| author | kuncar | 
| Fri, 08 Mar 2013 13:21:55 +0100 | |
| changeset 51378 | 502f6a53519b | 
| parent 44872 | a98ef45122f3 | 
| child 53077 | a1b3784f8129 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Number_Theory/Fib.thy | 
| 2 | Author: Lawrence C. Paulson | |
| 3 | Author: Jeremy Avigad | |
| 31719 | 4 | |
| 5 | Defines the fibonacci function. | |
| 6 | ||
| 7 | The original "Fib" is due to Lawrence C. Paulson, and was adapted by | |
| 8 | Jeremy Avigad. | |
| 9 | *) | |
| 10 | ||
| 11 | header {* Fib *}
 | |
| 12 | ||
| 13 | theory Fib | |
| 14 | imports Binomial | |
| 15 | begin | |
| 16 | ||
| 17 | ||
| 18 | subsection {* Main definitions *}
 | |
| 19 | ||
| 20 | class fib = | |
| 44872 | 21 | fixes fib :: "'a \<Rightarrow> 'a" | 
| 31719 | 22 | |
| 23 | ||
| 24 | (* definition for the natural numbers *) | |
| 25 | ||
| 26 | instantiation nat :: fib | |
| 44872 | 27 | begin | 
| 31719 | 28 | |
| 44872 | 29 | fun fib_nat :: "nat \<Rightarrow> nat" | 
| 31719 | 30 | where | 
| 31 | "fib_nat n = | |
| 32 | (if n = 0 then 0 else | |
| 33 | (if n = 1 then 1 else | |
| 34 | fib (n - 1) + fib (n - 2)))" | |
| 35 | ||
| 44872 | 36 | instance .. | 
| 31719 | 37 | |
| 38 | end | |
| 39 | ||
| 40 | (* definition for the integers *) | |
| 41 | ||
| 42 | instantiation int :: fib | |
| 44872 | 43 | begin | 
| 31719 | 44 | |
| 44872 | 45 | definition fib_int :: "int \<Rightarrow> int" | 
| 46 | where "fib_int n = (if n >= 0 then int (fib (nat n)) else 0)" | |
| 31719 | 47 | |
| 44872 | 48 | instance .. | 
| 31719 | 49 | |
| 50 | end | |
| 51 | ||
| 52 | ||
| 53 | subsection {* Set up Transfer *}
 | |
| 54 | ||
| 55 | lemma transfer_nat_int_fib: | |
| 56 | "(x::int) >= 0 \<Longrightarrow> fib (nat x) = nat (fib x)" | |
| 57 | unfolding fib_int_def by auto | |
| 58 | ||
| 59 | lemma transfer_nat_int_fib_closure: | |
| 60 | "n >= (0::int) \<Longrightarrow> fib n >= 0" | |
| 61 | by (auto simp add: fib_int_def) | |
| 62 | ||
| 44872 | 63 | declare transfer_morphism_nat_int[transfer add return: | 
| 31719 | 64 | transfer_nat_int_fib transfer_nat_int_fib_closure] | 
| 65 | ||
| 44872 | 66 | lemma transfer_int_nat_fib: "fib (int n) = int (fib n)" | 
| 31719 | 67 | unfolding fib_int_def by auto | 
| 68 | ||
| 44872 | 69 | lemma transfer_int_nat_fib_closure: "is_nat n \<Longrightarrow> fib n >= 0" | 
| 31719 | 70 | unfolding fib_int_def by auto | 
| 71 | ||
| 44872 | 72 | declare transfer_morphism_int_nat[transfer add return: | 
| 31719 | 73 | transfer_int_nat_fib transfer_int_nat_fib_closure] | 
| 74 | ||
| 75 | ||
| 76 | subsection {* Fibonacci numbers *}
 | |
| 77 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 78 | lemma fib_0_nat [simp]: "fib (0::nat) = 0" | 
| 31719 | 79 | by simp | 
| 80 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 81 | lemma fib_0_int [simp]: "fib (0::int) = 0" | 
| 31719 | 82 | unfolding fib_int_def by simp | 
| 83 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 84 | lemma fib_1_nat [simp]: "fib (1::nat) = 1" | 
| 31719 | 85 | by simp | 
| 86 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 87 | lemma fib_Suc_0_nat [simp]: "fib (Suc 0) = Suc 0" | 
| 31719 | 88 | by simp | 
| 89 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 90 | lemma fib_1_int [simp]: "fib (1::int) = 1" | 
| 31719 | 91 | unfolding fib_int_def by simp | 
| 92 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 93 | lemma fib_reduce_nat: "(n::nat) >= 2 \<Longrightarrow> fib n = fib (n - 1) + fib (n - 2)" | 
| 31719 | 94 | by simp | 
| 95 | ||
| 96 | declare fib_nat.simps [simp del] | |
| 97 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 98 | lemma fib_reduce_int: "(n::int) >= 2 \<Longrightarrow> fib n = fib (n - 1) + fib (n - 2)" | 
| 31719 | 99 | unfolding fib_int_def | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 100 | by (auto simp add: fib_reduce_nat nat_diff_distrib) | 
| 31719 | 101 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 102 | lemma fib_neg_int [simp]: "(n::int) < 0 \<Longrightarrow> fib n = 0" | 
| 31719 | 103 | unfolding fib_int_def by auto | 
| 104 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 105 | lemma fib_2_nat [simp]: "fib (2::nat) = 1" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 106 | by (subst fib_reduce_nat, auto) | 
| 31719 | 107 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 108 | lemma fib_2_int [simp]: "fib (2::int) = 1" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 109 | by (subst fib_reduce_int, auto) | 
| 31719 | 110 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 111 | lemma fib_plus_2_nat: "fib ((n::nat) + 2) = fib (n + 1) + fib n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 112 | by (subst fib_reduce_nat, auto simp add: One_nat_def) | 
| 31719 | 113 | (* the need for One_nat_def is due to the natdiff_cancel_numerals | 
| 114 | procedure *) | |
| 115 | ||
| 44872 | 116 | lemma fib_induct_nat: "P (0::nat) \<Longrightarrow> P (1::nat) \<Longrightarrow> | 
| 31719 | 117 | (!!n. P n \<Longrightarrow> P (n + 1) \<Longrightarrow> P (n + 2)) \<Longrightarrow> P n" | 
| 118 | apply (atomize, induct n rule: nat_less_induct) | |
| 119 | apply auto | |
| 120 | apply (case_tac "n = 0", force) | |
| 121 | apply (case_tac "n = 1", force) | |
| 122 | apply (subgoal_tac "n >= 2") | |
| 123 | apply (frule_tac x = "n - 1" in spec) | |
| 124 | apply (drule_tac x = "n - 2" in spec) | |
| 125 | apply (drule_tac x = "n - 2" in spec) | |
| 126 | apply auto | |
| 127 | apply (auto simp add: One_nat_def) (* again, natdiff_cancel *) | |
| 128 | done | |
| 129 | ||
| 44872 | 130 | lemma fib_add_nat: "fib ((n::nat) + k + 1) = fib (k + 1) * fib (n + 1) + | 
| 31719 | 131 | fib k * fib n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 132 | apply (induct n rule: fib_induct_nat) | 
| 31719 | 133 | apply auto | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 134 | apply (subst fib_reduce_nat) | 
| 36350 | 135 | apply (auto simp add: field_simps) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 136 | apply (subst (1 3 5) fib_reduce_nat) | 
| 36350 | 137 | apply (auto simp add: field_simps Suc_eq_plus1) | 
| 31719 | 138 | (* hmmm. Why doesn't "n + (1 + (1 + k))" simplify to "n + k + 2"? *) | 
| 139 | apply (subgoal_tac "n + (k + 2) = n + (1 + (1 + k))") | |
| 140 | apply (erule ssubst) back back | |
| 44872 | 141 | apply (erule ssubst) back | 
| 31719 | 142 | apply auto | 
| 143 | done | |
| 144 | ||
| 44872 | 145 | lemma fib_add'_nat: "fib (n + Suc k) = | 
| 146 | fib (Suc k) * fib (Suc n) + fib k * fib n" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 147 | using fib_add_nat by (auto simp add: One_nat_def) | 
| 31719 | 148 | |
| 149 | ||
| 150 | (* transfer from nats to ints *) | |
| 44872 | 151 | lemma fib_add_int: "(n::int) >= 0 \<Longrightarrow> k >= 0 \<Longrightarrow> | 
| 152 | fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n " | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 153 | by (rule fib_add_nat [transferred]) | 
| 31719 | 154 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 155 | lemma fib_neq_0_nat: "(n::nat) > 0 \<Longrightarrow> fib n ~= 0" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 156 | apply (induct n rule: fib_induct_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 157 | apply (auto simp add: fib_plus_2_nat) | 
| 44872 | 158 | done | 
| 31719 | 159 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 160 | lemma fib_gr_0_nat: "(n::nat) > 0 \<Longrightarrow> fib n > 0" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 161 | by (frule fib_neq_0_nat, simp) | 
| 31719 | 162 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 163 | lemma fib_gr_0_int: "(n::int) > 0 \<Longrightarrow> fib n > 0" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 164 | unfolding fib_int_def by (simp add: fib_gr_0_nat) | 
| 31719 | 165 | |
| 166 | text {*
 | |
| 167 | \medskip Concrete Mathematics, page 278: Cassini's identity. The proof is | |
| 168 | much easier using integers, not natural numbers! | |
| 169 | *} | |
| 170 | ||
| 44872 | 171 | lemma fib_Cassini_aux_int: "fib (int n + 2) * fib (int n) - | 
| 31719 | 172 | (fib (int n + 1))^2 = (-1)^(n + 1)" | 
| 173 | apply (induct n) | |
| 44872 | 174 | apply (auto simp add: field_simps power2_eq_square fib_reduce_int power_add) | 
| 175 | done | |
| 31719 | 176 | |
| 44872 | 177 | lemma fib_Cassini_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n - | 
| 31719 | 178 | (fib (n + 1))^2 = (-1)^(nat n + 1)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 179 | by (insert fib_Cassini_aux_int [of "nat n"], auto) | 
| 31719 | 180 | |
| 181 | (* | |
| 44872 | 182 | lemma fib_Cassini'_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n = | 
| 31719 | 183 | (fib (n + 1))^2 + (-1)^(nat n + 1)" | 
| 44872 | 184 | by (frule fib_Cassini_int, simp) | 
| 31719 | 185 | *) | 
| 186 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 187 | lemma fib_Cassini'_int: "n >= 0 \<Longrightarrow> fib ((n::int) + 2) * fib n = | 
| 31719 | 188 | (if even n then tsub ((fib (n + 1))^2) 1 | 
| 189 | else (fib (n + 1))^2 + 1)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 190 | apply (frule fib_Cassini_int, auto simp add: pos_int_even_equiv_nat_even) | 
| 31719 | 191 | apply (subst tsub_eq) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 192 | apply (insert fib_gr_0_int [of "n + 1"], force) | 
| 31719 | 193 | apply auto | 
| 44872 | 194 | done | 
| 31719 | 195 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 196 | lemma fib_Cassini_nat: "fib ((n::nat) + 2) * fib n = | 
| 44872 | 197 | (if even n then (fib (n + 1))^2 - 1 | 
| 198 | else (fib (n + 1))^2 + 1)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 199 | by (rule fib_Cassini'_int [transferred, of n], auto) | 
| 31719 | 200 | |
| 201 | ||
| 202 | text {* \medskip Toward Law 6.111 of Concrete Mathematics *}
 | |
| 203 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 204 | lemma coprime_fib_plus_1_nat: "coprime (fib (n::nat)) (fib (n + 1))" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 205 | apply (induct n rule: fib_induct_nat) | 
| 31719 | 206 | apply auto | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 207 | apply (subst (2) fib_reduce_nat) | 
| 31792 | 208 | apply (auto simp add: Suc_eq_plus1) (* again, natdiff_cancel *) | 
| 31719 | 209 | apply (subst add_commute, auto) | 
| 36350 | 210 | apply (subst gcd_commute_nat, auto simp add: field_simps) | 
| 44872 | 211 | done | 
| 31719 | 212 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 213 | lemma coprime_fib_Suc_nat: "coprime (fib n) (fib (Suc n))" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 214 | using coprime_fib_plus_1_nat by (simp add: One_nat_def) | 
| 31719 | 215 | |
| 44872 | 216 | lemma coprime_fib_plus_1_int: "n >= 0 \<Longrightarrow> coprime (fib (n::int)) (fib (n + 1))" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 217 | by (erule coprime_fib_plus_1_nat [transferred]) | 
| 31719 | 218 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 219 | lemma gcd_fib_add_nat: "gcd (fib (m::nat)) (fib (n + m)) = gcd (fib m) (fib n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 220 | apply (simp add: gcd_commute_nat [of "fib m"]) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 221 | apply (rule cases_nat [of _ m]) | 
| 31719 | 222 | apply simp | 
| 223 | apply (subst add_assoc [symmetric]) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 224 | apply (simp add: fib_add_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 225 | apply (subst gcd_commute_nat) | 
| 31719 | 226 | apply (subst mult_commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 227 | apply (subst gcd_add_mult_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 228 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 229 | apply (rule gcd_mult_cancel_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 230 | apply (rule coprime_fib_plus_1_nat) | 
| 44872 | 231 | done | 
| 31719 | 232 | |
| 44872 | 233 | lemma gcd_fib_add_int [rule_format]: "m >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow> | 
| 31719 | 234 | gcd (fib (m::int)) (fib (n + m)) = gcd (fib m) (fib n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 235 | by (erule gcd_fib_add_nat [transferred]) | 
| 31719 | 236 | |
| 44872 | 237 | lemma gcd_fib_diff_nat: "(m::nat) \<le> n \<Longrightarrow> | 
| 31719 | 238 | gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 239 | by (simp add: gcd_fib_add_nat [symmetric, of _ "n-m"]) | 
| 31719 | 240 | |
| 44872 | 241 | lemma gcd_fib_diff_int: "0 <= (m::int) \<Longrightarrow> m \<le> n \<Longrightarrow> | 
| 31719 | 242 | gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 243 | by (simp add: gcd_fib_add_int [symmetric, of _ "n-m"]) | 
| 31719 | 244 | |
| 44872 | 245 | lemma gcd_fib_mod_nat: "0 < (m::nat) \<Longrightarrow> | 
| 31719 | 246 | gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | 
| 247 | proof (induct n rule: less_induct) | |
| 248 | case (less n) | |
| 249 | from less.prems have pos_m: "0 < m" . | |
| 250 | show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | |
| 251 | proof (cases "m < n") | |
| 44872 | 252 | case True | 
| 253 | then have "m \<le> n" by auto | |
| 31719 | 254 | with pos_m have pos_n: "0 < n" by auto | 
| 44872 | 255 | with pos_m `m < n` have diff: "n - m < n" by auto | 
| 31719 | 256 | have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))" | 
| 44872 | 257 | by (simp add: mod_if [of n]) (insert `m < n`, auto) | 
| 258 | also have "\<dots> = gcd (fib m) (fib (n - m))" | |
| 31719 | 259 | by (simp add: less.hyps diff pos_m) | 
| 44872 | 260 | also have "\<dots> = gcd (fib m) (fib n)" | 
| 261 | by (simp add: gcd_fib_diff_nat `m \<le> n`) | |
| 31719 | 262 | finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" . | 
| 263 | next | |
| 44872 | 264 | case False | 
| 265 | then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | |
| 266 | by (cases "m = n") auto | |
| 31719 | 267 | qed | 
| 268 | qed | |
| 269 | ||
| 44872 | 270 | lemma gcd_fib_mod_int: | 
| 31719 | 271 | assumes "0 < (m::int)" and "0 <= n" | 
| 272 | shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 273 | apply (rule gcd_fib_mod_nat [transferred]) | 
| 41541 | 274 | using assms apply auto | 
| 275 | done | |
| 31719 | 276 | |
| 44872 | 277 | lemma fib_gcd_nat: "fib (gcd (m::nat) n) = gcd (fib m) (fib n)" | 
| 31719 | 278 |     -- {* Law 6.111 *}
 | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 279 | apply (induct m n rule: gcd_nat_induct) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 280 | apply (simp_all add: gcd_non_0_nat gcd_commute_nat gcd_fib_mod_nat) | 
| 41541 | 281 | done | 
| 31719 | 282 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 283 | lemma fib_gcd_int: "m >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow> | 
| 31719 | 284 | fib (gcd (m::int) n) = gcd (fib m) (fib n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 285 | by (erule fib_gcd_nat [transferred]) | 
| 31719 | 286 | |
| 44872 | 287 | lemma atMost_plus_one_nat: "{..(k::nat) + 1} = insert (k + 1) {..k}"
 | 
| 31719 | 288 | by auto | 
| 289 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 290 | theorem fib_mult_eq_setsum_nat: | 
| 31719 | 291 |     "fib ((n::nat) + 1) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
 | 
| 292 | apply (induct n) | |
| 36350 | 293 | apply (auto simp add: atMost_plus_one_nat fib_plus_2_nat field_simps) | 
| 41541 | 294 | done | 
| 31719 | 295 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 296 | theorem fib_mult_eq_setsum'_nat: | 
| 31719 | 297 |     "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
 | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 298 | using fib_mult_eq_setsum_nat by (simp add: One_nat_def) | 
| 31719 | 299 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 300 | theorem fib_mult_eq_setsum_int [rule_format]: | 
| 31719 | 301 |     "n >= 0 \<Longrightarrow> fib ((n::int) + 1) * fib n = (\<Sum>k \<in> {0..n}. fib k * fib k)"
 | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31792diff
changeset | 302 | by (erule fib_mult_eq_setsum_nat [transferred]) | 
| 31719 | 303 | |
| 304 | end |