src/ZF/func.thy
author wenzelm
Sun, 21 Mar 2010 19:28:25 +0100
changeset 35852 4e3fe0b8687b
parent 32960 69916a850301
child 41229 d797baa3d57c
permissions -rw-r--r--
minor renovation of old-style 'axioms' -- make it an alias of iterated 'axiomatization';
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
     1
(*  Title:      ZF/func.thy
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
     3
    Copyright   1991  University of Cambridge
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
     4
*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
     5
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
     6
header{*Functions, Function Spaces, Lambda-Abstraction*}
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
     7
16417
9bc16273c2d4 migrated theory headers to new format
haftmann
parents: 14883
diff changeset
     8
theory func imports equalities Sum begin
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
     9
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
    10
subsection{*The Pi Operator: Dependent Function Space*}
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
    11
13248
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
    12
lemma subset_Sigma_imp_relation: "r <= Sigma(A,B) ==> relation(r)"
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
    13
by (simp add: relation_def, blast)
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
    14
13221
e29378f347e4 conversion of Cardinal, CardinalArith
paulson
parents: 13219
diff changeset
    15
lemma relation_converse_converse [simp]:
e29378f347e4 conversion of Cardinal, CardinalArith
paulson
parents: 13219
diff changeset
    16
     "relation(r) ==> converse(converse(r)) = r"
e29378f347e4 conversion of Cardinal, CardinalArith
paulson
parents: 13219
diff changeset
    17
by (simp add: relation_def, blast) 
e29378f347e4 conversion of Cardinal, CardinalArith
paulson
parents: 13219
diff changeset
    18
e29378f347e4 conversion of Cardinal, CardinalArith
paulson
parents: 13219
diff changeset
    19
lemma relation_restrict [simp]:  "relation(restrict(r,A))"
e29378f347e4 conversion of Cardinal, CardinalArith
paulson
parents: 13219
diff changeset
    20
by (simp add: restrict_def relation_def, blast) 
e29378f347e4 conversion of Cardinal, CardinalArith
paulson
parents: 13219
diff changeset
    21
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    22
lemma Pi_iff:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    23
    "f: Pi(A,B) <-> function(f) & f<=Sigma(A,B) & A<=domain(f)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    24
by (unfold Pi_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    25
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    26
(*For upward compatibility with the former definition*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    27
lemma Pi_iff_old:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    28
    "f: Pi(A,B) <-> f<=Sigma(A,B) & (ALL x:A. EX! y. <x,y>: f)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    29
by (unfold Pi_def function_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    30
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    31
lemma fun_is_function: "f: Pi(A,B) ==> function(f)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    32
by (simp only: Pi_iff)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    33
13219
7e44aa8a276e new lemma
paulson
parents: 13179
diff changeset
    34
lemma function_imp_Pi:
7e44aa8a276e new lemma
paulson
parents: 13179
diff changeset
    35
     "[|function(f); relation(f)|] ==> f \<in> domain(f) -> range(f)"
7e44aa8a276e new lemma
paulson
parents: 13179
diff changeset
    36
by (simp add: Pi_iff relation_def, blast) 
7e44aa8a276e new lemma
paulson
parents: 13179
diff changeset
    37
13172
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
    38
lemma functionI: 
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
    39
     "[| !!x y y'. [| <x,y>:r; <x,y'>:r |] ==> y=y' |] ==> function(r)"
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
    40
by (simp add: function_def, blast) 
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
    41
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    42
(*Functions are relations*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    43
lemma fun_is_rel: "f: Pi(A,B) ==> f <= Sigma(A,B)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    44
by (unfold Pi_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    45
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    46
lemma Pi_cong:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    47
    "[| A=A';  !!x. x:A' ==> B(x)=B'(x) |] ==> Pi(A,B) = Pi(A',B')"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    48
by (simp add: Pi_def cong add: Sigma_cong)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    49
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    50
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    51
  flex-flex pairs and the "Check your prover" error.  Most
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    52
  Sigmas and Pis are abbreviated as * or -> *)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    53
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    54
(*Weakening one function type to another; see also Pi_type*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    55
lemma fun_weaken_type: "[| f: A->B;  B<=D |] ==> f: A->D"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    56
by (unfold Pi_def, best)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    57
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
    58
subsection{*Function Application*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    59
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    60
lemma apply_equality2: "[| <a,b>: f;  <a,c>: f;  f: Pi(A,B) |] ==> b=c"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    61
by (unfold Pi_def function_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    62
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    63
lemma function_apply_equality: "[| <a,b>: f;  function(f) |] ==> f`a = b"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    64
by (unfold apply_def function_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    65
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    66
lemma apply_equality: "[| <a,b>: f;  f: Pi(A,B) |] ==> f`a = b"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    67
apply (unfold Pi_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    68
apply (blast intro: function_apply_equality)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    69
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    70
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    71
(*Applying a function outside its domain yields 0*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    72
lemma apply_0: "a ~: domain(f) ==> f`a = 0"
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
    73
by (unfold apply_def, blast)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    74
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    75
lemma Pi_memberD: "[| f: Pi(A,B);  c: f |] ==> EX x:A.  c = <x,f`x>"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    76
apply (frule fun_is_rel)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    77
apply (blast dest: apply_equality)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    78
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    79
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    80
lemma function_apply_Pair: "[| function(f);  a : domain(f)|] ==> <a,f`a>: f"
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
    81
apply (simp add: function_def, clarify) 
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
    82
apply (subgoal_tac "f`a = y", blast) 
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
    83
apply (simp add: apply_def, blast) 
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    84
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    85
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    86
lemma apply_Pair: "[| f: Pi(A,B);  a:A |] ==> <a,f`a>: f"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    87
apply (simp add: Pi_iff)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    88
apply (blast intro: function_apply_Pair)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    89
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    90
27150
a42aef558ce3 tuned comments;
wenzelm
parents: 24893
diff changeset
    91
(*Conclusion is flexible -- use rule_tac or else apply_funtype below!*)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    92
lemma apply_type [TC]: "[| f: Pi(A,B);  a:A |] ==> f`a : B(a)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    93
by (blast intro: apply_Pair dest: fun_is_rel)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    94
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    95
(*This version is acceptable to the simplifier*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    96
lemma apply_funtype: "[| f: A->B;  a:A |] ==> f`a : B"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    97
by (blast dest: apply_type)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    98
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
    99
lemma apply_iff: "f: Pi(A,B) ==> <a,b>: f <-> a:A & f`a = b"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   100
apply (frule fun_is_rel)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   101
apply (blast intro!: apply_Pair apply_equality)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   102
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   103
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   104
(*Refining one Pi type to another*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   105
lemma Pi_type: "[| f: Pi(A,C);  !!x. x:A ==> f`x : B(x) |] ==> f : Pi(A,B)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   106
apply (simp only: Pi_iff)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   107
apply (blast dest: function_apply_equality)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   108
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   109
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   110
(*Such functions arise in non-standard datatypes, ZF/ex/Ntree for instance*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   111
lemma Pi_Collect_iff:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   112
     "(f : Pi(A, %x. {y:B(x). P(x,y)}))
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   113
      <->  f : Pi(A,B) & (ALL x: A. P(x, f`x))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   114
by (blast intro: Pi_type dest: apply_type)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   115
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   116
lemma Pi_weaken_type:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   117
        "[| f : Pi(A,B);  !!x. x:A ==> B(x)<=C(x) |] ==> f : Pi(A,C)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   118
by (blast intro: Pi_type dest: apply_type)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   119
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   120
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   121
(** Elimination of membership in a function **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   122
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   123
lemma domain_type: "[| <a,b> : f;  f: Pi(A,B) |] ==> a : A"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   124
by (blast dest: fun_is_rel)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   125
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   126
lemma range_type: "[| <a,b> : f;  f: Pi(A,B) |] ==> b : B(a)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   127
by (blast dest: fun_is_rel)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   128
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   129
lemma Pair_mem_PiD: "[| <a,b>: f;  f: Pi(A,B) |] ==> a:A & b:B(a) & f`a = b"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   130
by (blast intro: domain_type range_type apply_equality)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   131
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   132
subsection{*Lambda Abstraction*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   133
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   134
lemma lamI: "a:A ==> <a,b(a)> : (lam x:A. b(x))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   135
apply (unfold lam_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   136
apply (erule RepFunI)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   137
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   138
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   139
lemma lamE:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   140
    "[| p: (lam x:A. b(x));  !!x.[| x:A; p=<x,b(x)> |] ==> P
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   141
     |] ==>  P"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   142
by (simp add: lam_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   143
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   144
lemma lamD: "[| <a,c>: (lam x:A. b(x)) |] ==> c = b(a)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   145
by (simp add: lam_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   146
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   147
lemma lam_type [TC]:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   148
    "[| !!x. x:A ==> b(x): B(x) |] ==> (lam x:A. b(x)) : Pi(A,B)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   149
by (simp add: lam_def Pi_def function_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   150
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   151
lemma lam_funtype: "(lam x:A. b(x)) : A -> {b(x). x:A}"
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   152
by (blast intro: lam_type)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   153
13172
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
   154
lemma function_lam: "function (lam x:A. b(x))"
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
   155
by (simp add: function_def lam_def) 
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
   156
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
   157
lemma relation_lam: "relation (lam x:A. b(x))"  
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
   158
by (simp add: relation_def lam_def) 
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
   159
13175
81082cfa5618 new definition of "apply" and new simprule "beta_if"
paulson
parents: 13174
diff changeset
   160
lemma beta_if [simp]: "(lam x:A. b(x)) ` a = (if a : A then b(a) else 0)"
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   161
by (simp add: apply_def lam_def, blast)
13175
81082cfa5618 new definition of "apply" and new simprule "beta_if"
paulson
parents: 13174
diff changeset
   162
81082cfa5618 new definition of "apply" and new simprule "beta_if"
paulson
parents: 13174
diff changeset
   163
lemma beta: "a : A ==> (lam x:A. b(x)) ` a = b(a)"
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   164
by (simp add: apply_def lam_def, blast)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   165
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   166
lemma lam_empty [simp]: "(lam x:0. b(x)) = 0"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   167
by (simp add: lam_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   168
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   169
lemma domain_lam [simp]: "domain(Lambda(A,b)) = A"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   170
by (simp add: lam_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   171
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   172
(*congruence rule for lambda abstraction*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   173
lemma lam_cong [cong]:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   174
    "[| A=A';  !!x. x:A' ==> b(x)=b'(x) |] ==> Lambda(A,b) = Lambda(A',b')"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   175
by (simp only: lam_def cong add: RepFun_cong)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   176
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   177
lemma lam_theI:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   178
    "(!!x. x:A ==> EX! y. Q(x,y)) ==> EX f. ALL x:A. Q(x, f`x)"
13175
81082cfa5618 new definition of "apply" and new simprule "beta_if"
paulson
parents: 13174
diff changeset
   179
apply (rule_tac x = "lam x: A. THE y. Q (x,y)" in exI)
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   180
apply simp 
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   181
apply (blast intro: theI)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   182
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   183
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   184
lemma lam_eqE: "[| (lam x:A. f(x)) = (lam x:A. g(x));  a:A |] ==> f(a)=g(a)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   185
by (fast intro!: lamI elim: equalityE lamE)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   186
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   187
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   188
(*Empty function spaces*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   189
lemma Pi_empty1 [simp]: "Pi(0,A) = {0}"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   190
by (unfold Pi_def function_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   191
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   192
(*The singleton function*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   193
lemma singleton_fun [simp]: "{<a,b>} : {a} -> {b}"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   194
by (unfold Pi_def function_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   195
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   196
lemma Pi_empty2 [simp]: "(A->0) = (if A=0 then {0} else 0)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   197
by (unfold Pi_def function_def, force)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   198
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   199
lemma  fun_space_empty_iff [iff]: "(A->X)=0 \<longleftrightarrow> X=0 & (A \<noteq> 0)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   200
apply auto
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   201
apply (fast intro!: equals0I intro: lam_type)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   202
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   203
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   204
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   205
subsection{*Extensionality*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   206
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   207
(*Semi-extensionality!*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   208
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   209
lemma fun_subset:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   210
    "[| f : Pi(A,B);  g: Pi(C,D);  A<=C;
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   211
        !!x. x:A ==> f`x = g`x       |] ==> f<=g"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   212
by (force dest: Pi_memberD intro: apply_Pair)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   213
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   214
lemma fun_extension:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   215
    "[| f : Pi(A,B);  g: Pi(A,D);
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   216
        !!x. x:A ==> f`x = g`x       |] ==> f=g"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   217
by (blast del: subsetI intro: subset_refl sym fun_subset)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   218
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   219
lemma eta [simp]: "f : Pi(A,B) ==> (lam x:A. f`x) = f"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   220
apply (rule fun_extension)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   221
apply (auto simp add: lam_type apply_type beta)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   222
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   223
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   224
lemma fun_extension_iff:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   225
     "[| f:Pi(A,B); g:Pi(A,C) |] ==> (ALL a:A. f`a = g`a) <-> f=g"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   226
by (blast intro: fun_extension)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   227
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   228
(*thm by Mark Staples, proof by lcp*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   229
lemma fun_subset_eq: "[| f:Pi(A,B); g:Pi(A,C) |] ==> f <= g <-> (f = g)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   230
by (blast dest: apply_Pair
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 27702
diff changeset
   231
          intro: fun_extension apply_equality [symmetric])
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   232
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   233
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   234
(*Every element of Pi(A,B) may be expressed as a lambda abstraction!*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   235
lemma Pi_lamE:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   236
  assumes major: "f: Pi(A,B)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   237
      and minor: "!!b. [| ALL x:A. b(x):B(x);  f = (lam x:A. b(x)) |] ==> P"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   238
  shows "P"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   239
apply (rule minor)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   240
apply (rule_tac [2] eta [symmetric])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   241
apply (blast intro: major apply_type)+
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   242
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   243
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   244
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   245
subsection{*Images of Functions*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   246
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   247
lemma image_lam: "C <= A ==> (lam x:A. b(x)) `` C = {b(x). x:C}"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   248
by (unfold lam_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   249
13179
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   250
lemma Repfun_function_if:
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   251
     "function(f) 
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   252
      ==> {f`x. x:C} = (if C <= domain(f) then f``C else cons(0,f``C))";
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   253
apply simp
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   254
apply (intro conjI impI)  
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   255
 apply (blast dest: function_apply_equality intro: function_apply_Pair) 
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   256
apply (rule equalityI)
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   257
 apply (blast intro!: function_apply_Pair apply_0) 
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   258
apply (blast dest: function_apply_equality intro: apply_0 [symmetric]) 
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   259
done
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   260
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   261
(*For this lemma and the next, the right-hand side could equivalently 
13615
449a70d88b38 Numerous cosmetic changes, prompted by the new simplifier
paulson
parents: 13357
diff changeset
   262
  be written \<Union>x\<in>C. {f`x} *)
13174
85d3c0981a16 more tidying
paulson
parents: 13172
diff changeset
   263
lemma image_function:
85d3c0981a16 more tidying
paulson
parents: 13172
diff changeset
   264
     "[| function(f);  C <= domain(f) |] ==> f``C = {f`x. x:C}";
13179
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   265
by (simp add: Repfun_function_if) 
13174
85d3c0981a16 more tidying
paulson
parents: 13172
diff changeset
   266
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   267
lemma image_fun: "[| f : Pi(A,B);  C <= A |] ==> f``C = {f`x. x:C}"
13174
85d3c0981a16 more tidying
paulson
parents: 13172
diff changeset
   268
apply (simp add: Pi_iff) 
85d3c0981a16 more tidying
paulson
parents: 13172
diff changeset
   269
apply (blast intro: image_function) 
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   270
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   271
14883
ca000a495448 Groups, Rings and supporting lemmas
paulson
parents: 14153
diff changeset
   272
lemma image_eq_UN: 
ca000a495448 Groups, Rings and supporting lemmas
paulson
parents: 14153
diff changeset
   273
  assumes f: "f \<in> Pi(A,B)" "C \<subseteq> A" shows "f``C = (\<Union>x\<in>C. {f ` x})"
ca000a495448 Groups, Rings and supporting lemmas
paulson
parents: 14153
diff changeset
   274
by (auto simp add: image_fun [OF f]) 
ca000a495448 Groups, Rings and supporting lemmas
paulson
parents: 14153
diff changeset
   275
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   276
lemma Pi_image_cons:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   277
     "[| f: Pi(A,B);  x: A |] ==> f `` cons(x,y) = cons(f`x, f``y)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   278
by (blast dest: apply_equality apply_Pair)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   279
124
858ab9a9b047 made pseudo theories for all ML files;
clasohm
parents:
diff changeset
   280
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   281
subsection{*Properties of @{term "restrict(f,A)"}*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   282
13179
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   283
lemma restrict_subset: "restrict(f,A) <= f"
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   284
by (unfold restrict_def, blast)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   285
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   286
lemma function_restrictI:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   287
    "function(f) ==> function(restrict(f,A))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   288
by (unfold restrict_def function_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   289
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   290
lemma restrict_type2: "[| f: Pi(C,B);  A<=C |] ==> restrict(f,A) : Pi(A,B)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   291
by (simp add: Pi_iff function_def restrict_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   292
13179
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   293
lemma restrict: "restrict(f,A) ` a = (if a : A then f`a else 0)"
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   294
by (simp add: apply_def restrict_def, blast)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   295
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   296
lemma restrict_empty [simp]: "restrict(f,0) = 0"
13179
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   297
by (unfold restrict_def, simp)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   298
13172
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
   299
lemma restrict_iff: "z \<in> restrict(r,A) \<longleftrightarrow> z \<in> r & (\<exists>x\<in>A. \<exists>y. z = \<langle>x, y\<rangle>)"
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
   300
by (simp add: restrict_def) 
03a5afa7b888 tidying up
paulson
parents: 13168
diff changeset
   301
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   302
lemma restrict_restrict [simp]:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   303
     "restrict(restrict(r,A),B) = restrict(r, A Int B)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   304
by (unfold restrict_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   305
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   306
lemma domain_restrict [simp]: "domain(restrict(f,C)) = domain(f) Int C"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   307
apply (unfold restrict_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   308
apply (auto simp add: domain_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   309
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   310
13248
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   311
lemma restrict_idem: "f <= Sigma(A,B) ==> restrict(f,A) = f"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   312
by (simp add: restrict_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   313
13248
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   314
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   315
(*converse probably holds too*)
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   316
lemma domain_restrict_idem:
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   317
     "[| domain(r) <= A; relation(r) |] ==> restrict(r,A) = r"
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   318
by (simp add: restrict_def relation_def, blast)
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   319
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   320
lemma domain_restrict_lam [simp]: "domain(restrict(Lambda(A,f),C)) = A Int C"
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   321
apply (unfold restrict_def lam_def)
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   322
apply (rule equalityI)
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   323
apply (auto simp add: domain_iff)
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   324
done
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   325
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   326
lemma restrict_if [simp]: "restrict(f,A) ` a = (if a : A then f`a else 0)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   327
by (simp add: restrict apply_0)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   328
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   329
lemma restrict_lam_eq:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   330
    "A<=C ==> restrict(lam x:C. b(x), A) = (lam x:A. b(x))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   331
by (unfold restrict_def lam_def, auto)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   332
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   333
lemma fun_cons_restrict_eq:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   334
     "f : cons(a, b) -> B ==> f = cons(<a, f ` a>, restrict(f, b))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   335
apply (rule equalityI)
13248
ae66c22ed52e new theorems
paulson
parents: 13221
diff changeset
   336
 prefer 2 apply (blast intro: apply_Pair restrict_subset [THEN subsetD])
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   337
apply (auto dest!: Pi_memberD simp add: restrict_def lam_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   338
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   339
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   340
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   341
subsection{*Unions of Functions*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   342
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   343
(** The Union of a set of COMPATIBLE functions is a function **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   344
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   345
lemma function_Union:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   346
    "[| ALL x:S. function(x);
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   347
        ALL x:S. ALL y:S. x<=y | y<=x  |]
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   348
     ==> function(Union(S))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   349
by (unfold function_def, blast) 
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   350
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   351
lemma fun_Union:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   352
    "[| ALL f:S. EX C D. f:C->D;
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   353
             ALL f:S. ALL y:S. f<=y | y<=f  |] ==>
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   354
          Union(S) : domain(Union(S)) -> range(Union(S))"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   355
apply (unfold Pi_def)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   356
apply (blast intro!: rel_Union function_Union)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   357
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   358
13174
85d3c0981a16 more tidying
paulson
parents: 13172
diff changeset
   359
lemma gen_relation_Union [rule_format]:
85d3c0981a16 more tidying
paulson
parents: 13172
diff changeset
   360
     "\<forall>f\<in>F. relation(f) \<Longrightarrow> relation(Union(F))"
85d3c0981a16 more tidying
paulson
parents: 13172
diff changeset
   361
by (simp add: relation_def) 
85d3c0981a16 more tidying
paulson
parents: 13172
diff changeset
   362
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   363
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   364
(** The Union of 2 disjoint functions is a function **)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   365
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   366
lemmas Un_rls = Un_subset_iff SUM_Un_distrib1 prod_Un_distrib2
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   367
                subset_trans [OF _ Un_upper1]
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   368
                subset_trans [OF _ Un_upper2]
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   369
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   370
lemma fun_disjoint_Un:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   371
     "[| f: A->B;  g: C->D;  A Int C = 0  |]
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   372
      ==> (f Un g) : (A Un C) -> (B Un D)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   373
(*Prove the product and domain subgoals using distributive laws*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   374
apply (simp add: Pi_iff extension Un_rls)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   375
apply (unfold function_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   376
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   377
13179
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   378
lemma fun_disjoint_apply1: "a \<notin> domain(g) ==> (f Un g)`a = f`a"
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   379
by (simp add: apply_def, blast) 
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   380
13179
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   381
lemma fun_disjoint_apply2: "c \<notin> domain(f) ==> (f Un g)`c = g`c"
3f6f00c6c56f strong lemmas about functions
paulson
parents: 13176
diff changeset
   382
by (simp add: apply_def, blast) 
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   383
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   384
subsection{*Domain and Range of a Function or Relation*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   385
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   386
lemma domain_of_fun: "f : Pi(A,B) ==> domain(f)=A"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   387
by (unfold Pi_def, blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   388
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   389
lemma apply_rangeI: "[| f : Pi(A,B);  a: A |] ==> f`a : range(f)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   390
by (erule apply_Pair [THEN rangeI], assumption)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   391
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   392
lemma range_of_fun: "f : Pi(A,B) ==> f : A->range(f)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   393
by (blast intro: Pi_type apply_rangeI)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   394
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   395
subsection{*Extensions of Functions*}
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   396
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   397
lemma fun_extend:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   398
     "[| f: A->B;  c~:A |] ==> cons(<c,b>,f) : cons(c,A) -> cons(b,B)"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   399
apply (frule singleton_fun [THEN fun_disjoint_Un], blast)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   400
apply (simp add: cons_eq) 
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   401
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   402
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   403
lemma fun_extend3:
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   404
     "[| f: A->B;  c~:A;  b: B |] ==> cons(<c,b>,f) : cons(c,A) -> B"
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   405
by (blast intro: fun_extend [THEN fun_weaken_type])
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   406
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   407
lemma extend_apply:
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   408
     "c ~: domain(f) ==> cons(<c,b>,f)`a = (if a=c then b else f`a)"
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   409
by (auto simp add: apply_def) 
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   410
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   411
lemma fun_extend_apply [simp]:
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   412
     "[| f: A->B;  c~:A |] ==> cons(<c,b>,f)`a = (if a=c then b else f`a)" 
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   413
apply (rule extend_apply) 
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   414
apply (simp add: Pi_def, blast) 
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   415
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   416
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   417
lemmas singleton_apply = apply_equality [OF singletonI singleton_fun, simp]
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   418
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   419
(*For Finite.ML.  Inclusion of right into left is easy*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   420
lemma cons_fun_eq:
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13248
diff changeset
   421
     "c ~: A ==> cons(c,A) -> B = (\<Union>f \<in> A->B. \<Union>b\<in>B. {cons(<c,b>, f)})"
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   422
apply (rule equalityI)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   423
apply (safe elim!: fun_extend3)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   424
(*Inclusion of left into right*)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   425
apply (subgoal_tac "restrict (x, A) : A -> B")
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   426
 prefer 2 apply (blast intro: restrict_type2)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   427
apply (rule UN_I, assumption)
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   428
apply (rule apply_funtype [THEN UN_I]) 
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   429
  apply assumption
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   430
 apply (rule consI1) 
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   431
apply (simp (no_asm))
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   432
apply (rule fun_extension) 
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   433
  apply assumption
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   434
 apply (blast intro: fun_extend) 
13176
312bd350579b conversion of Perm to Isar. Strengthening of comp_fun_apply
paulson
parents: 13175
diff changeset
   435
apply (erule consE, simp_all)
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   436
done
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   437
13269
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13248
diff changeset
   438
lemma succ_fun_eq: "succ(n) -> B = (\<Union>f \<in> n->B. \<Union>b\<in>B. {cons(<n,b>, f)})"
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13248
diff changeset
   439
by (simp add: succ_def mem_not_refl cons_fun_eq)
3ba9be497c33 Tidying and introduction of various new theorems
paulson
parents: 13248
diff changeset
   440
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   441
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   442
subsection{*Function Updates*}
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   443
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
   444
definition
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
   445
  update  :: "[i,i,i] => i"  where
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   446
   "update(f,a,b) == lam x: cons(a, domain(f)). if(x=a, b, f`x)"
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   447
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   448
nonterminals
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   449
  updbinds  updbind
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   450
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   451
syntax
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   452
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   453
  (* Let expressions *)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   454
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   455
  "_updbind"    :: "[i, i] => updbind"               ("(2_ :=/ _)")
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   456
  ""            :: "updbind => updbinds"             ("_")
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   457
  "_updbinds"   :: "[updbind, updbinds] => updbinds" ("_,/ _")
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   458
  "_Update"     :: "[i, updbinds] => i"              ("_/'((_)')" [900,0] 900)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   459
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   460
translations
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   461
  "_Update (f, _updbinds(b,bs))"  == "_Update (_Update(f,b), bs)"
24893
b8ef7afe3a6b modernized specifications;
wenzelm
parents: 16417
diff changeset
   462
  "f(x:=y)"                       == "CONST update(f,x,y)"
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   463
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   464
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   465
lemma update_apply [simp]: "f(x:=y) ` z = (if z=x then y else f`z)"
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   466
apply (simp add: update_def)
14153
76a6ba67bd15 new case_tac
paulson
parents: 14095
diff changeset
   467
apply (case_tac "z \<in> domain(f)")   
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   468
apply (simp_all add: apply_0)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   469
done
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   470
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   471
lemma update_idem: "[| f`x = y;  f: Pi(A,B);  x: A |] ==> f(x:=y) = f"
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   472
apply (unfold update_def)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   473
apply (simp add: domain_of_fun cons_absorb)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   474
apply (rule fun_extension)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   475
apply (best intro: apply_type if_type lam_type, assumption, simp)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   476
done
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   477
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   478
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   479
(* [| f: Pi(A, B); x:A |] ==> f(x := f`x) = f *)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   480
declare refl [THEN update_idem, simp]
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   481
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   482
lemma domain_update [simp]: "domain(f(x:=y)) = cons(x, domain(f))"
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   483
by (unfold update_def, simp)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   484
14046
6616e6c53d48 updating ZF-UNITY with Sidi's new material
paulson
parents: 13615
diff changeset
   485
lemma update_type: "[| f:Pi(A,B);  x : A;  y: B(x) |] ==> f(x:=y) : Pi(A, B)"
13355
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   486
apply (unfold update_def)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   487
apply (simp add: domain_of_fun cons_absorb apply_funtype lam_type)
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   488
done
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   489
d19cdbd8b559 merged Update with func
paulson
parents: 13269
diff changeset
   490
13357
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   491
subsection{*Monotonicity Theorems*}
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   492
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   493
subsubsection{*Replacement in its Various Forms*}
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   494
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   495
(*Not easy to express monotonicity in P, since any "bigger" predicate
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   496
  would have to be single-valued*)
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   497
lemma Replace_mono: "A<=B ==> Replace(A,P) <= Replace(B,P)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   498
by (blast elim!: ReplaceE)
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   499
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   500
lemma RepFun_mono: "A<=B ==> {f(x). x:A} <= {f(x). x:B}"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   501
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   502
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   503
lemma Pow_mono: "A<=B ==> Pow(A) <= Pow(B)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   504
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   505
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   506
lemma Union_mono: "A<=B ==> Union(A) <= Union(B)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   507
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   508
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   509
lemma UN_mono:
13615
449a70d88b38 Numerous cosmetic changes, prompted by the new simplifier
paulson
parents: 13357
diff changeset
   510
    "[| A<=C;  !!x. x:A ==> B(x)<=D(x) |] ==> (\<Union>x\<in>A. B(x)) <= (\<Union>x\<in>C. D(x))"
13357
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   511
by blast  
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   512
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   513
(*Intersection is ANTI-monotonic.  There are TWO premises! *)
14095
a1ba833d6b61 Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents: 14046
diff changeset
   514
lemma Inter_anti_mono: "[| A<=B;  A\<noteq>0 |] ==> Inter(B) <= Inter(A)"
13357
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   515
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   516
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   517
lemma cons_mono: "C<=D ==> cons(a,C) <= cons(a,D)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   518
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   519
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   520
lemma Un_mono: "[| A<=C;  B<=D |] ==> A Un B <= C Un D"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   521
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   522
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   523
lemma Int_mono: "[| A<=C;  B<=D |] ==> A Int B <= C Int D"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   524
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   525
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   526
lemma Diff_mono: "[| A<=C;  D<=B |] ==> A-B <= C-D"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   527
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   528
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   529
subsubsection{*Standard Products, Sums and Function Spaces *}
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   530
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   531
lemma Sigma_mono [rule_format]:
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   532
     "[| A<=C;  !!x. x:A --> B(x) <= D(x) |] ==> Sigma(A,B) <= Sigma(C,D)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   533
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   534
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   535
lemma sum_mono: "[| A<=C;  B<=D |] ==> A+B <= C+D"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   536
by (unfold sum_def, blast)
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   537
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   538
(*Note that B->A and C->A are typically disjoint!*)
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   539
lemma Pi_mono: "B<=C ==> A->B <= A->C"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   540
by (blast intro: lam_type elim: Pi_lamE)
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   541
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   542
lemma lam_mono: "A<=B ==> Lambda(A,c) <= Lambda(B,c)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   543
apply (unfold lam_def)
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   544
apply (erule RepFun_mono)
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   545
done
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   546
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   547
subsubsection{*Converse, Domain, Range, Field*}
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   548
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   549
lemma converse_mono: "r<=s ==> converse(r) <= converse(s)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   550
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   551
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   552
lemma domain_mono: "r<=s ==> domain(r)<=domain(s)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   553
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   554
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   555
lemmas domain_rel_subset = subset_trans [OF domain_mono domain_subset]
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   556
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   557
lemma range_mono: "r<=s ==> range(r)<=range(s)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   558
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   559
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   560
lemmas range_rel_subset = subset_trans [OF range_mono range_subset]
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   561
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   562
lemma field_mono: "r<=s ==> field(r)<=field(s)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   563
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   564
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   565
lemma field_rel_subset: "r <= A*A ==> field(r) <= A"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   566
by (erule field_mono [THEN subset_trans], blast)
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   567
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   568
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   569
subsubsection{*Images*}
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   570
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   571
lemma image_pair_mono:
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   572
    "[| !! x y. <x,y>:r ==> <x,y>:s;  A<=B |] ==> r``A <= s``B"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   573
by blast 
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   574
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   575
lemma vimage_pair_mono:
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   576
    "[| !! x y. <x,y>:r ==> <x,y>:s;  A<=B |] ==> r-``A <= s-``B"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   577
by blast 
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   578
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   579
lemma image_mono: "[| r<=s;  A<=B |] ==> r``A <= s``B"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   580
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   581
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   582
lemma vimage_mono: "[| r<=s;  A<=B |] ==> r-``A <= s-``B"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   583
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   584
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   585
lemma Collect_mono:
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   586
    "[| A<=B;  !!x. x:A ==> P(x) --> Q(x) |] ==> Collect(A,P) <= Collect(B,Q)"
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   587
by blast
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   588
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   589
(*Used in intr_elim.ML and in individual datatype definitions*)
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   590
lemmas basic_monos = subset_refl imp_refl disj_mono conj_mono ex_mono 
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   591
                     Collect_mono Part_mono in_mono
6f54e992777e Removal of mono.thy
paulson
parents: 13355
diff changeset
   592
27702
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   593
(* Useful with simp; contributed by Clemens Ballarin. *)
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   594
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   595
lemma bex_image_simp:
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   596
  "[| f : Pi(X, Y); A \<subseteq> X |]  ==> (EX x : f``A. P(x)) <-> (EX x:A. P(f`x))"
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   597
  apply safe
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   598
   apply rule
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   599
    prefer 2 apply assumption
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   600
   apply (simp add: apply_equality)
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   601
  apply (blast intro: apply_Pair)
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   602
  done
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   603
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   604
lemma ball_image_simp:
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   605
  "[| f : Pi(X, Y); A \<subseteq> X |]  ==> (ALL x : f``A. P(x)) <-> (ALL x:A. P(f`x))"
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   606
  apply safe
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   607
   apply (blast intro: apply_Pair)
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   608
  apply (drule bspec) apply assumption
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   609
  apply (simp add: apply_equality)
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   610
  done
80608e96e760 Lemmas added
ballarin
parents: 27150
diff changeset
   611
13163
e320a52ff711 converted Arith, Univ, func to Isar format!
paulson
parents: 2469
diff changeset
   612
end