| 
35762
 | 
     1  | 
(*  Title:      ZF/Fixedpt.thy
  | 
| 
1478
 | 
     2  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
0
 | 
     3  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
60770
 | 
     6  | 
section\<open>Least and Greatest Fixed Points; the Knaster-Tarski Theorem\<close>
  | 
| 
13356
 | 
     7  | 
  | 
| 
16417
 | 
     8  | 
theory Fixedpt imports equalities begin
  | 
| 
13218
 | 
     9  | 
  | 
| 
24893
 | 
    10  | 
definition 
  | 
| 
13218
 | 
    11  | 
  (*monotone operator from Pow(D) to itself*)
  | 
| 
24893
 | 
    12  | 
  bnd_mono :: "[i,i=>i]=>o"  where
  | 
| 
46820
 | 
    13  | 
     "bnd_mono(D,h) == h(D)<=D & (\<forall>W X. W<=X \<longrightarrow> X<=D \<longrightarrow> h(W) \<subseteq> h(X))"
  | 
| 
13218
 | 
    14  | 
  | 
| 
24893
 | 
    15  | 
definition 
  | 
| 
 | 
    16  | 
  lfp      :: "[i,i=>i]=>i"  where
  | 
| 
46820
 | 
    17  | 
     "lfp(D,h) == \<Inter>({X: Pow(D). h(X) \<subseteq> X})"
 | 
| 
13218
 | 
    18  | 
  | 
| 
24893
 | 
    19  | 
definition 
  | 
| 
 | 
    20  | 
  gfp      :: "[i,i=>i]=>i"  where
  | 
| 
46820
 | 
    21  | 
     "gfp(D,h) == \<Union>({X: Pow(D). X \<subseteq> h(X)})"
 | 
| 
13218
 | 
    22  | 
  | 
| 
69593
 | 
    23  | 
text\<open>The theorem is proved in the lattice of subsets of \<^term>\<open>D\<close>, 
  | 
| 
 | 
    24  | 
      namely \<^term>\<open>Pow(D)\<close>, with Inter as the greatest lower bound.\<close>
  | 
| 
13218
 | 
    25  | 
  | 
| 
60770
 | 
    26  | 
subsection\<open>Monotone Operators\<close>
  | 
| 
13218
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma bnd_monoI:
  | 
| 
 | 
    29  | 
    "[| h(D)<=D;   
  | 
| 
46820
 | 
    30  | 
        !!W X. [| W<=D;  X<=D;  W<=X |] ==> h(W) \<subseteq> h(X)   
  | 
| 
13218
 | 
    31  | 
     |] ==> bnd_mono(D,h)"
  | 
| 
 | 
    32  | 
by (unfold bnd_mono_def, clarify, blast)  
  | 
| 
 | 
    33  | 
  | 
| 
46820
 | 
    34  | 
lemma bnd_monoD1: "bnd_mono(D,h) ==> h(D) \<subseteq> D"
  | 
| 
13218
 | 
    35  | 
apply (unfold bnd_mono_def)
  | 
| 
 | 
    36  | 
apply (erule conjunct1)
  | 
| 
 | 
    37  | 
done
  | 
| 
 | 
    38  | 
  | 
| 
46820
 | 
    39  | 
lemma bnd_monoD2: "[| bnd_mono(D,h);  W<=X;  X<=D |] ==> h(W) \<subseteq> h(X)"
  | 
| 
13218
 | 
    40  | 
by (unfold bnd_mono_def, blast)
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
lemma bnd_mono_subset:
  | 
| 
46820
 | 
    43  | 
    "[| bnd_mono(D,h);  X<=D |] ==> h(X) \<subseteq> D"
  | 
| 
13218
 | 
    44  | 
by (unfold bnd_mono_def, clarify, blast) 
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
lemma bnd_mono_Un:
  | 
| 
46820
 | 
    47  | 
     "[| bnd_mono(D,h);  A \<subseteq> D;  B \<subseteq> D |] ==> h(A) \<union> h(B) \<subseteq> h(A \<union> B)"
  | 
| 
13218
 | 
    48  | 
apply (unfold bnd_mono_def)
  | 
| 
 | 
    49  | 
apply (rule Un_least, blast+)
  | 
| 
 | 
    50  | 
done
  | 
| 
 | 
    51  | 
  | 
| 
13220
 | 
    52  | 
(*unused*)
  | 
| 
 | 
    53  | 
lemma bnd_mono_UN:
  | 
| 
46820
 | 
    54  | 
     "[| bnd_mono(D,h);  \<forall>i\<in>I. A(i) \<subseteq> D |] 
  | 
| 
 | 
    55  | 
      ==> (\<Union>i\<in>I. h(A(i))) \<subseteq> h((\<Union>i\<in>I. A(i)))"
  | 
| 
13220
 | 
    56  | 
apply (unfold bnd_mono_def) 
  | 
| 
 | 
    57  | 
apply (rule UN_least)
  | 
| 
 | 
    58  | 
apply (elim conjE) 
  | 
| 
 | 
    59  | 
apply (drule_tac x="A(i)" in spec)
  | 
| 
 | 
    60  | 
apply (drule_tac x="(\<Union>i\<in>I. A(i))" in spec) 
  | 
| 
 | 
    61  | 
apply blast 
  | 
| 
 | 
    62  | 
done
  | 
| 
 | 
    63  | 
  | 
| 
13218
 | 
    64  | 
(*Useful??*)
  | 
| 
 | 
    65  | 
lemma bnd_mono_Int:
  | 
| 
46820
 | 
    66  | 
     "[| bnd_mono(D,h);  A \<subseteq> D;  B \<subseteq> D |] ==> h(A \<inter> B) \<subseteq> h(A) \<inter> h(B)"
  | 
| 
13218
 | 
    67  | 
apply (rule Int_greatest) 
  | 
| 
 | 
    68  | 
apply (erule bnd_monoD2, rule Int_lower1, assumption) 
  | 
| 
 | 
    69  | 
apply (erule bnd_monoD2, rule Int_lower2, assumption) 
  | 
| 
 | 
    70  | 
done
  | 
| 
 | 
    71  | 
  | 
| 
69593
 | 
    72  | 
subsection\<open>Proof of Knaster-Tarski Theorem using \<^term>\<open>lfp\<close>\<close>
  | 
| 
13218
 | 
    73  | 
  | 
| 
 | 
    74  | 
(*lfp is contained in each pre-fixedpoint*)
  | 
| 
 | 
    75  | 
lemma lfp_lowerbound: 
  | 
| 
46820
 | 
    76  | 
    "[| h(A) \<subseteq> A;  A<=D |] ==> lfp(D,h) \<subseteq> A"
  | 
| 
13218
 | 
    77  | 
by (unfold lfp_def, blast)
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
(*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*)
  | 
| 
46820
 | 
    80  | 
lemma lfp_subset: "lfp(D,h) \<subseteq> D"
  | 
| 
13218
 | 
    81  | 
by (unfold lfp_def Inter_def, blast)
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
(*Used in datatype package*)
  | 
| 
46820
 | 
    84  | 
lemma def_lfp_subset:  "A == lfp(D,h) ==> A \<subseteq> D"
  | 
| 
13218
 | 
    85  | 
apply simp
  | 
| 
 | 
    86  | 
apply (rule lfp_subset)
  | 
| 
 | 
    87  | 
done
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
lemma lfp_greatest:  
  | 
| 
46820
 | 
    90  | 
    "[| h(D) \<subseteq> D;  !!X. [| h(X) \<subseteq> X;  X<=D |] ==> A<=X |] ==> A \<subseteq> lfp(D,h)"
  | 
| 
13218
 | 
    91  | 
by (unfold lfp_def, blast) 
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
lemma lfp_lemma1:  
  | 
| 
46820
 | 
    94  | 
    "[| bnd_mono(D,h);  h(A)<=A;  A<=D |] ==> h(lfp(D,h)) \<subseteq> A"
  | 
| 
13218
 | 
    95  | 
apply (erule bnd_monoD2 [THEN subset_trans])
  | 
| 
 | 
    96  | 
apply (rule lfp_lowerbound, assumption+)
  | 
| 
 | 
    97  | 
done
  | 
| 
3923
 | 
    98  | 
  | 
| 
46820
 | 
    99  | 
lemma lfp_lemma2: "bnd_mono(D,h) ==> h(lfp(D,h)) \<subseteq> lfp(D,h)"
  | 
| 
13218
 | 
   100  | 
apply (rule bnd_monoD1 [THEN lfp_greatest])
  | 
| 
 | 
   101  | 
apply (rule_tac [2] lfp_lemma1)
  | 
| 
 | 
   102  | 
apply (assumption+)
  | 
| 
 | 
   103  | 
done
  | 
| 
 | 
   104  | 
  | 
| 
 | 
   105  | 
lemma lfp_lemma3: 
  | 
| 
46820
 | 
   106  | 
    "bnd_mono(D,h) ==> lfp(D,h) \<subseteq> h(lfp(D,h))"
  | 
| 
13218
 | 
   107  | 
apply (rule lfp_lowerbound)
  | 
| 
 | 
   108  | 
apply (rule bnd_monoD2, assumption)
  | 
| 
 | 
   109  | 
apply (rule lfp_lemma2, assumption)
  | 
| 
 | 
   110  | 
apply (erule_tac [2] bnd_mono_subset)
  | 
| 
 | 
   111  | 
apply (rule lfp_subset)+
  | 
| 
 | 
   112  | 
done
  | 
| 
 | 
   113  | 
  | 
| 
 | 
   114  | 
lemma lfp_unfold: "bnd_mono(D,h) ==> lfp(D,h) = h(lfp(D,h))"
  | 
| 
 | 
   115  | 
apply (rule equalityI) 
  | 
| 
 | 
   116  | 
apply (erule lfp_lemma3) 
  | 
| 
 | 
   117  | 
apply (erule lfp_lemma2) 
  | 
| 
 | 
   118  | 
done
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
(*Definition form, to control unfolding*)
  | 
| 
 | 
   121  | 
lemma def_lfp_unfold:
  | 
| 
 | 
   122  | 
    "[| A==lfp(D,h);  bnd_mono(D,h) |] ==> A = h(A)"
  | 
| 
 | 
   123  | 
apply simp
  | 
| 
 | 
   124  | 
apply (erule lfp_unfold)
  | 
| 
 | 
   125  | 
done
  | 
| 
 | 
   126  | 
  | 
| 
60770
 | 
   127  | 
subsection\<open>General Induction Rule for Least Fixedpoints\<close>
  | 
| 
13218
 | 
   128  | 
  | 
| 
 | 
   129  | 
lemma Collect_is_pre_fixedpt:
  | 
| 
46820
 | 
   130  | 
    "[| bnd_mono(D,h);  !!x. x \<in> h(Collect(lfp(D,h),P)) ==> P(x) |]
  | 
| 
 | 
   131  | 
     ==> h(Collect(lfp(D,h),P)) \<subseteq> Collect(lfp(D,h),P)"
  | 
| 
13218
 | 
   132  | 
by (blast intro: lfp_lemma2 [THEN subsetD] bnd_monoD2 [THEN subsetD] 
  | 
| 
 | 
   133  | 
                 lfp_subset [THEN subsetD]) 
  | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
(*This rule yields an induction hypothesis in which the components of a
  | 
| 
 | 
   136  | 
  data structure may be assumed to be elements of lfp(D,h)*)
  | 
| 
 | 
   137  | 
lemma induct:
  | 
| 
46820
 | 
   138  | 
    "[| bnd_mono(D,h);  a \<in> lfp(D,h);                    
  | 
| 
 | 
   139  | 
        !!x. x \<in> h(Collect(lfp(D,h),P)) ==> P(x)         
  | 
| 
13218
 | 
   140  | 
     |] ==> P(a)"
  | 
| 
 | 
   141  | 
apply (rule Collect_is_pre_fixedpt
  | 
| 
 | 
   142  | 
              [THEN lfp_lowerbound, THEN subsetD, THEN CollectD2])
  | 
| 
 | 
   143  | 
apply (rule_tac [3] lfp_subset [THEN Collect_subset [THEN subset_trans]], 
  | 
| 
 | 
   144  | 
       blast+)
  | 
| 
 | 
   145  | 
done
  | 
| 
 | 
   146  | 
  | 
| 
 | 
   147  | 
(*Definition form, to control unfolding*)
  | 
| 
 | 
   148  | 
lemma def_induct:
  | 
| 
 | 
   149  | 
    "[| A == lfp(D,h);  bnd_mono(D,h);  a:A;    
  | 
| 
46820
 | 
   150  | 
        !!x. x \<in> h(Collect(A,P)) ==> P(x)  
  | 
| 
13218
 | 
   151  | 
     |] ==> P(a)"
  | 
| 
 | 
   152  | 
by (rule induct, blast+)
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
(*This version is useful when "A" is not a subset of D
  | 
| 
46820
 | 
   155  | 
  second premise could simply be h(D \<inter> A) \<subseteq> D or !!X. X<=D ==> h(X)<=D *)
  | 
| 
13218
 | 
   156  | 
lemma lfp_Int_lowerbound:
  | 
| 
46820
 | 
   157  | 
    "[| h(D \<inter> A) \<subseteq> A;  bnd_mono(D,h) |] ==> lfp(D,h) \<subseteq> A" 
  | 
| 
13218
 | 
   158  | 
apply (rule lfp_lowerbound [THEN subset_trans])
  | 
| 
 | 
   159  | 
apply (erule bnd_mono_subset [THEN Int_greatest], blast+)
  | 
| 
 | 
   160  | 
done
  | 
| 
 | 
   161  | 
  | 
| 
 | 
   162  | 
(*Monotonicity of lfp, where h precedes i under a domain-like partial order
  | 
| 
 | 
   163  | 
  monotonicity of h is not strictly necessary; h must be bounded by D*)
  | 
| 
 | 
   164  | 
lemma lfp_mono:
  | 
| 
 | 
   165  | 
  assumes hmono: "bnd_mono(D,h)"
  | 
| 
 | 
   166  | 
      and imono: "bnd_mono(E,i)"
  | 
| 
46820
 | 
   167  | 
      and subhi: "!!X. X<=D ==> h(X) \<subseteq> i(X)"
  | 
| 
 | 
   168  | 
    shows "lfp(D,h) \<subseteq> lfp(E,i)"
  | 
| 
13218
 | 
   169  | 
apply (rule bnd_monoD1 [THEN lfp_greatest])
  | 
| 
 | 
   170  | 
apply (rule imono)
  | 
| 
 | 
   171  | 
apply (rule hmono [THEN [2] lfp_Int_lowerbound])
  | 
| 
 | 
   172  | 
apply (rule Int_lower1 [THEN subhi, THEN subset_trans])
  | 
| 
 | 
   173  | 
apply (rule imono [THEN bnd_monoD2, THEN subset_trans], auto) 
  | 
| 
 | 
   174  | 
done
  | 
| 
0
 | 
   175  | 
  | 
| 
13218
 | 
   176  | 
(*This (unused) version illustrates that monotonicity is not really needed,
  | 
| 
 | 
   177  | 
  but both lfp's must be over the SAME set D;  Inter is anti-monotonic!*)
  | 
| 
 | 
   178  | 
lemma lfp_mono2:
  | 
| 
46820
 | 
   179  | 
    "[| i(D) \<subseteq> D;  !!X. X<=D ==> h(X) \<subseteq> i(X)  |] ==> lfp(D,h) \<subseteq> lfp(D,i)"
  | 
| 
13218
 | 
   180  | 
apply (rule lfp_greatest, assumption)
  | 
| 
 | 
   181  | 
apply (rule lfp_lowerbound, blast, assumption)
  | 
| 
 | 
   182  | 
done
  | 
| 
 | 
   183  | 
  | 
| 
14046
 | 
   184  | 
lemma lfp_cong:
  | 
| 
46820
 | 
   185  | 
     "[|D=D'; !!X. X \<subseteq> D' ==> h(X) = h'(X)|] ==> lfp(D,h) = lfp(D',h')"
  | 
| 
14046
 | 
   186  | 
apply (simp add: lfp_def)
  | 
| 
 | 
   187  | 
apply (rule_tac t=Inter in subst_context)
  | 
| 
 | 
   188  | 
apply (rule Collect_cong, simp_all) 
  | 
| 
 | 
   189  | 
done 
  | 
| 
13218
 | 
   190  | 
  | 
| 
14046
 | 
   191  | 
  | 
| 
69593
 | 
   192  | 
subsection\<open>Proof of Knaster-Tarski Theorem using \<^term>\<open>gfp\<close>\<close>
  | 
| 
13218
 | 
   193  | 
  | 
| 
 | 
   194  | 
(*gfp contains each post-fixedpoint that is contained in D*)
  | 
| 
46820
 | 
   195  | 
lemma gfp_upperbound: "[| A \<subseteq> h(A);  A<=D |] ==> A \<subseteq> gfp(D,h)"
  | 
| 
13218
 | 
   196  | 
apply (unfold gfp_def)
  | 
| 
 | 
   197  | 
apply (rule PowI [THEN CollectI, THEN Union_upper])
  | 
| 
 | 
   198  | 
apply (assumption+)
  | 
| 
 | 
   199  | 
done
  | 
| 
 | 
   200  | 
  | 
| 
46820
 | 
   201  | 
lemma gfp_subset: "gfp(D,h) \<subseteq> D"
  | 
| 
13218
 | 
   202  | 
by (unfold gfp_def, blast)
  | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
(*Used in datatype package*)
  | 
| 
46820
 | 
   205  | 
lemma def_gfp_subset: "A==gfp(D,h) ==> A \<subseteq> D"
  | 
| 
13218
 | 
   206  | 
apply simp
  | 
| 
 | 
   207  | 
apply (rule gfp_subset)
  | 
| 
 | 
   208  | 
done
  | 
| 
 | 
   209  | 
  | 
| 
 | 
   210  | 
lemma gfp_least: 
  | 
| 
46820
 | 
   211  | 
    "[| bnd_mono(D,h);  !!X. [| X \<subseteq> h(X);  X<=D |] ==> X<=A |] ==>  
  | 
| 
 | 
   212  | 
     gfp(D,h) \<subseteq> A"
  | 
| 
13218
 | 
   213  | 
apply (unfold gfp_def)
  | 
| 
 | 
   214  | 
apply (blast dest: bnd_monoD1) 
  | 
| 
 | 
   215  | 
done
  | 
| 
 | 
   216  | 
  | 
| 
 | 
   217  | 
lemma gfp_lemma1: 
  | 
| 
46820
 | 
   218  | 
    "[| bnd_mono(D,h);  A<=h(A);  A<=D |] ==> A \<subseteq> h(gfp(D,h))"
  | 
| 
13218
 | 
   219  | 
apply (rule subset_trans, assumption)
  | 
| 
 | 
   220  | 
apply (erule bnd_monoD2)
  | 
| 
 | 
   221  | 
apply (rule_tac [2] gfp_subset)
  | 
| 
 | 
   222  | 
apply (simp add: gfp_upperbound)
  | 
| 
 | 
   223  | 
done
  | 
| 
 | 
   224  | 
  | 
| 
46820
 | 
   225  | 
lemma gfp_lemma2: "bnd_mono(D,h) ==> gfp(D,h) \<subseteq> h(gfp(D,h))"
  | 
| 
13218
 | 
   226  | 
apply (rule gfp_least)
  | 
| 
 | 
   227  | 
apply (rule_tac [2] gfp_lemma1)
  | 
| 
 | 
   228  | 
apply (assumption+)
  | 
| 
 | 
   229  | 
done
  | 
| 
 | 
   230  | 
  | 
| 
 | 
   231  | 
lemma gfp_lemma3: 
  | 
| 
46820
 | 
   232  | 
    "bnd_mono(D,h) ==> h(gfp(D,h)) \<subseteq> gfp(D,h)"
  | 
| 
13218
 | 
   233  | 
apply (rule gfp_upperbound)
  | 
| 
 | 
   234  | 
apply (rule bnd_monoD2, assumption)
  | 
| 
 | 
   235  | 
apply (rule gfp_lemma2, assumption)
  | 
| 
 | 
   236  | 
apply (erule bnd_mono_subset, rule gfp_subset)+
  | 
| 
 | 
   237  | 
done
  | 
| 
 | 
   238  | 
  | 
| 
 | 
   239  | 
lemma gfp_unfold: "bnd_mono(D,h) ==> gfp(D,h) = h(gfp(D,h))"
  | 
| 
 | 
   240  | 
apply (rule equalityI) 
  | 
| 
 | 
   241  | 
apply (erule gfp_lemma2) 
  | 
| 
 | 
   242  | 
apply (erule gfp_lemma3) 
  | 
| 
 | 
   243  | 
done
  | 
| 
 | 
   244  | 
  | 
| 
 | 
   245  | 
(*Definition form, to control unfolding*)
  | 
| 
 | 
   246  | 
lemma def_gfp_unfold:
  | 
| 
 | 
   247  | 
    "[| A==gfp(D,h);  bnd_mono(D,h) |] ==> A = h(A)"
  | 
| 
 | 
   248  | 
apply simp
  | 
| 
 | 
   249  | 
apply (erule gfp_unfold)
  | 
| 
 | 
   250  | 
done
  | 
| 
 | 
   251  | 
  | 
| 
 | 
   252  | 
  | 
| 
60770
 | 
   253  | 
subsection\<open>Coinduction Rules for Greatest Fixed Points\<close>
  | 
| 
13218
 | 
   254  | 
  | 
| 
 | 
   255  | 
(*weak version*)
  | 
| 
46820
 | 
   256  | 
lemma weak_coinduct: "[| a: X;  X \<subseteq> h(X);  X \<subseteq> D |] ==> a \<in> gfp(D,h)"
  | 
| 
13218
 | 
   257  | 
by (blast intro: gfp_upperbound [THEN subsetD])
  | 
| 
0
 | 
   258  | 
  | 
| 
13218
 | 
   259  | 
lemma coinduct_lemma:
  | 
| 
46820
 | 
   260  | 
    "[| X \<subseteq> h(X \<union> gfp(D,h));  X \<subseteq> D;  bnd_mono(D,h) |] ==>   
  | 
| 
 | 
   261  | 
     X \<union> gfp(D,h) \<subseteq> h(X \<union> gfp(D,h))"
  | 
| 
13218
 | 
   262  | 
apply (erule Un_least)
  | 
| 
 | 
   263  | 
apply (rule gfp_lemma2 [THEN subset_trans], assumption)
  | 
| 
 | 
   264  | 
apply (rule Un_upper2 [THEN subset_trans])
  | 
| 
 | 
   265  | 
apply (rule bnd_mono_Un, assumption+) 
  | 
| 
 | 
   266  | 
apply (rule gfp_subset)
  | 
| 
 | 
   267  | 
done
  | 
| 
 | 
   268  | 
  | 
| 
 | 
   269  | 
(*strong version*)
  | 
| 
 | 
   270  | 
lemma coinduct:
  | 
| 
46820
 | 
   271  | 
     "[| bnd_mono(D,h);  a: X;  X \<subseteq> h(X \<union> gfp(D,h));  X \<subseteq> D |]
  | 
| 
 | 
   272  | 
      ==> a \<in> gfp(D,h)"
  | 
| 
13218
 | 
   273  | 
apply (rule weak_coinduct)
  | 
| 
 | 
   274  | 
apply (erule_tac [2] coinduct_lemma)
  | 
| 
 | 
   275  | 
apply (simp_all add: gfp_subset Un_subset_iff) 
  | 
| 
 | 
   276  | 
done
  | 
| 
 | 
   277  | 
  | 
| 
 | 
   278  | 
(*Definition form, to control unfolding*)
  | 
| 
 | 
   279  | 
lemma def_coinduct:
  | 
| 
46820
 | 
   280  | 
    "[| A == gfp(D,h);  bnd_mono(D,h);  a: X;  X \<subseteq> h(X \<union> A);  X \<subseteq> D |] ==>  
  | 
| 
 | 
   281  | 
     a \<in> A"
  | 
| 
13218
 | 
   282  | 
apply simp
  | 
| 
 | 
   283  | 
apply (rule coinduct, assumption+)
  | 
| 
 | 
   284  | 
done
  | 
| 
 | 
   285  | 
  | 
| 
 | 
   286  | 
(*The version used in the induction/coinduction package*)
  | 
| 
 | 
   287  | 
lemma def_Collect_coinduct:
  | 
| 
 | 
   288  | 
    "[| A == gfp(D, %w. Collect(D,P(w)));  bnd_mono(D, %w. Collect(D,P(w)));   
  | 
| 
46820
 | 
   289  | 
        a: X;  X \<subseteq> D;  !!z. z: X ==> P(X \<union> A, z) |] ==>  
  | 
| 
 | 
   290  | 
     a \<in> A"
  | 
| 
13218
 | 
   291  | 
apply (rule def_coinduct, assumption+, blast+)
  | 
| 
 | 
   292  | 
done
  | 
| 
0
 | 
   293  | 
  | 
| 
13218
 | 
   294  | 
(*Monotonicity of gfp!*)
  | 
| 
 | 
   295  | 
lemma gfp_mono:
  | 
| 
46820
 | 
   296  | 
    "[| bnd_mono(D,h);  D \<subseteq> E;                  
  | 
| 
 | 
   297  | 
        !!X. X<=D ==> h(X) \<subseteq> i(X)  |] ==> gfp(D,h) \<subseteq> gfp(E,i)"
  | 
| 
13218
 | 
   298  | 
apply (rule gfp_upperbound)
  | 
| 
 | 
   299  | 
apply (rule gfp_lemma2 [THEN subset_trans], assumption)
  | 
| 
 | 
   300  | 
apply (blast del: subsetI intro: gfp_subset) 
  | 
| 
 | 
   301  | 
apply (blast del: subsetI intro: subset_trans gfp_subset) 
  | 
| 
 | 
   302  | 
done
  | 
| 
 | 
   303  | 
  | 
| 
0
 | 
   304  | 
end
  |