 
  obtain s where least_s: "least L s (Upper L {a, x})" by blast
 | 
| 
 | 
   227  | 
  show "P (THE l. least L l (Upper L (insert x A)))"
  | 
| 
14693
 | 
   228  | 
  proof (rule theI2)
  | 
| 
14551
 | 
   229  | 
    show "least L s (Upper L (insert x A))"
  | 
| 
 | 
   230  | 
    proof (rule least_UpperI)
  | 
| 
 | 
   231  | 
      fix z
  | 
| 
14693
 | 
   232  | 
      assume "z \<in> insert x A"
  | 
| 
 | 
   233  | 
      then show "z \<sqsubseteq> s"
  | 
| 
 | 
   234  | 
      proof
  | 
| 
 | 
   235  | 
        assume "z = x" then show ?thesis
  | 
| 
 | 
   236  | 
          by (simp add: least_Upper_above [OF least_s] L La)
  | 
| 
 | 
   237  | 
      next
  | 
| 
 | 
   238  | 
        assume "z \<in> A"
  | 
| 
 | 
   239  | 
        with L least_s least_a show ?thesis
  | 
| 
 | 
   240  | 
          by (rule_tac trans [where y = a]) (auto dest: least_Upper_above)
  | 
| 
 | 
   241  | 
      qed
  | 
| 
 | 
   242  | 
    next
  | 
| 
 | 
   243  | 
      fix y
  | 
| 
 | 
   244  | 
      assume y: "y \<in> Upper L (insert x A)"
  | 
| 
 | 
   245  | 
      show "s \<sqsubseteq> y"
  | 
| 
 | 
   246  | 
      proof (rule least_le [OF least_s], rule Upper_memI)
  | 
| 
 | 
   247  | 
	fix z
  | 
| 
 | 
   248  | 
	assume z: "z \<in> {a, x}"
 | 
| 
 | 
   249  | 
	then show "z \<sqsubseteq> y"
  | 
| 
 | 
   250  | 
	proof
  | 
| 
 | 
   251  | 
          have y': "y \<in> Upper L A"
  | 
| 
 | 
   252  | 
            apply (rule subsetD [where A = "Upper L (insert x A)"])
  | 
| 
 | 
   253  | 
            apply (rule Upper_antimono) apply clarify apply assumption
  | 
| 
 | 
   254  | 
            done
  | 
| 
 | 
   255  | 
          assume "z = a"
  | 
| 
 | 
   256  | 
          with y' least_a show ?thesis by (fast dest: least_le)
  | 
| 
 | 
   257  | 
	next
  | 
| 
 | 
   258  | 
	  assume "z \<in> {x}"  (* FIXME "z = x"; declare specific elim rule for "insert x {}" (!?) *)
 | 
| 
 | 
   259  | 
          with y L show ?thesis by blast
  | 
| 
 | 
   260  | 
	qed
  | 
| 
 | 
   261  | 
      qed (rule Upper_closed [THEN subsetD])
  | 
| 
 | 
   262  | 
    next
  | 
| 
 | 
   263  | 
      from L show "insert x A \<subseteq> carrier L" by simp
  | 
| 
 | 
   264  | 
      from least_s show "s \<in> carrier L" by simp
  | 
| 
14551
 | 
   265  | 
    qed
  | 
| 
 | 
   266  | 
  next
  | 
| 
 | 
   267  | 
    fix l
  | 
| 
 | 
   268  | 
    assume least_l: "least L l (Upper L (insert x A))"
  | 
| 
 | 
   269  | 
    show "l = s"
  | 
| 
 | 
   270  | 
    proof (rule least_unique)
  | 
| 
 | 
   271  | 
      show "least L s (Upper L (insert x A))"
  | 
| 
 | 
   272  | 
      proof (rule least_UpperI)
  | 
| 
14693
 | 
   273  | 
        fix z
  | 
| 
 | 
   274  | 
        assume "z \<in> insert x A"
  | 
| 
 | 
   275  | 
        then show "z \<sqsubseteq> s"
  | 
| 
 | 
   276  | 
	proof
  | 
| 
 | 
   277  | 
          assume "z = x" then show ?thesis
  | 
| 
 | 
   278  | 
            by (simp add: least_Upper_above [OF least_s] L La)
  | 
| 
 | 
   279  | 
	next
  | 
| 
 | 
   280  | 
          assume "z \<in> A"
  | 
| 
 | 
   281  | 
          with L least_s least_a show ?thesis
  | 
| 
 | 
   282  | 
            by (rule_tac trans [where y = a]) (auto dest: least_Upper_above)
  | 
| 
14551
 | 
   283  | 
	qed
  | 
| 
 | 
   284  | 
      next
  | 
| 
14693
 | 
   285  | 
        fix y
  | 
| 
 | 
   286  | 
        assume y: "y \<in> Upper L (insert x A)"
  | 
| 
 | 
   287  | 
        show "s \<sqsubseteq> y"
  | 
| 
 | 
   288  | 
        proof (rule least_le [OF least_s], rule Upper_memI)
  | 
| 
 | 
   289  | 
          fix z
  | 
| 
 | 
   290  | 
          assume z: "z \<in> {a, x}"
 | 
| 
 | 
   291  | 
          then show "z \<sqsubseteq> y"
  | 
| 
 | 
   292  | 
          proof
  | 
| 
 | 
   293  | 
            have y': "y \<in> Upper L A"
  | 
| 
 | 
   294  | 
	      apply (rule subsetD [where A = "Upper L (insert x A)"])
  | 
| 
 | 
   295  | 
	      apply (rule Upper_antimono) apply clarify apply assumption
  | 
| 
 | 
   296  | 
	      done
  | 
| 
 | 
   297  | 
            assume "z = a"
  | 
| 
 | 
   298  | 
            with y' least_a show ?thesis by (fast dest: least_le)
  | 
| 
 | 
   299  | 
	  next
  | 
| 
 | 
   300  | 
            assume "z \<in> {x}"
 | 
| 
 | 
   301  | 
            with y L show ?thesis by blast
  | 
| 
 | 
   302  | 
          qed
  | 
| 
 | 
   303  | 
        qed (rule Upper_closed [THEN subsetD])
  | 
| 
14551
 | 
   304  | 
      next
  | 
| 
14693
 | 
   305  | 
        from L show "insert x A \<subseteq> carrier L" by simp
  | 
| 
 | 
   306  | 
        from least_s show "s \<in> carrier L" by simp
  | 
| 
14551
 | 
   307  | 
      qed
  | 
| 
 | 
   308  | 
    qed
  | 
| 
 | 
   309  | 
  qed
  | 
| 
 | 
   310  | 
qed
  | 
| 
 | 
   311  | 
  | 
| 
 | 
   312  | 
lemma (in lattice) finite_sup_least:
  | 
| 
14693
 | 
   313  | 
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> least L (\<Squnion>A) (Upper L A)"
 | 
| 
14551
 | 
   314  | 
proof (induct set: Finites)
  | 
| 
14693
 | 
   315  | 
  case empty
  | 
| 
 | 
   316  | 
  then show ?case by simp
  | 
| 
14551
 | 
   317  | 
next
  | 
| 
 | 
   318  | 
  case (insert A x)
  | 
| 
 | 
   319  | 
  show ?case
  | 
| 
 | 
   320  | 
  proof (cases "A = {}")
 | 
| 
 | 
   321  | 
    case True
  | 
| 
 | 
   322  | 
    with insert show ?thesis by (simp add: sup_of_singletonI)
  | 
| 
 | 
   323  | 
  next
  | 
| 
 | 
   324  | 
    case False
  | 
| 
14693
 | 
   325  | 
    with insert have "least L (\<Squnion>A) (Upper L A)" by simp
  | 
| 
 | 
   326  | 
    with _ show ?thesis
  | 
| 
 | 
   327  | 
      by (rule sup_insertI) (simp_all add: insert [simplified])
  | 
| 
14551
 | 
   328  | 
  qed
  | 
| 
 | 
   329  | 
qed
  | 
| 
 | 
   330  | 
  | 
| 
 | 
   331  | 
lemma (in lattice) finite_sup_insertI:
  | 
| 
 | 
   332  | 
  assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"
  | 
| 
14693
 | 
   333  | 
    and xA: "finite A"  "x \<in> carrier L"  "A \<subseteq> carrier L"
  | 
| 
14551
 | 
   334  | 
  shows "P (\<Squnion> (insert x A))"
  | 
| 
 | 
   335  | 
proof (cases "A = {}")
 | 
| 
 | 
   336  | 
  case True with P and xA show ?thesis
  | 
| 
 | 
   337  | 
    by (simp add: sup_of_singletonI)
  | 
| 
 | 
   338  | 
next
  | 
| 
 | 
   339  | 
  case False with P and xA show ?thesis
  | 
| 
 | 
   340  | 
    by (simp add: sup_insertI finite_sup_least)
  | 
| 
 | 
   341  | 
qed
  | 
| 
 | 
   342  | 
  | 
| 
 | 
   343  | 
lemma (in lattice) finite_sup_closed:
  | 
| 
14693
 | 
   344  | 
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Squnion>A \<in> carrier L"
 | 
| 
14551
 | 
   345  | 
proof (induct set: Finites)
  | 
| 
 | 
   346  | 
  case empty then show ?case by simp
  | 
| 
 | 
   347  | 
next
  | 
| 
 | 
   348  | 
  case (insert A x) then show ?case
  | 
| 
14693
 | 
   349  | 
    by - (rule finite_sup_insertI, simp_all)
  | 
| 
14551
 | 
   350  | 
qed
  | 
| 
 | 
   351  | 
  | 
| 
 | 
   352  | 
lemma (in lattice) join_left:
  | 
| 
 | 
   353  | 
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> x \<squnion> y"
  | 
| 
14693
 | 
   354  | 
  by (rule joinI [folded join_def]) (blast dest: least_mem)
  | 
| 
14551
 | 
   355  | 
  | 
| 
 | 
   356  | 
lemma (in lattice) join_right:
  | 
| 
 | 
   357  | 
  "[| x \<in> carrier L; y \<in> carrier L |] ==> y \<sqsubseteq> x \<squnion> y"
  | 
| 
14693
 | 
   358  | 
  by (rule joinI [folded join_def]) (blast dest: least_mem)
  | 
| 
14551
 | 
   359  | 
  | 
| 
 | 
   360  | 
lemma (in lattice) sup_of_two_least:
  | 
| 
14693
 | 
   361  | 
  "[| x \<in> carrier L; y \<in> carrier L |] ==> least L (\<Squnion>{x, y}) (Upper L {x, y})"
 | 
| 
14551
 | 
   362  | 
proof (unfold sup_def)
  | 
| 
14693
 | 
   363  | 
  assume L: "x \<in> carrier L"  "y \<in> carrier L"
  | 
| 
14551
 | 
   364  | 
  with sup_of_two_exists obtain s where "least L s (Upper L {x, y})" by fast
 | 
| 
 | 
   365  | 
  with L show "least L (THE xa. least L xa (Upper L {x, y})) (Upper L {x, y})"
 | 
| 
 | 
   366  | 
  by (fast intro: theI2 least_unique)  (* blast fails *)
  | 
| 
 | 
   367  | 
qed
  | 
| 
 | 
   368  | 
  | 
| 
 | 
   369  | 
lemma (in lattice) join_le:
  | 
| 
14693
 | 
   370  | 
  assumes sub: "x \<sqsubseteq> z"  "y \<sqsubseteq> z"
  | 
| 
 | 
   371  | 
    and L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
  | 
| 
14551
 | 
   372  | 
  shows "x \<squnion> y \<sqsubseteq> z"
  | 
| 
 | 
   373  | 
proof (rule joinI)
  | 
| 
 | 
   374  | 
  fix s
  | 
| 
 | 
   375  | 
  assume "least L s (Upper L {x, y})"
 | 
| 
 | 
   376  | 
  with sub L show "s \<sqsubseteq> z" by (fast elim: least_le intro: Upper_memI)
  | 
| 
 | 
   377  | 
qed
  | 
| 
14693
 | 
   378  | 
  | 
| 
14551
 | 
   379  | 
lemma (in lattice) join_assoc_lemma:
  | 
| 
14693
 | 
   380  | 
  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
  | 
| 
 | 
   381  | 
  shows "x \<squnion> (y \<squnion> z) = \<Squnion>{x, y, z}"
 | 
| 
14551
 | 
   382  | 
proof (rule finite_sup_insertI)
  | 
| 
14651
 | 
   383  | 
  -- {* The textbook argument in Jacobson I, p 457 *}
 | 
| 
14551
 | 
   384  | 
  fix s
  | 
| 
 | 
   385  | 
  assume sup: "least L s (Upper L {x, y, z})"
 | 
| 
 | 
   386  | 
  show "x \<squnion> (y \<squnion> z) = s"
  | 
| 
 | 
   387  | 
  proof (rule anti_sym)
  | 
| 
 | 
   388  | 
    from sup L show "x \<squnion> (y \<squnion> z) \<sqsubseteq> s"
  | 
| 
 | 
   389  | 
      by (fastsimp intro!: join_le elim: least_Upper_above)
  | 
| 
 | 
   390  | 
  next
  | 
| 
 | 
   391  | 
    from sup L show "s \<sqsubseteq> x \<squnion> (y \<squnion> z)"
  | 
| 
 | 
   392  | 
    by (erule_tac least_le)
  | 
| 
 | 
   393  | 
      (blast intro!: Upper_memI intro: trans join_left join_right join_closed)
  | 
| 
 | 
   394  | 
  qed (simp_all add: L least_carrier [OF sup])
  | 
| 
 | 
   395  | 
qed (simp_all add: L)
  | 
| 
 | 
   396  | 
  | 
| 
 | 
   397  | 
lemma join_comm:
  | 
| 
14693
 | 
   398  | 
  includes struct L
  | 
| 
14551
 | 
   399  | 
  shows "x \<squnion> y = y \<squnion> x"
  | 
| 
 | 
   400  | 
  by (unfold join_def) (simp add: insert_commute)
  | 
| 
 | 
   401  | 
  | 
| 
 | 
   402  | 
lemma (in lattice) join_assoc:
  | 
| 
14693
 | 
   403  | 
  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
  | 
| 
14551
 | 
   404  | 
  shows "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)"
  | 
| 
 | 
   405  | 
proof -
  | 
| 
 | 
   406  | 
  have "(x \<squnion> y) \<squnion> z = z \<squnion> (x \<squnion> y)" by (simp only: join_comm)
  | 
| 
14693
 | 
   407  | 
  also from L have "... = \<Squnion>{z, x, y}" by (simp add: join_assoc_lemma)
 | 
| 
 | 
   408  | 
  also from L have "... = \<Squnion>{x, y, z}" by (simp add: insert_commute)
 | 
| 
14551
 | 
   409  | 
  also from L have "... = x \<squnion> (y \<squnion> z)" by (simp add: join_assoc_lemma)
  | 
| 
 | 
   410  | 
  finally show ?thesis .
  | 
| 
 | 
   411  | 
qed
  | 
| 
 | 
   412  | 
  | 
| 
14693
 | 
   413  | 
  | 
| 
14551
 | 
   414  | 
subsubsection {* Infimum *}
 | 
| 
 | 
   415  | 
  | 
| 
 | 
   416  | 
lemma (in lattice) meetI:
  | 
| 
 | 
   417  | 
  "[| !!i. greatest L i (Lower L {x, y}) ==> P i;
 | 
| 
 | 
   418  | 
  x \<in> carrier L; y \<in> carrier L |]
  | 
| 
 | 
   419  | 
  ==> P (x \<sqinter> y)"
  | 
| 
 | 
   420  | 
proof (unfold meet_def inf_def)
  | 
| 
14693
 | 
   421  | 
  assume L: "x \<in> carrier L"  "y \<in> carrier L"
  | 
| 
14551
 | 
   422  | 
    and P: "!!g. greatest L g (Lower L {x, y}) ==> P g"
 | 
| 
 | 
   423  | 
  with inf_of_two_exists obtain i where "greatest L i (Lower L {x, y})" by fast
 | 
| 
 | 
   424  | 
  with L show "P (THE g. greatest L g (Lower L {x, y}))"
 | 
| 
 | 
   425  | 
  by (fast intro: theI2 greatest_unique P)
  | 
| 
 | 
   426  | 
qed
  | 
| 
 | 
   427  | 
  | 
| 
 | 
   428  | 
lemma (in lattice) meet_closed [simp]:
  | 
| 
 | 
   429  | 
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<in> carrier L"
  | 
| 
 | 
   430  | 
  by (rule meetI) (rule greatest_carrier)
  | 
| 
 | 
   431  | 
  | 
| 
14651
 | 
   432  | 
lemma (in partial_order) inf_of_singletonI:      (* only reflexivity needed ? *)
  | 
| 
14551
 | 
   433  | 
  "x \<in> carrier L ==> greatest L x (Lower L {x})"
 | 
| 
 | 
   434  | 
  by (rule greatest_LowerI) fast+
  | 
| 
 | 
   435  | 
  | 
| 
 | 
   436  | 
lemma (in partial_order) inf_of_singleton [simp]:
  | 
| 
14693
 | 
   437  | 
  includes struct L
  | 
| 
14551
 | 
   438  | 
  shows "x \<in> carrier L ==> \<Sqinter> {x} = x"
 | 
| 
 | 
   439  | 
  by (unfold inf_def) (blast intro: greatest_unique greatest_LowerI inf_of_singletonI)
  | 
| 
 | 
   440  | 
  | 
| 
 | 
   441  | 
text {* Condition on A: infimum exists. *}
 | 
| 
 | 
   442  | 
  | 
| 
 | 
   443  | 
lemma (in lattice) inf_insertI:
  | 
| 
 | 
   444  | 
  "[| !!i. greatest L i (Lower L (insert x A)) ==> P i;
  | 
| 
 | 
   445  | 
  greatest L a (Lower L A); x \<in> carrier L; A \<subseteq> carrier L |]
  | 
| 
14693
 | 
   446  | 
  ==> P (\<Sqinter>(insert x A))"
  | 
| 
14551
 | 
   447  | 
proof (unfold inf_def)
  | 
| 
14693
 | 
   448  | 
  assume L: "x \<in> carrier L"  "A \<subseteq> carrier L"
  | 
| 
14551
 | 
   449  | 
    and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
  | 
| 
 | 
   450  | 
    and greatest_a: "greatest L a (Lower L A)"
  | 
| 
 | 
   451  | 
  from L greatest_a have La: "a \<in> carrier L" by simp
  | 
| 
 | 
   452  | 
  from L inf_of_two_exists greatest_a
  | 
| 
 | 
   453  | 
  obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
 | 
| 
 | 
   454  | 
  show "P (THE g. greatest L g (Lower L (insert x A)))"
  | 
| 
14693
 | 
   455  | 
  proof (rule theI2)
  | 
| 
14551
 | 
   456  | 
    show "greatest L i (Lower L (insert x A))"
  | 
| 
 | 
   457  | 
    proof (rule greatest_LowerI)
  | 
| 
 | 
   458  | 
      fix z
  | 
| 
14693
 | 
   459  | 
      assume "z \<in> insert x A"
  | 
| 
 | 
   460  | 
      then show "i \<sqsubseteq> z"
  | 
| 
 | 
   461  | 
      proof
  | 
| 
 | 
   462  | 
        assume "z = x" then show ?thesis
  | 
| 
 | 
   463  | 
          by (simp add: greatest_Lower_above [OF greatest_i] L La)
  | 
| 
 | 
   464  | 
      next
  | 
| 
 | 
   465  | 
        assume "z \<in> A"
  | 
| 
 | 
   466  | 
        with L greatest_i greatest_a show ?thesis
  | 
| 
 | 
   467  | 
          by (rule_tac trans [where y = a]) (auto dest: greatest_Lower_above)
  | 
| 
 | 
   468  | 
      qed
  | 
| 
 | 
   469  | 
    next
  | 
| 
 | 
   470  | 
      fix y
  | 
| 
 | 
   471  | 
      assume y: "y \<in> Lower L (insert x A)"
  | 
| 
 | 
   472  | 
      show "y \<sqsubseteq> i"
  | 
| 
 | 
   473  | 
      proof (rule greatest_le [OF greatest_i], rule Lower_memI)
  | 
| 
 | 
   474  | 
	fix z
  | 
| 
 | 
   475  | 
	assume z: "z \<in> {a, x}"
 | 
| 
 | 
   476  | 
	then show "y \<sqsubseteq> z"
  | 
| 
 | 
   477  | 
	proof
  | 
| 
 | 
   478  | 
          have y': "y \<in> Lower L A"
  | 
| 
 | 
   479  | 
            apply (rule subsetD [where A = "Lower L (insert x A)"])
  | 
| 
 | 
   480  | 
            apply (rule Lower_antimono) apply clarify apply assumption
  | 
| 
 | 
   481  | 
            done
  | 
| 
 | 
   482  | 
          assume "z = a"
  | 
| 
 | 
   483  | 
          with y' greatest_a show ?thesis by (fast dest: greatest_le)
  | 
| 
 | 
   484  | 
	next
  | 
| 
 | 
   485  | 
          assume "z \<in> {x}"
 | 
| 
 | 
   486  | 
          with y L show ?thesis by blast
  | 
| 
 | 
   487  | 
	qed
  | 
| 
 | 
   488  | 
      qed (rule Lower_closed [THEN subsetD])
  | 
| 
 | 
   489  | 
    next
  | 
| 
 | 
   490  | 
      from L show "insert x A \<subseteq> carrier L" by simp
  | 
| 
 | 
   491  | 
      from greatest_i show "i \<in> carrier L" by simp
  | 
| 
14551
 | 
   492  | 
    qed
  | 
| 
 | 
   493  | 
  next
  | 
| 
 | 
   494  | 
    fix g
  | 
| 
 | 
   495  | 
    assume greatest_g: "greatest L g (Lower L (insert x A))"
  | 
| 
 | 
   496  | 
    show "g = i"
  | 
| 
 | 
   497  | 
    proof (rule greatest_unique)
  | 
| 
 | 
   498  | 
      show "greatest L i (Lower L (insert x A))"
  | 
| 
 | 
   499  | 
      proof (rule greatest_LowerI)
  | 
| 
14693
 | 
   500  | 
        fix z
  | 
| 
 | 
   501  | 
        assume "z \<in> insert x A"
  | 
| 
 | 
   502  | 
        then show "i \<sqsubseteq> z"
  | 
| 
 | 
   503  | 
	proof
  | 
| 
 | 
   504  | 
          assume "z = x" then show ?thesis
  | 
| 
 | 
   505  | 
            by (simp add: greatest_Lower_above [OF greatest_i] L La)
  | 
| 
 | 
   506  | 
	next
  | 
| 
 | 
   507  | 
          assume "z \<in> A"
  | 
| 
 | 
   508  | 
          with L greatest_i greatest_a show ?thesis
  | 
| 
 | 
   509  | 
            by (rule_tac trans [where y = a]) (auto dest: greatest_Lower_above)
  | 
| 
 | 
   510  | 
        qed
  | 
| 
14551
 | 
   511  | 
      next
  | 
| 
14693
 | 
   512  | 
        fix y
  | 
| 
 | 
   513  | 
        assume y: "y \<in> Lower L (insert x A)"
  | 
| 
 | 
   514  | 
        show "y \<sqsubseteq> i"
  | 
| 
 | 
   515  | 
        proof (rule greatest_le [OF greatest_i], rule Lower_memI)
  | 
| 
 | 
   516  | 
          fix z
  | 
| 
 | 
   517  | 
          assume z: "z \<in> {a, x}"
 | 
| 
 | 
   518  | 
          then show "y \<sqsubseteq> z"
  | 
| 
 | 
   519  | 
          proof
  | 
| 
 | 
   520  | 
            have y': "y \<in> Lower L A"
  | 
| 
 | 
   521  | 
	      apply (rule subsetD [where A = "Lower L (insert x A)"])
  | 
| 
 | 
   522  | 
	      apply (rule Lower_antimono) apply clarify apply assumption
  | 
| 
 | 
   523  | 
	      done
  | 
| 
 | 
   524  | 
            assume "z = a"
  | 
| 
 | 
   525  | 
            with y' greatest_a show ?thesis by (fast dest: greatest_le)
  | 
| 
 | 
   526  | 
	  next
  | 
| 
 | 
   527  | 
            assume "z \<in> {x}"
 | 
| 
 | 
   528  | 
            with y L show ?thesis by blast
  | 
| 
14551
 | 
   529  | 
	  qed
  | 
| 
14693
 | 
   530  | 
        qed (rule Lower_closed [THEN subsetD])
  | 
| 
14551
 | 
   531  | 
      next
  | 
| 
14693
 | 
   532  | 
        from L show "insert x A \<subseteq> carrier L" by simp
  | 
| 
 | 
   533  | 
        from greatest_i show "i \<in> carrier L" by simp
  | 
| 
14551
 | 
   534  | 
      qed
  | 
| 
 | 
   535  | 
    qed
  | 
| 
 | 
   536  | 
  qed
  | 
| 
 | 
   537  | 
qed
  | 
| 
 | 
   538  | 
  | 
| 
 | 
   539  | 
lemma (in lattice) finite_inf_greatest:
  | 
| 
14693
 | 
   540  | 
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> greatest L (\<Sqinter>A) (Lower L A)"
 | 
| 
14551
 | 
   541  | 
proof (induct set: Finites)
  | 
| 
 | 
   542  | 
  case empty then show ?case by simp
  | 
| 
 | 
   543  | 
next
  | 
| 
 | 
   544  | 
  case (insert A x)
  | 
| 
 | 
   545  | 
  show ?case
  | 
| 
 | 
   546  | 
  proof (cases "A = {}")
 | 
| 
 | 
   547  | 
    case True
  | 
| 
 | 
   548  | 
    with insert show ?thesis by (simp add: inf_of_singletonI)
  | 
| 
 | 
   549  | 
  next
  | 
| 
 | 
   550  | 
    case False
  | 
| 
 | 
   551  | 
    from insert show ?thesis
  | 
| 
 | 
   552  | 
    proof (rule_tac inf_insertI)
  | 
| 
14693
 | 
   553  | 
      from False insert show "greatest L (\<Sqinter>A) (Lower L A)" by simp
  | 
| 
14551
 | 
   554  | 
    qed simp_all
  | 
| 
 | 
   555  | 
  qed
  | 
| 
 | 
   556  | 
qed
  | 
| 
 | 
   557  | 
  | 
| 
 | 
   558  | 
lemma (in lattice) finite_inf_insertI:
  | 
| 
 | 
   559  | 
  assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"
  | 
| 
14693
 | 
   560  | 
    and xA: "finite A"  "x \<in> carrier L"  "A \<subseteq> carrier L"
  | 
| 
14551
 | 
   561  | 
  shows "P (\<Sqinter> (insert x A))"
  | 
| 
 | 
   562  | 
proof (cases "A = {}")
 | 
| 
 | 
   563  | 
  case True with P and xA show ?thesis
  | 
| 
 | 
   564  | 
    by (simp add: inf_of_singletonI)
  | 
| 
 | 
   565  | 
next
  | 
| 
 | 
   566  | 
  case False with P and xA show ?thesis
  | 
| 
 | 
   567  | 
    by (simp add: inf_insertI finite_inf_greatest)
  | 
| 
 | 
   568  | 
qed
  | 
| 
 | 
   569  | 
  | 
| 
 | 
   570  | 
lemma (in lattice) finite_inf_closed:
  | 
| 
14693
 | 
   571  | 
  "[| finite A; A \<subseteq> carrier L; A ~= {} |] ==> \<Sqinter>A \<in> carrier L"
 | 
| 
14551
 | 
   572  | 
proof (induct set: Finites)
  | 
| 
 | 
   573  | 
  case empty then show ?case by simp
  | 
| 
 | 
   574  | 
next
  | 
| 
 | 
   575  | 
  case (insert A x) then show ?case
  | 
| 
 | 
   576  | 
    by (rule_tac finite_inf_insertI) (simp_all)
  | 
| 
 | 
   577  | 
qed
  | 
| 
 | 
   578  | 
  | 
| 
 | 
   579  | 
lemma (in lattice) meet_left:
  | 
| 
 | 
   580  | 
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> x"
  | 
| 
14693
 | 
   581  | 
  by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
  | 
| 
14551
 | 
   582  | 
  | 
| 
 | 
   583  | 
lemma (in lattice) meet_right:
  | 
| 
 | 
   584  | 
  "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqinter> y \<sqsubseteq> y"
  | 
| 
14693
 | 
   585  | 
  by (rule meetI [folded meet_def]) (blast dest: greatest_mem)
  | 
| 
14551
 | 
   586  | 
  | 
| 
 | 
   587  | 
lemma (in lattice) inf_of_two_greatest:
  | 
| 
 | 
   588  | 
  "[| x \<in> carrier L; y \<in> carrier L |] ==>
  | 
| 
 | 
   589  | 
  greatest L (\<Sqinter> {x, y}) (Lower L {x, y})"
 | 
| 
 | 
   590  | 
proof (unfold inf_def)
  | 
| 
14693
 | 
   591  | 
  assume L: "x \<in> carrier L"  "y \<in> carrier L"
  | 
| 
14551
 | 
   592  | 
  with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})" by fast
 | 
| 
 | 
   593  | 
  with L
  | 
| 
 | 
   594  | 
  show "greatest L (THE xa. greatest L xa (Lower L {x, y})) (Lower L {x, y})"
 | 
| 
 | 
   595  | 
  by (fast intro: theI2 greatest_unique)  (* blast fails *)
  | 
| 
 | 
   596  | 
qed
  | 
| 
 | 
   597  | 
  | 
| 
 | 
   598  | 
lemma (in lattice) meet_le:
  | 
| 
14693
 | 
   599  | 
  assumes sub: "z \<sqsubseteq> x"  "z \<sqsubseteq> y"
  | 
| 
 | 
   600  | 
    and L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
  | 
| 
14551
 | 
   601  | 
  shows "z \<sqsubseteq> x \<sqinter> y"
  | 
| 
 | 
   602  | 
proof (rule meetI)
  | 
| 
 | 
   603  | 
  fix i
  | 
| 
 | 
   604  | 
  assume "greatest L i (Lower L {x, y})"
 | 
| 
 | 
   605  | 
  with sub L show "z \<sqsubseteq> i" by (fast elim: greatest_le intro: Lower_memI)
  | 
| 
 | 
   606  | 
qed
  | 
| 
14693
 | 
   607  | 
  | 
| 
14551
 | 
   608  | 
lemma (in lattice) meet_assoc_lemma:
  | 
| 
14693
 | 
   609  | 
  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
  | 
| 
 | 
   610  | 
  shows "x \<sqinter> (y \<sqinter> z) = \<Sqinter>{x, y, z}"
 | 
| 
14551
 | 
   611  | 
proof (rule finite_inf_insertI)
  | 
| 
 | 
   612  | 
  txt {* The textbook argument in Jacobson I, p 457 *}
 | 
| 
 | 
   613  | 
  fix i
  | 
| 
 | 
   614  | 
  assume inf: "greatest L i (Lower L {x, y, z})"
 | 
| 
 | 
   615  | 
  show "x \<sqinter> (y \<sqinter> z) = i"
  | 
| 
 | 
   616  | 
  proof (rule anti_sym)
  | 
| 
 | 
   617  | 
    from inf L show "i \<sqsubseteq> x \<sqinter> (y \<sqinter> z)"
  | 
| 
 | 
   618  | 
      by (fastsimp intro!: meet_le elim: greatest_Lower_above)
  | 
| 
 | 
   619  | 
  next
  | 
| 
 | 
   620  | 
    from inf L show "x \<sqinter> (y \<sqinter> z) \<sqsubseteq> i"
  | 
| 
 | 
   621  | 
    by (erule_tac greatest_le)
  | 
| 
 | 
   622  | 
      (blast intro!: Lower_memI intro: trans meet_left meet_right meet_closed)
  | 
| 
 | 
   623  | 
  qed (simp_all add: L greatest_carrier [OF inf])
  | 
| 
 | 
   624  | 
qed (simp_all add: L)
  | 
| 
 | 
   625  | 
  | 
| 
 | 
   626  | 
lemma meet_comm:
  | 
| 
14693
 | 
   627  | 
  includes struct L
  | 
| 
14551
 | 
   628  | 
  shows "x \<sqinter> y = y \<sqinter> x"
  | 
| 
 | 
   629  | 
  by (unfold meet_def) (simp add: insert_commute)
  | 
| 
 | 
   630  | 
  | 
| 
 | 
   631  | 
lemma (in lattice) meet_assoc:
  | 
| 
14693
 | 
   632  | 
  assumes L: "x \<in> carrier L"  "y \<in> carrier L"  "z \<in> carrier L"
  | 
| 
14551
 | 
   633  | 
  shows "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)"
  | 
| 
 | 
   634  | 
proof -
  | 
| 
 | 
   635  | 
  have "(x \<sqinter> y) \<sqinter> z = z \<sqinter> (x \<sqinter> y)" by (simp only: meet_comm)
  | 
| 
 | 
   636  | 
  also from L have "... = \<Sqinter> {z, x, y}" by (simp add: meet_assoc_lemma)
 | 
| 
 | 
   637  | 
  also from L have "... = \<Sqinter> {x, y, z}" by (simp add: insert_commute)
 | 
| 
 | 
   638  | 
  also from L have "... = x \<sqinter> (y \<sqinter> z)" by (simp add: meet_assoc_lemma)
  | 
| 
 | 
   639  | 
  finally show ?thesis .
  | 
| 
 | 
   640  | 
qed
  | 
| 
 | 
   641  | 
  | 
| 
14693
 | 
   642  | 
  | 
| 
14551
 | 
   643  | 
subsection {* Total Orders *}
 | 
| 
 | 
   644  | 
  | 
| 
 | 
   645  | 
locale total_order = lattice +
  | 
| 
 | 
   646  | 
  assumes total: "[| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
  | 
| 
 | 
   647  | 
  | 
| 
 | 
   648  | 
text {* Introduction rule: the usual definition of total order *}
 | 
| 
 | 
   649  | 
  | 
| 
 | 
   650  | 
lemma (in partial_order) total_orderI:
  | 
| 
 | 
   651  | 
  assumes total: "!!x y. [| x \<in> carrier L; y \<in> carrier L |] ==> x \<sqsubseteq> y | y \<sqsubseteq> x"
  | 
| 
 | 
   652  | 
  shows "total_order L"
  | 
| 
 | 
   653  | 
proof (rule total_order.intro)
  | 
| 
 | 
   654  | 
  show "lattice_axioms L"
  | 
| 
 | 
   655  | 
  proof (rule lattice_axioms.intro)
  | 
| 
 | 
   656  | 
    fix x y
  | 
| 
14693
 | 
   657  | 
    assume L: "x \<in> carrier L"  "y \<in> carrier L"
  | 
| 
14551
 | 
   658  | 
    show "EX s. least L s (Upper L {x, y})"
 | 
| 
 | 
   659  | 
    proof -
  | 
| 
 | 
   660  | 
      note total L
  | 
| 
 | 
   661  | 
      moreover
  | 
| 
 | 
   662  | 
      {
 | 
| 
14693
 | 
   663  | 
        assume "x \<sqsubseteq> y"
  | 
| 
14551
 | 
   664  | 
        with L have "least L y (Upper L {x, y})"
 | 
| 
14693
 | 
   665  | 
          by (rule_tac least_UpperI) auto
  | 
| 
14551
 | 
   666  | 
      }
  | 
| 
 | 
   667  | 
      moreover
  | 
| 
 | 
   668  | 
      {
 | 
| 
14693
 | 
   669  | 
        assume "y \<sqsubseteq> x"
  | 
| 
14551
 | 
   670  | 
        with L have "least L x (Upper L {x, y})"
 | 
| 
14693
 | 
   671  | 
          by (rule_tac least_UpperI) auto
  | 
| 
14551
 | 
   672  | 
      }
  | 
| 
 | 
   673  | 
      ultimately show ?thesis by blast
  | 
| 
 | 
   674  | 
    qed
  | 
| 
 | 
   675  | 
  next
  | 
| 
 | 
   676  | 
    fix x y
  | 
| 
14693
 | 
   677  | 
    assume L: "x \<in> carrier L"  "y \<in> carrier L"
  | 
| 
14551
 | 
   678  | 
    show "EX i. greatest L i (Lower L {x, y})"
 | 
| 
 | 
   679  | 
    proof -
  | 
| 
 | 
   680  | 
      note total L
  | 
| 
 | 
   681  | 
      moreover
  | 
| 
 | 
   682  | 
      {
 | 
| 
14693
 | 
   683  | 
        assume "y \<sqsubseteq> x"
  | 
| 
14551
 | 
   684  | 
        with L have "greatest L y (Lower L {x, y})"
 | 
| 
14693
 | 
   685  | 
          by (rule_tac greatest_LowerI) auto
  | 
| 
14551
 | 
   686  | 
      }
  | 
| 
 | 
   687  | 
      moreover
  | 
| 
 | 
   688  | 
      {
 | 
| 
14693
 | 
   689  | 
        assume "x \<sqsubseteq> y"
  | 
| 
14551
 | 
   690  | 
        with L have "greatest L x (Lower L {x, y})"
 | 
| 
14693
 | 
   691  | 
          by (rule_tac greatest_LowerI) auto
  | 
| 
14551
 | 
   692  | 
      }
  | 
| 
 | 
   693  | 
      ultimately show ?thesis by blast
  | 
| 
 | 
   694  | 
    qed
  | 
| 
 | 
   695  | 
  qed
  | 
| 
 | 
   696  | 
qed (assumption | rule total_order_axioms.intro)+
  | 
| 
 | 
   697  | 
  | 
| 
14693
 | 
   698  | 
  | 
| 
14551
 | 
   699  | 
subsection {* Complete lattices *}
 | 
| 
 | 
   700  | 
  | 
| 
 | 
   701  | 
locale complete_lattice = lattice +
  | 
| 
 | 
   702  | 
  assumes sup_exists:
  | 
| 
 | 
   703  | 
    "[| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
  | 
| 
 | 
   704  | 
    and inf_exists:
  | 
| 
 | 
   705  | 
    "[| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
  | 
| 
 | 
   706  | 
  | 
| 
 | 
   707  | 
text {* Introduction rule: the usual definition of complete lattice *}
 | 
| 
 | 
   708  | 
  | 
| 
 | 
   709  | 
lemma (in partial_order) complete_latticeI:
  | 
| 
 | 
   710  | 
  assumes sup_exists:
  | 
| 
 | 
   711  | 
    "!!A. [| A \<subseteq> carrier L |] ==> EX s. least L s (Upper L A)"
  | 
| 
 | 
   712  | 
    and inf_exists:
  | 
| 
 | 
   713  | 
    "!!A. [| A \<subseteq> carrier L |] ==> EX i. greatest L i (Lower L A)"
  | 
| 
 | 
   714  | 
  shows "complete_lattice L"
  | 
| 
 | 
   715  | 
proof (rule complete_lattice.intro)
  | 
| 
 | 
   716  | 
  show "lattice_axioms L"
  | 
| 
14693
 | 
   717  | 
    by (rule lattice_axioms.intro) (blast intro: sup_exists inf_exists)+
  | 
| 
14551
 | 
   718  | 
qed (assumption | rule complete_lattice_axioms.intro)+
  | 
| 
 | 
   719  | 
  | 
| 
14651
 | 
   720  | 
constdefs (structure L)
  | 
| 
 | 
   721  | 
  top :: "_ => 'a" ("\<top>\<index>")
 | 
| 
 | 
   722  | 
  "\<top> == sup L (carrier L)"
  | 
| 
14551
 | 
   723  | 
  | 
| 
14651
 | 
   724  | 
  bottom :: "_ => 'a" ("\<bottom>\<index>")
 | 
| 
 | 
   725  | 
  "\<bottom> == inf L (carrier L)"
  | 
| 
14551
 | 
   726  | 
  | 
| 
 | 
   727  | 
  | 
| 
 | 
   728  | 
lemma (in complete_lattice) supI:
  | 
| 
 | 
   729  | 
  "[| !!l. least L l (Upper L A) ==> P l; A \<subseteq> carrier L |]
  | 
| 
14651
 | 
   730  | 
  ==> P (\<Squnion>A)"
  | 
| 
14551
 | 
   731  | 
proof (unfold sup_def)
  | 
| 
 | 
   732  | 
  assume L: "A \<subseteq> carrier L"
  | 
| 
 | 
   733  | 
    and P: "!!l. least L l (Upper L A) ==> P l"
  | 
| 
 | 
   734  | 
  with sup_exists obtain s where "least L s (Upper L A)" by blast
  | 
| 
 | 
   735  | 
  with L show "P (THE l. least L l (Upper L A))"
  | 
| 
 | 
   736  | 
  by (fast intro: theI2 least_unique P)
  | 
| 
 | 
   737  | 
qed
  | 
| 
 | 
   738  | 
  | 
| 
 | 
   739  | 
lemma (in complete_lattice) sup_closed [simp]:
  | 
| 
14693
 | 
   740  | 
  "A \<subseteq> carrier L ==> \<Squnion>A \<in> carrier L"
  | 
| 
14551
 | 
   741  | 
  by (rule supI) simp_all
  | 
| 
 | 
   742  | 
  | 
| 
 | 
   743  | 
lemma (in complete_lattice) top_closed [simp, intro]:
  | 
| 
 | 
   744  | 
  "\<top> \<in> carrier L"
  | 
| 
 | 
   745  | 
  by (unfold top_def) simp
  | 
| 
 | 
   746  | 
  | 
| 
 | 
   747  | 
lemma (in complete_lattice) infI:
  | 
| 
 | 
   748  | 
  "[| !!i. greatest L i (Lower L A) ==> P i; A \<subseteq> carrier L |]
  | 
| 
14693
 | 
   749  | 
  ==> P (\<Sqinter>A)"
  | 
| 
14551
 | 
   750  | 
proof (unfold inf_def)
  | 
| 
 | 
   751  | 
  assume L: "A \<subseteq> carrier L"
  | 
| 
 | 
   752  | 
    and P: "!!l. greatest L l (Lower L A) ==> P l"
  | 
| 
 | 
   753  | 
  with inf_exists obtain s where "greatest L s (Lower L A)" by blast
  | 
| 
 | 
   754  | 
  with L show "P (THE l. greatest L l (Lower L A))"
  | 
| 
 | 
   755  | 
  by (fast intro: theI2 greatest_unique P)
  | 
| 
 | 
   756  | 
qed
  | 
| 
 | 
   757  | 
  | 
| 
 | 
   758  | 
lemma (in complete_lattice) inf_closed [simp]:
  | 
| 
14693
 | 
   759  | 
  "A \<subseteq> carrier L ==> \<Sqinter>A \<in> carrier L"
  | 
| 
14551
 | 
   760  | 
  by (rule infI) simp_all
  | 
| 
 | 
   761  | 
  | 
| 
 | 
   762  | 
lemma (in complete_lattice) bottom_closed [simp, intro]:
  | 
| 
 | 
   763  | 
  "\<bottom> \<in> carrier L"
  | 
| 
 | 
   764  | 
  by (unfold bottom_def) simp
  | 
| 
 | 
   765  | 
  | 
| 
 | 
   766  | 
text {* Jacobson: Theorem 8.1 *}
 | 
| 
 | 
   767  | 
  | 
| 
 | 
   768  | 
lemma Lower_empty [simp]:
  | 
| 
 | 
   769  | 
  "Lower L {} = carrier L"
 | 
| 
 | 
   770  | 
  by (unfold Lower_def) simp
  | 
| 
 | 
   771  | 
  | 
| 
 | 
   772  | 
lemma Upper_empty [simp]:
  | 
| 
 | 
   773  | 
  "Upper L {} = carrier L"
 | 
| 
 | 
   774  | 
  by (unfold Upper_def) simp
  | 
| 
 | 
   775  | 
  | 
| 
 | 
   776  | 
theorem (in partial_order) complete_lattice_criterion1:
  | 
| 
 | 
   777  | 
  assumes top_exists: "EX g. greatest L g (carrier L)"
  | 
| 
 | 
   778  | 
    and inf_exists:
  | 
| 
 | 
   779  | 
      "!!A. [| A \<subseteq> carrier L; A ~= {} |] ==> EX i. greatest L i (Lower L A)"
 | 
| 
 | 
   780  | 
  shows "complete_lattice L"
  | 
| 
 | 
   781  | 
proof (rule complete_latticeI)
  | 
| 
 | 
   782  | 
  from top_exists obtain top where top: "greatest L top (carrier L)" ..
  | 
| 
 | 
   783  | 
  fix A
  | 
| 
 | 
   784  | 
  assume L: "A \<subseteq> carrier L"
  | 
| 
 | 
   785  | 
  let ?B = "Upper L A"
  | 
| 
 | 
   786  | 
  from L top have "top \<in> ?B" by (fast intro!: Upper_memI intro: greatest_le)
  | 
| 
 | 
   787  | 
  then have B_non_empty: "?B ~= {}" by fast
 | 
| 
 | 
   788  | 
  have B_L: "?B \<subseteq> carrier L" by simp
  | 
| 
 | 
   789  | 
  from inf_exists [OF B_L B_non_empty]
  | 
| 
 | 
   790  | 
  obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
  | 
| 
 | 
   791  | 
  have "least L b (Upper L A)"
  | 
| 
 | 
   792  | 
apply (rule least_UpperI)
  | 
| 
14693
 | 
   793  | 
   apply (rule greatest_le [where A = "Lower L ?B"])
  | 
| 
14551
 | 
   794  | 
    apply (rule b_inf_B)
  | 
| 
 | 
   795  | 
   apply (rule Lower_memI)
  | 
| 
 | 
   796  | 
    apply (erule UpperD)
  | 
| 
 | 
   797  | 
     apply assumption
  | 
| 
 | 
   798  | 
    apply (rule L)
  | 
| 
 | 
   799  | 
   apply (fast intro: L [THEN subsetD])
  | 
| 
 | 
   800  | 
  apply (erule greatest_Lower_above [OF b_inf_B])
  | 
| 
 | 
   801  | 
  apply simp
  | 
| 
 | 
   802  | 
 apply (rule L)
  | 
| 
 | 
   803  | 
apply (rule greatest_carrier [OF b_inf_B]) (* rename rule: _closed *)
  | 
| 
 | 
   804  | 
done
  | 
| 
 | 
   805  | 
  then show "EX s. least L s (Upper L A)" ..
  | 
| 
 | 
   806  | 
next
  | 
| 
 | 
   807  | 
  fix A
  | 
| 
 | 
   808  | 
  assume L: "A \<subseteq> carrier L"
  | 
| 
 | 
   809  | 
  show "EX i. greatest L i (Lower L A)"
  | 
| 
 | 
   810  | 
  proof (cases "A = {}")
 | 
| 
 | 
   811  | 
    case True then show ?thesis
  | 
| 
 | 
   812  | 
      by (simp add: top_exists)
  | 
| 
 | 
   813  | 
  next
  | 
| 
 | 
   814  | 
    case False with L show ?thesis
  | 
| 
 | 
   815  | 
      by (rule inf_exists)
  | 
| 
 | 
   816  | 
  qed
  | 
| 
 | 
   817  | 
qed
  | 
| 
 | 
   818  | 
  | 
| 
 | 
   819  | 
(* TODO: prove dual version *)
  | 
| 
 | 
   820  | 
  | 
| 
 | 
   821  | 
subsection {* Examples *}
 | 
| 
 | 
   822  | 
  | 
| 
 | 
   823  | 
subsubsection {* Powerset of a set is a complete lattice *}
 | 
| 
 | 
   824  | 
  | 
| 
 | 
   825  | 
theorem powerset_is_complete_lattice:
  | 
| 
 | 
   826  | 
  "complete_lattice (| carrier = Pow A, le = op \<subseteq> |)"
  | 
| 
 | 
   827  | 
  (is "complete_lattice ?L")
  | 
| 
 | 
   828  | 
proof (rule partial_order.complete_latticeI)
  | 
| 
 | 
   829  | 
  show "partial_order ?L"
  | 
| 
 | 
   830  | 
    by (rule partial_order.intro) auto
  | 
| 
 | 
   831  | 
next
  | 
| 
 | 
   832  | 
  fix B
  | 
| 
 | 
   833  | 
  assume "B \<subseteq> carrier ?L"
  | 
| 
 | 
   834  | 
  then have "least ?L (\<Union> B) (Upper ?L B)"
  | 
| 
 | 
   835  | 
    by (fastsimp intro!: least_UpperI simp: Upper_def)
  | 
| 
 | 
   836  | 
  then show "EX s. least ?L s (Upper ?L B)" ..
  | 
| 
 | 
   837  | 
next
  | 
| 
 | 
   838  | 
  fix B
  | 
| 
 | 
   839  | 
  assume "B \<subseteq> carrier ?L"
  | 
| 
 | 
   840  | 
  then have "greatest ?L (\<Inter> B \<inter> A) (Lower ?L B)"
  | 
| 
 | 
   841  | 
    txt {* @{term "\<Inter> B"} is not the infimum of @{term B}:
 | 
| 
 | 
   842  | 
      @{term "\<Inter> {} = UNIV"} which is in general bigger than @{term "A"}! *}
 | 
| 
 | 
   843  | 
    by (fastsimp intro!: greatest_LowerI simp: Lower_def)
  | 
| 
 | 
   844  | 
  then show "EX i. greatest ?L i (Lower ?L B)" ..
  | 
| 
 | 
   845  | 
qed
  | 
| 
 | 
   846  | 
  | 
| 
 | 
   847  | 
subsubsection {* Lattice of subgroups of a group *}
 | 
| 
 | 
   848  | 
  | 
| 
 | 
   849  | 
theorem (in group) subgroups_partial_order:
  | 
| 
 | 
   850  | 
  "partial_order (| carrier = {H. subgroup H G}, le = op \<subseteq> |)"
 | 
| 
 | 
   851  | 
  by (rule partial_order.intro) simp_all
  | 
| 
 | 
   852  | 
  | 
| 
 | 
   853  | 
lemma (in group) subgroup_self:
  | 
| 
 | 
   854  | 
  "subgroup (carrier G) G"
  | 
| 
 | 
   855  | 
  by (rule subgroupI) auto
  | 
| 
 | 
   856  | 
  | 
| 
 | 
   857  | 
lemma (in group) subgroup_imp_group:
  | 
| 
 | 
   858  | 
  "subgroup H G ==> group (G(| carrier := H |))"
  | 
| 
 | 
   859  | 
  using subgroup.groupI [OF _ group.intro] .
  | 
| 
 | 
   860  | 
  | 
| 
 | 
   861  | 
lemma (in group) is_monoid [intro, simp]:
  | 
| 
 | 
   862  | 
  "monoid G"
  | 
| 
 | 
   863  | 
  by (rule monoid.intro)
  | 
| 
 | 
   864  | 
  | 
| 
 | 
   865  | 
lemma (in group) subgroup_inv_equality:
  | 
| 
 | 
   866  | 
  "[| subgroup H G; x \<in> H |] ==> m_inv (G (| carrier := H |)) x = inv x"
  | 
| 
 | 
   867  | 
apply (rule_tac inv_equality [THEN sym])
  | 
| 
 | 
   868  | 
  apply (rule group.l_inv [OF subgroup_imp_group, simplified])
  | 
| 
 | 
   869  | 
   apply assumption+
  | 
| 
 | 
   870  | 
 apply (rule subsetD [OF subgroup.subset])
  | 
| 
 | 
   871  | 
  apply assumption+
  | 
| 
 | 
   872  | 
apply (rule subsetD [OF subgroup.subset])
  | 
| 
 | 
   873  | 
 apply assumption
  | 
| 
 | 
   874  | 
apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified])
  | 
| 
 | 
   875  | 
  apply assumption+
  | 
| 
 | 
   876  | 
done
  | 
| 
 | 
   877  | 
  | 
| 
 | 
   878  | 
theorem (in group) subgroups_Inter:
  | 
| 
 | 
   879  | 
  assumes subgr: "(!!H. H \<in> A ==> subgroup H G)"
  | 
| 
 | 
   880  | 
    and not_empty: "A ~= {}"
 | 
| 
 | 
   881  | 
  shows "subgroup (\<Inter>A) G"
  | 
| 
 | 
   882  | 
proof (rule subgroupI)
  | 
| 
 | 
   883  | 
  from subgr [THEN subgroup.subset] and not_empty
  | 
| 
 | 
   884  | 
  show "\<Inter>A \<subseteq> carrier G" by blast
  | 
| 
 | 
   885  | 
next
  | 
| 
 | 
   886  | 
  from subgr [THEN subgroup.one_closed]
  | 
| 
 | 
   887  | 
  show "\<Inter>A ~= {}" by blast
 | 
| 
 | 
   888  | 
next
  | 
| 
 | 
   889  | 
  fix x assume "x \<in> \<Inter>A"
  | 
| 
 | 
   890  | 
  with subgr [THEN subgroup.m_inv_closed]
  | 
| 
 | 
   891  | 
  show "inv x \<in> \<Inter>A" by blast
  | 
| 
 | 
   892  | 
next
  | 
| 
14693
 | 
   893  | 
  fix x y assume "x \<in> \<Inter>A"  "y \<in> \<Inter>A"
  | 
| 
14551
 | 
   894  | 
  with subgr [THEN subgroup.m_closed]
  | 
| 
 | 
   895  | 
  show "x \<otimes> y \<in> \<Inter>A" by blast
  | 
| 
 | 
   896  | 
qed
  | 
| 
 | 
   897  | 
  | 
| 
 | 
   898  | 
theorem (in group) subgroups_complete_lattice:
  | 
| 
 | 
   899  | 
  "complete_lattice (| carrier = {H. subgroup H G}, le = op \<subseteq> |)"
 | 
| 
 | 
   900  | 
    (is "complete_lattice ?L")
  | 
| 
 | 
   901  | 
proof (rule partial_order.complete_lattice_criterion1)
  | 
| 
 | 
   902  | 
  show "partial_order ?L" by (rule subgroups_partial_order)
  | 
| 
 | 
   903  | 
next
  | 
| 
 | 
   904  | 
  have "greatest ?L (carrier G) (carrier ?L)"
  | 
| 
 | 
   905  | 
    by (unfold greatest_def) (simp add: subgroup.subset subgroup_self)
  | 
| 
 | 
   906  | 
  then show "EX G. greatest ?L G (carrier ?L)" ..
  | 
| 
 | 
   907  | 
next
  | 
| 
 | 
   908  | 
  fix A
  | 
| 
 | 
   909  | 
  assume L: "A \<subseteq> carrier ?L" and non_empty: "A ~= {}"
 | 
| 
 | 
   910  | 
  then have Int_subgroup: "subgroup (\<Inter>A) G"
  | 
| 
 | 
   911  | 
    by (fastsimp intro: subgroups_Inter)
  | 
| 
 | 
   912  | 
  have "greatest ?L (\<Inter>A) (Lower ?L A)"
  | 
| 
 | 
   913  | 
    (is "greatest ?L ?Int _")
  | 
| 
 | 
   914  | 
  proof (rule greatest_LowerI)
  | 
| 
 | 
   915  | 
    fix H
  | 
| 
 | 
   916  | 
    assume H: "H \<in> A"
  | 
| 
 | 
   917  | 
    with L have subgroupH: "subgroup H G" by auto
  | 
| 
 | 
   918  | 
    from subgroupH have submagmaH: "submagma H G" by (rule subgroup.axioms)
  | 
| 
 | 
   919  | 
    from subgroupH have groupH: "group (G (| carrier := H |))" (is "group ?H")
  | 
| 
 | 
   920  | 
      by (rule subgroup_imp_group)
  | 
| 
 | 
   921  | 
    from groupH have monoidH: "monoid ?H"
  | 
| 
 | 
   922  | 
      by (rule group.is_monoid)
  | 
| 
 | 
   923  | 
    from H have Int_subset: "?Int \<subseteq> H" by fastsimp
  | 
| 
 | 
   924  | 
    then show "le ?L ?Int H" by simp
  | 
| 
 | 
   925  | 
  next
  | 
| 
 | 
   926  | 
    fix H
  | 
| 
 | 
   927  | 
    assume H: "H \<in> Lower ?L A"
  | 
| 
 | 
   928  | 
    with L Int_subgroup show "le ?L H ?Int" by (fastsimp intro: Inter_greatest)
  | 
| 
 | 
   929  | 
  next
  | 
| 
 | 
   930  | 
    show "A \<subseteq> carrier ?L" by (rule L)
  | 
| 
 | 
   931  | 
  next
  | 
| 
 | 
   932  | 
    show "?Int \<in> carrier ?L" by simp (rule Int_subgroup)
  | 
| 
 | 
   933  | 
  qed
  | 
| 
 | 
   934  | 
  then show "EX I. greatest ?L I (Lower ?L A)" ..
  | 
| 
 | 
   935  | 
qed
  | 
| 
 | 
   936  | 
  | 
| 
14693
 | 
   937  | 
end
  |