2469
|
1 |
(* Title: ZF/upair.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
13259
|
5 |
|
|
6 |
Observe the order of dependence:
|
|
7 |
Upair is defined in terms of Replace
|
|
8 |
Un is defined in terms of Upair and Union (similarly for Int)
|
|
9 |
cons is defined in terms of Upair and Un
|
|
10 |
Ordered pairs and descriptions are defined using cons ("set notation")
|
2469
|
11 |
*)
|
|
12 |
|
13357
|
13 |
header{*Unordered Pairs*}
|
|
14 |
|
16417
|
15 |
theory upair imports ZF
|
|
16 |
uses "Tools/typechk.ML" begin
|
6153
|
17 |
|
9907
|
18 |
setup TypeCheck.setup
|
6153
|
19 |
|
13780
|
20 |
lemma atomize_ball [symmetric, rulify]:
|
|
21 |
"(!!x. x:A ==> P(x)) == Trueprop (ALL x:A. P(x))"
|
|
22 |
by (simp add: Ball_def atomize_all atomize_imp)
|
13259
|
23 |
|
|
24 |
|
13357
|
25 |
subsection{*Unordered Pairs: constant @{term Upair}*}
|
13259
|
26 |
|
|
27 |
lemma Upair_iff [simp]: "c : Upair(a,b) <-> (c=a | c=b)"
|
|
28 |
by (unfold Upair_def, blast)
|
|
29 |
|
|
30 |
lemma UpairI1: "a : Upair(a,b)"
|
|
31 |
by simp
|
|
32 |
|
|
33 |
lemma UpairI2: "b : Upair(a,b)"
|
|
34 |
by simp
|
|
35 |
|
13780
|
36 |
lemma UpairE: "[| a : Upair(b,c); a=b ==> P; a=c ==> P |] ==> P"
|
|
37 |
by (simp, blast)
|
13259
|
38 |
|
13357
|
39 |
subsection{*Rules for Binary Union, Defined via @{term Upair}*}
|
13259
|
40 |
|
|
41 |
lemma Un_iff [simp]: "c : A Un B <-> (c:A | c:B)"
|
|
42 |
apply (simp add: Un_def)
|
|
43 |
apply (blast intro: UpairI1 UpairI2 elim: UpairE)
|
|
44 |
done
|
|
45 |
|
|
46 |
lemma UnI1: "c : A ==> c : A Un B"
|
|
47 |
by simp
|
|
48 |
|
|
49 |
lemma UnI2: "c : B ==> c : A Un B"
|
|
50 |
by simp
|
|
51 |
|
13356
|
52 |
declare UnI1 [elim?] UnI2 [elim?]
|
|
53 |
|
13259
|
54 |
lemma UnE [elim!]: "[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P"
|
13780
|
55 |
by (simp, blast)
|
13259
|
56 |
|
|
57 |
(*Stronger version of the rule above*)
|
|
58 |
lemma UnE': "[| c : A Un B; c:A ==> P; [| c:B; c~:A |] ==> P |] ==> P"
|
13780
|
59 |
by (simp, blast)
|
13259
|
60 |
|
|
61 |
(*Classical introduction rule: no commitment to A vs B*)
|
|
62 |
lemma UnCI [intro!]: "(c ~: B ==> c : A) ==> c : A Un B"
|
13780
|
63 |
by (simp, blast)
|
13259
|
64 |
|
13357
|
65 |
subsection{*Rules for Binary Intersection, Defined via @{term Upair}*}
|
13259
|
66 |
|
|
67 |
lemma Int_iff [simp]: "c : A Int B <-> (c:A & c:B)"
|
|
68 |
apply (unfold Int_def)
|
|
69 |
apply (blast intro: UpairI1 UpairI2 elim: UpairE)
|
|
70 |
done
|
|
71 |
|
|
72 |
lemma IntI [intro!]: "[| c : A; c : B |] ==> c : A Int B"
|
|
73 |
by simp
|
|
74 |
|
|
75 |
lemma IntD1: "c : A Int B ==> c : A"
|
|
76 |
by simp
|
|
77 |
|
|
78 |
lemma IntD2: "c : A Int B ==> c : B"
|
|
79 |
by simp
|
|
80 |
|
|
81 |
lemma IntE [elim!]: "[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P"
|
|
82 |
by simp
|
|
83 |
|
|
84 |
|
13357
|
85 |
subsection{*Rules for Set Difference, Defined via @{term Upair}*}
|
13259
|
86 |
|
|
87 |
lemma Diff_iff [simp]: "c : A-B <-> (c:A & c~:B)"
|
|
88 |
by (unfold Diff_def, blast)
|
|
89 |
|
|
90 |
lemma DiffI [intro!]: "[| c : A; c ~: B |] ==> c : A - B"
|
|
91 |
by simp
|
|
92 |
|
|
93 |
lemma DiffD1: "c : A - B ==> c : A"
|
|
94 |
by simp
|
|
95 |
|
|
96 |
lemma DiffD2: "c : A - B ==> c ~: B"
|
|
97 |
by simp
|
|
98 |
|
|
99 |
lemma DiffE [elim!]: "[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P"
|
|
100 |
by simp
|
|
101 |
|
|
102 |
|
13357
|
103 |
subsection{*Rules for @{term cons}*}
|
13259
|
104 |
|
|
105 |
lemma cons_iff [simp]: "a : cons(b,A) <-> (a=b | a:A)"
|
|
106 |
apply (unfold cons_def)
|
|
107 |
apply (blast intro: UpairI1 UpairI2 elim: UpairE)
|
|
108 |
done
|
|
109 |
|
|
110 |
(*risky as a typechecking rule, but solves otherwise unconstrained goals of
|
|
111 |
the form x : ?A*)
|
|
112 |
lemma consI1 [simp,TC]: "a : cons(a,B)"
|
|
113 |
by simp
|
|
114 |
|
|
115 |
|
|
116 |
lemma consI2: "a : B ==> a : cons(b,B)"
|
|
117 |
by simp
|
|
118 |
|
13780
|
119 |
lemma consE [elim!]: "[| a : cons(b,A); a=b ==> P; a:A ==> P |] ==> P"
|
|
120 |
by (simp, blast)
|
13259
|
121 |
|
|
122 |
(*Stronger version of the rule above*)
|
|
123 |
lemma consE':
|
|
124 |
"[| a : cons(b,A); a=b ==> P; [| a:A; a~=b |] ==> P |] ==> P"
|
13780
|
125 |
by (simp, blast)
|
13259
|
126 |
|
|
127 |
(*Classical introduction rule*)
|
|
128 |
lemma consCI [intro!]: "(a~:B ==> a=b) ==> a: cons(b,B)"
|
13780
|
129 |
by (simp, blast)
|
13259
|
130 |
|
|
131 |
lemma cons_not_0 [simp]: "cons(a,B) ~= 0"
|
|
132 |
by (blast elim: equalityE)
|
|
133 |
|
|
134 |
lemmas cons_neq_0 = cons_not_0 [THEN notE, standard]
|
|
135 |
|
|
136 |
declare cons_not_0 [THEN not_sym, simp]
|
|
137 |
|
|
138 |
|
13357
|
139 |
subsection{*Singletons*}
|
13259
|
140 |
|
|
141 |
lemma singleton_iff: "a : {b} <-> a=b"
|
|
142 |
by simp
|
|
143 |
|
|
144 |
lemma singletonI [intro!]: "a : {a}"
|
|
145 |
by (rule consI1)
|
|
146 |
|
|
147 |
lemmas singletonE = singleton_iff [THEN iffD1, elim_format, standard, elim!]
|
|
148 |
|
|
149 |
|
14883
|
150 |
subsection{*Descriptions*}
|
13259
|
151 |
|
|
152 |
lemma the_equality [intro]:
|
|
153 |
"[| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a"
|
|
154 |
apply (unfold the_def)
|
|
155 |
apply (fast dest: subst)
|
|
156 |
done
|
|
157 |
|
|
158 |
(* Only use this if you already know EX!x. P(x) *)
|
|
159 |
lemma the_equality2: "[| EX! x. P(x); P(a) |] ==> (THE x. P(x)) = a"
|
|
160 |
by blast
|
|
161 |
|
|
162 |
lemma theI: "EX! x. P(x) ==> P(THE x. P(x))"
|
|
163 |
apply (erule ex1E)
|
|
164 |
apply (subst the_equality)
|
|
165 |
apply (blast+)
|
|
166 |
done
|
|
167 |
|
|
168 |
(*the_cong is no longer necessary: if (ALL y.P(y)<->Q(y)) then
|
|
169 |
(THE x.P(x)) rewrites to (THE x. Q(x)) *)
|
|
170 |
|
|
171 |
(*If it's "undefined", it's zero!*)
|
|
172 |
lemma the_0: "~ (EX! x. P(x)) ==> (THE x. P(x))=0"
|
|
173 |
apply (unfold the_def)
|
|
174 |
apply (blast elim!: ReplaceE)
|
|
175 |
done
|
|
176 |
|
|
177 |
(*Easier to apply than theI: conclusion has only one occurrence of P*)
|
|
178 |
lemma theI2:
|
|
179 |
assumes p1: "~ Q(0) ==> EX! x. P(x)"
|
|
180 |
and p2: "!!x. P(x) ==> Q(x)"
|
|
181 |
shows "Q(THE x. P(x))"
|
|
182 |
apply (rule classical)
|
|
183 |
apply (rule p2)
|
|
184 |
apply (rule theI)
|
|
185 |
apply (rule classical)
|
|
186 |
apply (rule p1)
|
|
187 |
apply (erule the_0 [THEN subst], assumption)
|
|
188 |
done
|
|
189 |
|
13357
|
190 |
lemma the_eq_trivial [simp]: "(THE x. x = a) = a"
|
|
191 |
by blast
|
|
192 |
|
13544
|
193 |
lemma the_eq_trivial2 [simp]: "(THE x. a = x) = a"
|
|
194 |
by blast
|
|
195 |
|
13780
|
196 |
|
13357
|
197 |
subsection{*Conditional Terms: @{text "if-then-else"}*}
|
13259
|
198 |
|
|
199 |
lemma if_true [simp]: "(if True then a else b) = a"
|
|
200 |
by (unfold if_def, blast)
|
|
201 |
|
|
202 |
lemma if_false [simp]: "(if False then a else b) = b"
|
|
203 |
by (unfold if_def, blast)
|
|
204 |
|
|
205 |
(*Never use with case splitting, or if P is known to be true or false*)
|
|
206 |
lemma if_cong:
|
|
207 |
"[| P<->Q; Q ==> a=c; ~Q ==> b=d |]
|
|
208 |
==> (if P then a else b) = (if Q then c else d)"
|
|
209 |
by (simp add: if_def cong add: conj_cong)
|
|
210 |
|
|
211 |
(*Prevents simplification of x and y: faster and allows the execution
|
|
212 |
of functional programs. NOW THE DEFAULT.*)
|
|
213 |
lemma if_weak_cong: "P<->Q ==> (if P then x else y) = (if Q then x else y)"
|
|
214 |
by simp
|
|
215 |
|
|
216 |
(*Not needed for rewriting, since P would rewrite to True anyway*)
|
|
217 |
lemma if_P: "P ==> (if P then a else b) = a"
|
|
218 |
by (unfold if_def, blast)
|
|
219 |
|
|
220 |
(*Not needed for rewriting, since P would rewrite to False anyway*)
|
|
221 |
lemma if_not_P: "~P ==> (if P then a else b) = b"
|
|
222 |
by (unfold if_def, blast)
|
|
223 |
|
13780
|
224 |
lemma split_if [split]:
|
|
225 |
"P(if Q then x else y) <-> ((Q --> P(x)) & (~Q --> P(y)))"
|
14153
|
226 |
by (case_tac Q, simp_all)
|
13259
|
227 |
|
|
228 |
(** Rewrite rules for boolean case-splitting: faster than
|
|
229 |
addsplits[split_if]
|
|
230 |
**)
|
|
231 |
|
|
232 |
lemmas split_if_eq1 = split_if [of "%x. x = b", standard]
|
|
233 |
lemmas split_if_eq2 = split_if [of "%x. a = x", standard]
|
|
234 |
|
|
235 |
lemmas split_if_mem1 = split_if [of "%x. x : b", standard]
|
|
236 |
lemmas split_if_mem2 = split_if [of "%x. a : x", standard]
|
|
237 |
|
|
238 |
lemmas split_ifs = split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2
|
|
239 |
|
|
240 |
(*Logically equivalent to split_if_mem2*)
|
|
241 |
lemma if_iff: "a: (if P then x else y) <-> P & a:x | ~P & a:y"
|
13780
|
242 |
by simp
|
13259
|
243 |
|
|
244 |
lemma if_type [TC]:
|
|
245 |
"[| P ==> a: A; ~P ==> b: A |] ==> (if P then a else b): A"
|
13780
|
246 |
by simp
|
|
247 |
|
|
248 |
(** Splitting IFs in the assumptions **)
|
|
249 |
|
|
250 |
lemma split_if_asm: "P(if Q then x else y) <-> (~((Q & ~P(x)) | (~Q & ~P(y))))"
|
|
251 |
by simp
|
|
252 |
|
|
253 |
lemmas if_splits = split_if split_if_asm
|
13259
|
254 |
|
|
255 |
|
13357
|
256 |
subsection{*Consequences of Foundation*}
|
13259
|
257 |
|
|
258 |
(*was called mem_anti_sym*)
|
|
259 |
lemma mem_asym: "[| a:b; ~P ==> b:a |] ==> P"
|
|
260 |
apply (rule classical)
|
|
261 |
apply (rule_tac A1 = "{a,b}" in foundation [THEN disjE])
|
|
262 |
apply (blast elim!: equalityE)+
|
|
263 |
done
|
|
264 |
|
|
265 |
(*was called mem_anti_refl*)
|
|
266 |
lemma mem_irrefl: "a:a ==> P"
|
|
267 |
by (blast intro: mem_asym)
|
|
268 |
|
|
269 |
(*mem_irrefl should NOT be added to default databases:
|
|
270 |
it would be tried on most goals, making proofs slower!*)
|
|
271 |
|
|
272 |
lemma mem_not_refl: "a ~: a"
|
|
273 |
apply (rule notI)
|
|
274 |
apply (erule mem_irrefl)
|
|
275 |
done
|
|
276 |
|
|
277 |
(*Good for proving inequalities by rewriting*)
|
|
278 |
lemma mem_imp_not_eq: "a:A ==> a ~= A"
|
|
279 |
by (blast elim!: mem_irrefl)
|
|
280 |
|
13357
|
281 |
lemma eq_imp_not_mem: "a=A ==> a ~: A"
|
|
282 |
by (blast intro: elim: mem_irrefl)
|
|
283 |
|
|
284 |
subsection{*Rules for Successor*}
|
13259
|
285 |
|
|
286 |
lemma succ_iff: "i : succ(j) <-> i=j | i:j"
|
|
287 |
by (unfold succ_def, blast)
|
|
288 |
|
|
289 |
lemma succI1 [simp]: "i : succ(i)"
|
|
290 |
by (simp add: succ_iff)
|
|
291 |
|
|
292 |
lemma succI2: "i : j ==> i : succ(j)"
|
|
293 |
by (simp add: succ_iff)
|
|
294 |
|
|
295 |
lemma succE [elim!]:
|
|
296 |
"[| i : succ(j); i=j ==> P; i:j ==> P |] ==> P"
|
|
297 |
apply (simp add: succ_iff, blast)
|
|
298 |
done
|
|
299 |
|
|
300 |
(*Classical introduction rule*)
|
|
301 |
lemma succCI [intro!]: "(i~:j ==> i=j) ==> i: succ(j)"
|
|
302 |
by (simp add: succ_iff, blast)
|
|
303 |
|
|
304 |
lemma succ_not_0 [simp]: "succ(n) ~= 0"
|
|
305 |
by (blast elim!: equalityE)
|
|
306 |
|
|
307 |
lemmas succ_neq_0 = succ_not_0 [THEN notE, standard, elim!]
|
|
308 |
|
|
309 |
declare succ_not_0 [THEN not_sym, simp]
|
|
310 |
declare sym [THEN succ_neq_0, elim!]
|
|
311 |
|
|
312 |
(* succ(c) <= B ==> c : B *)
|
|
313 |
lemmas succ_subsetD = succI1 [THEN [2] subsetD]
|
|
314 |
|
|
315 |
(* succ(b) ~= b *)
|
|
316 |
lemmas succ_neq_self = succI1 [THEN mem_imp_not_eq, THEN not_sym, standard]
|
|
317 |
|
|
318 |
lemma succ_inject_iff [simp]: "succ(m) = succ(n) <-> m=n"
|
|
319 |
by (blast elim: mem_asym elim!: equalityE)
|
|
320 |
|
|
321 |
lemmas succ_inject = succ_inject_iff [THEN iffD1, standard, dest!]
|
|
322 |
|
13780
|
323 |
|
|
324 |
subsection{*Miniscoping of the Bounded Universal Quantifier*}
|
|
325 |
|
|
326 |
lemma ball_simps1:
|
|
327 |
"(ALL x:A. P(x) & Q) <-> (ALL x:A. P(x)) & (A=0 | Q)"
|
|
328 |
"(ALL x:A. P(x) | Q) <-> ((ALL x:A. P(x)) | Q)"
|
|
329 |
"(ALL x:A. P(x) --> Q) <-> ((EX x:A. P(x)) --> Q)"
|
|
330 |
"(~(ALL x:A. P(x))) <-> (EX x:A. ~P(x))"
|
|
331 |
"(ALL x:0.P(x)) <-> True"
|
|
332 |
"(ALL x:succ(i).P(x)) <-> P(i) & (ALL x:i. P(x))"
|
|
333 |
"(ALL x:cons(a,B).P(x)) <-> P(a) & (ALL x:B. P(x))"
|
|
334 |
"(ALL x:RepFun(A,f). P(x)) <-> (ALL y:A. P(f(y)))"
|
|
335 |
"(ALL x:Union(A).P(x)) <-> (ALL y:A. ALL x:y. P(x))"
|
|
336 |
by blast+
|
|
337 |
|
|
338 |
lemma ball_simps2:
|
|
339 |
"(ALL x:A. P & Q(x)) <-> (A=0 | P) & (ALL x:A. Q(x))"
|
|
340 |
"(ALL x:A. P | Q(x)) <-> (P | (ALL x:A. Q(x)))"
|
|
341 |
"(ALL x:A. P --> Q(x)) <-> (P --> (ALL x:A. Q(x)))"
|
|
342 |
by blast+
|
|
343 |
|
|
344 |
lemma ball_simps3:
|
|
345 |
"(ALL x:Collect(A,Q).P(x)) <-> (ALL x:A. Q(x) --> P(x))"
|
|
346 |
by blast+
|
|
347 |
|
|
348 |
lemmas ball_simps [simp] = ball_simps1 ball_simps2 ball_simps3
|
|
349 |
|
|
350 |
lemma ball_conj_distrib:
|
|
351 |
"(ALL x:A. P(x) & Q(x)) <-> ((ALL x:A. P(x)) & (ALL x:A. Q(x)))"
|
|
352 |
by blast
|
|
353 |
|
|
354 |
|
|
355 |
subsection{*Miniscoping of the Bounded Existential Quantifier*}
|
|
356 |
|
|
357 |
lemma bex_simps1:
|
|
358 |
"(EX x:A. P(x) & Q) <-> ((EX x:A. P(x)) & Q)"
|
|
359 |
"(EX x:A. P(x) | Q) <-> (EX x:A. P(x)) | (A~=0 & Q)"
|
|
360 |
"(EX x:A. P(x) --> Q) <-> ((ALL x:A. P(x)) --> (A~=0 & Q))"
|
|
361 |
"(EX x:0.P(x)) <-> False"
|
|
362 |
"(EX x:succ(i).P(x)) <-> P(i) | (EX x:i. P(x))"
|
|
363 |
"(EX x:cons(a,B).P(x)) <-> P(a) | (EX x:B. P(x))"
|
|
364 |
"(EX x:RepFun(A,f). P(x)) <-> (EX y:A. P(f(y)))"
|
|
365 |
"(EX x:Union(A).P(x)) <-> (EX y:A. EX x:y. P(x))"
|
|
366 |
"(~(EX x:A. P(x))) <-> (ALL x:A. ~P(x))"
|
|
367 |
by blast+
|
|
368 |
|
|
369 |
lemma bex_simps2:
|
|
370 |
"(EX x:A. P & Q(x)) <-> (P & (EX x:A. Q(x)))"
|
|
371 |
"(EX x:A. P | Q(x)) <-> (A~=0 & P) | (EX x:A. Q(x))"
|
|
372 |
"(EX x:A. P --> Q(x)) <-> ((A=0 | P) --> (EX x:A. Q(x)))"
|
|
373 |
by blast+
|
|
374 |
|
|
375 |
lemma bex_simps3:
|
|
376 |
"(EX x:Collect(A,Q).P(x)) <-> (EX x:A. Q(x) & P(x))"
|
|
377 |
by blast
|
|
378 |
|
|
379 |
lemmas bex_simps [simp] = bex_simps1 bex_simps2 bex_simps3
|
|
380 |
|
|
381 |
lemma bex_disj_distrib:
|
|
382 |
"(EX x:A. P(x) | Q(x)) <-> ((EX x:A. P(x)) | (EX x:A. Q(x)))"
|
|
383 |
by blast
|
|
384 |
|
|
385 |
|
|
386 |
(** One-point rule for bounded quantifiers: see HOL/Set.ML **)
|
|
387 |
|
|
388 |
lemma bex_triv_one_point1 [simp]: "(EX x:A. x=a) <-> (a:A)"
|
|
389 |
by blast
|
|
390 |
|
|
391 |
lemma bex_triv_one_point2 [simp]: "(EX x:A. a=x) <-> (a:A)"
|
|
392 |
by blast
|
|
393 |
|
|
394 |
lemma bex_one_point1 [simp]: "(EX x:A. x=a & P(x)) <-> (a:A & P(a))"
|
|
395 |
by blast
|
|
396 |
|
|
397 |
lemma bex_one_point2 [simp]: "(EX x:A. a=x & P(x)) <-> (a:A & P(a))"
|
|
398 |
by blast
|
|
399 |
|
|
400 |
lemma ball_one_point1 [simp]: "(ALL x:A. x=a --> P(x)) <-> (a:A --> P(a))"
|
|
401 |
by blast
|
|
402 |
|
|
403 |
lemma ball_one_point2 [simp]: "(ALL x:A. a=x --> P(x)) <-> (a:A --> P(a))"
|
|
404 |
by blast
|
|
405 |
|
|
406 |
|
|
407 |
subsection{*Miniscoping of the Replacement Operator*}
|
|
408 |
|
|
409 |
text{*These cover both @{term Replace} and @{term Collect}*}
|
|
410 |
lemma Rep_simps [simp]:
|
|
411 |
"{x. y:0, R(x,y)} = 0"
|
|
412 |
"{x:0. P(x)} = 0"
|
|
413 |
"{x:A. Q} = (if Q then A else 0)"
|
|
414 |
"RepFun(0,f) = 0"
|
|
415 |
"RepFun(succ(i),f) = cons(f(i), RepFun(i,f))"
|
|
416 |
"RepFun(cons(a,B),f) = cons(f(a), RepFun(B,f))"
|
|
417 |
by (simp_all, blast+)
|
|
418 |
|
|
419 |
|
|
420 |
subsection{*Miniscoping of Unions*}
|
|
421 |
|
|
422 |
lemma UN_simps1:
|
|
423 |
"(UN x:C. cons(a, B(x))) = (if C=0 then 0 else cons(a, UN x:C. B(x)))"
|
|
424 |
"(UN x:C. A(x) Un B') = (if C=0 then 0 else (UN x:C. A(x)) Un B')"
|
|
425 |
"(UN x:C. A' Un B(x)) = (if C=0 then 0 else A' Un (UN x:C. B(x)))"
|
|
426 |
"(UN x:C. A(x) Int B') = ((UN x:C. A(x)) Int B')"
|
|
427 |
"(UN x:C. A' Int B(x)) = (A' Int (UN x:C. B(x)))"
|
|
428 |
"(UN x:C. A(x) - B') = ((UN x:C. A(x)) - B')"
|
|
429 |
"(UN x:C. A' - B(x)) = (if C=0 then 0 else A' - (INT x:C. B(x)))"
|
|
430 |
apply (simp_all add: Inter_def)
|
|
431 |
apply (blast intro!: equalityI )+
|
|
432 |
done
|
|
433 |
|
|
434 |
lemma UN_simps2:
|
|
435 |
"(UN x: Union(A). B(x)) = (UN y:A. UN x:y. B(x))"
|
|
436 |
"(UN z: (UN x:A. B(x)). C(z)) = (UN x:A. UN z: B(x). C(z))"
|
|
437 |
"(UN x: RepFun(A,f). B(x)) = (UN a:A. B(f(a)))"
|
|
438 |
by blast+
|
|
439 |
|
|
440 |
lemmas UN_simps [simp] = UN_simps1 UN_simps2
|
|
441 |
|
|
442 |
text{*Opposite of miniscoping: pull the operator out*}
|
|
443 |
|
|
444 |
lemma UN_extend_simps1:
|
|
445 |
"(UN x:C. A(x)) Un B = (if C=0 then B else (UN x:C. A(x) Un B))"
|
|
446 |
"((UN x:C. A(x)) Int B) = (UN x:C. A(x) Int B)"
|
|
447 |
"((UN x:C. A(x)) - B) = (UN x:C. A(x) - B)"
|
|
448 |
apply simp_all
|
|
449 |
apply blast+
|
|
450 |
done
|
|
451 |
|
|
452 |
lemma UN_extend_simps2:
|
|
453 |
"cons(a, UN x:C. B(x)) = (if C=0 then {a} else (UN x:C. cons(a, B(x))))"
|
|
454 |
"A Un (UN x:C. B(x)) = (if C=0 then A else (UN x:C. A Un B(x)))"
|
|
455 |
"(A Int (UN x:C. B(x))) = (UN x:C. A Int B(x))"
|
|
456 |
"A - (INT x:C. B(x)) = (if C=0 then A else (UN x:C. A - B(x)))"
|
|
457 |
"(UN y:A. UN x:y. B(x)) = (UN x: Union(A). B(x))"
|
|
458 |
"(UN a:A. B(f(a))) = (UN x: RepFun(A,f). B(x))"
|
|
459 |
apply (simp_all add: Inter_def)
|
|
460 |
apply (blast intro!: equalityI)+
|
|
461 |
done
|
|
462 |
|
|
463 |
lemma UN_UN_extend:
|
|
464 |
"(UN x:A. UN z: B(x). C(z)) = (UN z: (UN x:A. B(x)). C(z))"
|
|
465 |
by blast
|
|
466 |
|
|
467 |
lemmas UN_extend_simps = UN_extend_simps1 UN_extend_simps2 UN_UN_extend
|
|
468 |
|
|
469 |
|
|
470 |
subsection{*Miniscoping of Intersections*}
|
|
471 |
|
|
472 |
lemma INT_simps1:
|
|
473 |
"(INT x:C. A(x) Int B) = (INT x:C. A(x)) Int B"
|
|
474 |
"(INT x:C. A(x) - B) = (INT x:C. A(x)) - B"
|
|
475 |
"(INT x:C. A(x) Un B) = (if C=0 then 0 else (INT x:C. A(x)) Un B)"
|
|
476 |
by (simp_all add: Inter_def, blast+)
|
|
477 |
|
|
478 |
lemma INT_simps2:
|
|
479 |
"(INT x:C. A Int B(x)) = A Int (INT x:C. B(x))"
|
|
480 |
"(INT x:C. A - B(x)) = (if C=0 then 0 else A - (UN x:C. B(x)))"
|
|
481 |
"(INT x:C. cons(a, B(x))) = (if C=0 then 0 else cons(a, INT x:C. B(x)))"
|
|
482 |
"(INT x:C. A Un B(x)) = (if C=0 then 0 else A Un (INT x:C. B(x)))"
|
|
483 |
apply (simp_all add: Inter_def)
|
|
484 |
apply (blast intro!: equalityI)+
|
|
485 |
done
|
|
486 |
|
|
487 |
lemmas INT_simps [simp] = INT_simps1 INT_simps2
|
|
488 |
|
|
489 |
text{*Opposite of miniscoping: pull the operator out*}
|
|
490 |
|
|
491 |
|
|
492 |
lemma INT_extend_simps1:
|
|
493 |
"(INT x:C. A(x)) Int B = (INT x:C. A(x) Int B)"
|
|
494 |
"(INT x:C. A(x)) - B = (INT x:C. A(x) - B)"
|
|
495 |
"(INT x:C. A(x)) Un B = (if C=0 then B else (INT x:C. A(x) Un B))"
|
|
496 |
apply (simp_all add: Inter_def, blast+)
|
|
497 |
done
|
|
498 |
|
|
499 |
lemma INT_extend_simps2:
|
|
500 |
"A Int (INT x:C. B(x)) = (INT x:C. A Int B(x))"
|
|
501 |
"A - (UN x:C. B(x)) = (if C=0 then A else (INT x:C. A - B(x)))"
|
|
502 |
"cons(a, INT x:C. B(x)) = (if C=0 then {a} else (INT x:C. cons(a, B(x))))"
|
|
503 |
"A Un (INT x:C. B(x)) = (if C=0 then A else (INT x:C. A Un B(x)))"
|
|
504 |
apply (simp_all add: Inter_def)
|
|
505 |
apply (blast intro!: equalityI)+
|
|
506 |
done
|
|
507 |
|
|
508 |
lemmas INT_extend_simps = INT_extend_simps1 INT_extend_simps2
|
|
509 |
|
|
510 |
|
|
511 |
subsection{*Other simprules*}
|
|
512 |
|
|
513 |
|
|
514 |
(*** Miniscoping: pushing in big Unions, Intersections, quantifiers, etc. ***)
|
|
515 |
|
|
516 |
lemma misc_simps [simp]:
|
|
517 |
"0 Un A = A"
|
|
518 |
"A Un 0 = A"
|
|
519 |
"0 Int A = 0"
|
|
520 |
"A Int 0 = 0"
|
|
521 |
"0 - A = 0"
|
|
522 |
"A - 0 = A"
|
|
523 |
"Union(0) = 0"
|
|
524 |
"Union(cons(b,A)) = b Un Union(A)"
|
|
525 |
"Inter({b}) = b"
|
|
526 |
by blast+
|
|
527 |
|
6153
|
528 |
end
|