author | Thomas Sewell <tsewell@nicta.com.au> |
Thu, 10 Sep 2009 15:18:43 +1000 | |
changeset 32744 | 50406c4951d9 |
parent 31076 | 99fe356cbbc2 |
child 33585 | 8d39394fe5cf |
permissions | -rw-r--r-- |
25904 | 1 |
(* Title: HOLCF/ConvexPD.thy |
2 |
Author: Brian Huffman |
|
3 |
*) |
|
4 |
||
5 |
header {* Convex powerdomain *} |
|
6 |
||
7 |
theory ConvexPD |
|
8 |
imports UpperPD LowerPD |
|
9 |
begin |
|
10 |
||
11 |
subsection {* Basis preorder *} |
|
12 |
||
13 |
definition |
|
14 |
convex_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<natural>" 50) where |
|
15 |
"convex_le = (\<lambda>u v. u \<le>\<sharp> v \<and> u \<le>\<flat> v)" |
|
16 |
||
17 |
lemma convex_le_refl [simp]: "t \<le>\<natural> t" |
|
18 |
unfolding convex_le_def by (fast intro: upper_le_refl lower_le_refl) |
|
19 |
||
20 |
lemma convex_le_trans: "\<lbrakk>t \<le>\<natural> u; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> t \<le>\<natural> v" |
|
21 |
unfolding convex_le_def by (fast intro: upper_le_trans lower_le_trans) |
|
22 |
||
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
29990
diff
changeset
|
23 |
interpretation convex_le: preorder convex_le |
25904 | 24 |
by (rule preorder.intro, rule convex_le_refl, rule convex_le_trans) |
25 |
||
26 |
lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<natural> t" |
|
27 |
unfolding convex_le_def Rep_PDUnit by simp |
|
28 |
||
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
29 |
lemma PDUnit_convex_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<natural> PDUnit y" |
25904 | 30 |
unfolding convex_le_def by (fast intro: PDUnit_upper_mono PDUnit_lower_mono) |
31 |
||
32 |
lemma PDPlus_convex_mono: "\<lbrakk>s \<le>\<natural> t; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<natural> PDPlus t v" |
|
33 |
unfolding convex_le_def by (fast intro: PDPlus_upper_mono PDPlus_lower_mono) |
|
34 |
||
35 |
lemma convex_le_PDUnit_PDUnit_iff [simp]: |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
36 |
"(PDUnit a \<le>\<natural> PDUnit b) = a \<sqsubseteq> b" |
25904 | 37 |
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit by fast |
38 |
||
39 |
lemma convex_le_PDUnit_lemma1: |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
40 |
"(PDUnit a \<le>\<natural> t) = (\<forall>b\<in>Rep_pd_basis t. a \<sqsubseteq> b)" |
25904 | 41 |
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit |
42 |
using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast |
|
43 |
||
44 |
lemma convex_le_PDUnit_PDPlus_iff [simp]: |
|
45 |
"(PDUnit a \<le>\<natural> PDPlus t u) = (PDUnit a \<le>\<natural> t \<and> PDUnit a \<le>\<natural> u)" |
|
46 |
unfolding convex_le_PDUnit_lemma1 Rep_PDPlus by fast |
|
47 |
||
48 |
lemma convex_le_PDUnit_lemma2: |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
49 |
"(t \<le>\<natural> PDUnit b) = (\<forall>a\<in>Rep_pd_basis t. a \<sqsubseteq> b)" |
25904 | 50 |
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit |
51 |
using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast |
|
52 |
||
53 |
lemma convex_le_PDPlus_PDUnit_iff [simp]: |
|
54 |
"(PDPlus t u \<le>\<natural> PDUnit a) = (t \<le>\<natural> PDUnit a \<and> u \<le>\<natural> PDUnit a)" |
|
55 |
unfolding convex_le_PDUnit_lemma2 Rep_PDPlus by fast |
|
56 |
||
57 |
lemma convex_le_PDPlus_lemma: |
|
58 |
assumes z: "PDPlus t u \<le>\<natural> z" |
|
59 |
shows "\<exists>v w. z = PDPlus v w \<and> t \<le>\<natural> v \<and> u \<le>\<natural> w" |
|
60 |
proof (intro exI conjI) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
61 |
let ?A = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis t. a \<sqsubseteq> b}" |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
62 |
let ?B = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis u. a \<sqsubseteq> b}" |
25904 | 63 |
let ?v = "Abs_pd_basis ?A" |
64 |
let ?w = "Abs_pd_basis ?B" |
|
65 |
have Rep_v: "Rep_pd_basis ?v = ?A" |
|
66 |
apply (rule Abs_pd_basis_inverse) |
|
67 |
apply (rule Rep_pd_basis_nonempty [of t, folded ex_in_conv, THEN exE]) |
|
68 |
apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify) |
|
69 |
apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE) |
|
70 |
apply (simp add: pd_basis_def) |
|
71 |
apply fast |
|
72 |
done |
|
73 |
have Rep_w: "Rep_pd_basis ?w = ?B" |
|
74 |
apply (rule Abs_pd_basis_inverse) |
|
75 |
apply (rule Rep_pd_basis_nonempty [of u, folded ex_in_conv, THEN exE]) |
|
76 |
apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify) |
|
77 |
apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE) |
|
78 |
apply (simp add: pd_basis_def) |
|
79 |
apply fast |
|
80 |
done |
|
81 |
show "z = PDPlus ?v ?w" |
|
82 |
apply (insert z) |
|
83 |
apply (simp add: convex_le_def, erule conjE) |
|
84 |
apply (simp add: Rep_pd_basis_inject [symmetric] Rep_PDPlus) |
|
85 |
apply (simp add: Rep_v Rep_w) |
|
86 |
apply (rule equalityI) |
|
87 |
apply (rule subsetI) |
|
88 |
apply (simp only: upper_le_def) |
|
89 |
apply (drule (1) bspec, erule bexE) |
|
90 |
apply (simp add: Rep_PDPlus) |
|
91 |
apply fast |
|
92 |
apply fast |
|
93 |
done |
|
94 |
show "t \<le>\<natural> ?v" "u \<le>\<natural> ?w" |
|
95 |
apply (insert z) |
|
96 |
apply (simp_all add: convex_le_def upper_le_def lower_le_def Rep_PDPlus Rep_v Rep_w) |
|
97 |
apply fast+ |
|
98 |
done |
|
99 |
qed |
|
100 |
||
101 |
lemma convex_le_induct [induct set: convex_le]: |
|
102 |
assumes le: "t \<le>\<natural> u" |
|
103 |
assumes 2: "\<And>t u v. \<lbrakk>P t u; P u v\<rbrakk> \<Longrightarrow> P t v" |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
104 |
assumes 3: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)" |
25904 | 105 |
assumes 4: "\<And>t u v w. \<lbrakk>P t v; P u w\<rbrakk> \<Longrightarrow> P (PDPlus t u) (PDPlus v w)" |
106 |
shows "P t u" |
|
107 |
using le apply (induct t arbitrary: u rule: pd_basis_induct) |
|
108 |
apply (erule rev_mp) |
|
109 |
apply (induct_tac u rule: pd_basis_induct1) |
|
110 |
apply (simp add: 3) |
|
111 |
apply (simp, clarify, rename_tac a b t) |
|
112 |
apply (subgoal_tac "P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)") |
|
113 |
apply (simp add: PDPlus_absorb) |
|
114 |
apply (erule (1) 4 [OF 3]) |
|
115 |
apply (drule convex_le_PDPlus_lemma, clarify) |
|
116 |
apply (simp add: 4) |
|
117 |
done |
|
118 |
||
27405 | 119 |
lemma pd_take_convex_chain: |
120 |
"pd_take n t \<le>\<natural> pd_take (Suc n) t" |
|
25904 | 121 |
apply (induct t rule: pd_basis_induct) |
27289 | 122 |
apply (simp add: compact_basis.take_chain) |
25904 | 123 |
apply (simp add: PDPlus_convex_mono) |
124 |
done |
|
125 |
||
27405 | 126 |
lemma pd_take_convex_le: "pd_take i t \<le>\<natural> t" |
25904 | 127 |
apply (induct t rule: pd_basis_induct) |
27289 | 128 |
apply (simp add: compact_basis.take_less) |
25904 | 129 |
apply (simp add: PDPlus_convex_mono) |
130 |
done |
|
131 |
||
27405 | 132 |
lemma pd_take_convex_mono: |
133 |
"t \<le>\<natural> u \<Longrightarrow> pd_take n t \<le>\<natural> pd_take n u" |
|
25904 | 134 |
apply (erule convex_le_induct) |
135 |
apply (erule (1) convex_le_trans) |
|
27289 | 136 |
apply (simp add: compact_basis.take_mono) |
25904 | 137 |
apply (simp add: PDPlus_convex_mono) |
138 |
done |
|
139 |
||
140 |
||
141 |
subsection {* Type definition *} |
|
142 |
||
27373
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
143 |
typedef (open) 'a convex_pd = |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
144 |
"{S::'a pd_basis set. convex_le.ideal S}" |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
145 |
by (fast intro: convex_le.ideal_principal) |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
146 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
147 |
instantiation convex_pd :: (profinite) below |
27373
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
148 |
begin |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
149 |
|
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
150 |
definition |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
151 |
"x \<sqsubseteq> y \<longleftrightarrow> Rep_convex_pd x \<subseteq> Rep_convex_pd y" |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
152 |
|
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
153 |
instance .. |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
154 |
end |
25904 | 155 |
|
27373
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
156 |
instance convex_pd :: (profinite) po |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
157 |
by (rule convex_le.typedef_ideal_po |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
158 |
[OF type_definition_convex_pd below_convex_pd_def]) |
27373
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
159 |
|
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
160 |
instance convex_pd :: (profinite) cpo |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
161 |
by (rule convex_le.typedef_ideal_cpo |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
162 |
[OF type_definition_convex_pd below_convex_pd_def]) |
27373
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
163 |
|
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
164 |
lemma Rep_convex_pd_lub: |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
165 |
"chain Y \<Longrightarrow> Rep_convex_pd (\<Squnion>i. Y i) = (\<Union>i. Rep_convex_pd (Y i))" |
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
166 |
by (rule convex_le.typedef_ideal_rep_contlub |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
167 |
[OF type_definition_convex_pd below_convex_pd_def]) |
27373
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
168 |
|
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
169 |
lemma ideal_Rep_convex_pd: "convex_le.ideal (Rep_convex_pd xs)" |
26927 | 170 |
by (rule Rep_convex_pd [unfolded mem_Collect_eq]) |
25904 | 171 |
|
172 |
definition |
|
173 |
convex_principal :: "'a pd_basis \<Rightarrow> 'a convex_pd" where |
|
27373
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
174 |
"convex_principal t = Abs_convex_pd {u. u \<le>\<natural> t}" |
25904 | 175 |
|
176 |
lemma Rep_convex_principal: |
|
27373
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
177 |
"Rep_convex_pd (convex_principal t) = {u. u \<le>\<natural> t}" |
25904 | 178 |
unfolding convex_principal_def |
27297
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
huffman
parents:
27289
diff
changeset
|
179 |
by (simp add: Abs_convex_pd_inverse convex_le.ideal_principal) |
25904 | 180 |
|
30729
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
wenzelm
parents:
29990
diff
changeset
|
181 |
interpretation convex_pd: |
29237 | 182 |
ideal_completion convex_le pd_take convex_principal Rep_convex_pd |
25904 | 183 |
apply unfold_locales |
27405 | 184 |
apply (rule pd_take_convex_le) |
185 |
apply (rule pd_take_idem) |
|
186 |
apply (erule pd_take_convex_mono) |
|
187 |
apply (rule pd_take_convex_chain) |
|
188 |
apply (rule finite_range_pd_take) |
|
189 |
apply (rule pd_take_covers) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
190 |
apply (rule ideal_Rep_convex_pd) |
27373
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
huffman
parents:
27310
diff
changeset
|
191 |
apply (erule Rep_convex_pd_lub) |
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
192 |
apply (rule Rep_convex_principal) |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
193 |
apply (simp only: below_convex_pd_def) |
25904 | 194 |
done |
195 |
||
27289 | 196 |
text {* Convex powerdomain is pointed *} |
25904 | 197 |
|
198 |
lemma convex_pd_minimal: "convex_principal (PDUnit compact_bot) \<sqsubseteq> ys" |
|
199 |
by (induct ys rule: convex_pd.principal_induct, simp, simp) |
|
200 |
||
201 |
instance convex_pd :: (bifinite) pcpo |
|
26927 | 202 |
by intro_classes (fast intro: convex_pd_minimal) |
25904 | 203 |
|
204 |
lemma inst_convex_pd_pcpo: "\<bottom> = convex_principal (PDUnit compact_bot)" |
|
205 |
by (rule convex_pd_minimal [THEN UU_I, symmetric]) |
|
206 |
||
27289 | 207 |
text {* Convex powerdomain is profinite *} |
25904 | 208 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
209 |
instantiation convex_pd :: (profinite) profinite |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
210 |
begin |
25904 | 211 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
212 |
definition |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
213 |
approx_convex_pd_def: "approx = convex_pd.completion_approx" |
26927 | 214 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
215 |
instance |
26927 | 216 |
apply (intro_classes, unfold approx_convex_pd_def) |
27310 | 217 |
apply (rule convex_pd.chain_completion_approx) |
26927 | 218 |
apply (rule convex_pd.lub_completion_approx) |
219 |
apply (rule convex_pd.completion_approx_idem) |
|
220 |
apply (rule convex_pd.finite_fixes_completion_approx) |
|
221 |
done |
|
222 |
||
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
223 |
end |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
224 |
|
26927 | 225 |
instance convex_pd :: (bifinite) bifinite .. |
25904 | 226 |
|
227 |
lemma approx_convex_principal [simp]: |
|
27405 | 228 |
"approx n\<cdot>(convex_principal t) = convex_principal (pd_take n t)" |
25904 | 229 |
unfolding approx_convex_pd_def |
26927 | 230 |
by (rule convex_pd.completion_approx_principal) |
25904 | 231 |
|
232 |
lemma approx_eq_convex_principal: |
|
27405 | 233 |
"\<exists>t\<in>Rep_convex_pd xs. approx n\<cdot>xs = convex_principal (pd_take n t)" |
25904 | 234 |
unfolding approx_convex_pd_def |
26927 | 235 |
by (rule convex_pd.completion_approx_eq_principal) |
26407
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
huffman
parents:
26041
diff
changeset
|
236 |
|
25904 | 237 |
|
26927 | 238 |
subsection {* Monadic unit and plus *} |
25904 | 239 |
|
240 |
definition |
|
241 |
convex_unit :: "'a \<rightarrow> 'a convex_pd" where |
|
242 |
"convex_unit = compact_basis.basis_fun (\<lambda>a. convex_principal (PDUnit a))" |
|
243 |
||
244 |
definition |
|
245 |
convex_plus :: "'a convex_pd \<rightarrow> 'a convex_pd \<rightarrow> 'a convex_pd" where |
|
246 |
"convex_plus = convex_pd.basis_fun (\<lambda>t. convex_pd.basis_fun (\<lambda>u. |
|
247 |
convex_principal (PDPlus t u)))" |
|
248 |
||
249 |
abbreviation |
|
250 |
convex_add :: "'a convex_pd \<Rightarrow> 'a convex_pd \<Rightarrow> 'a convex_pd" |
|
251 |
(infixl "+\<natural>" 65) where |
|
252 |
"xs +\<natural> ys == convex_plus\<cdot>xs\<cdot>ys" |
|
253 |
||
26927 | 254 |
syntax |
255 |
"_convex_pd" :: "args \<Rightarrow> 'a convex_pd" ("{_}\<natural>") |
|
256 |
||
257 |
translations |
|
258 |
"{x,xs}\<natural>" == "{x}\<natural> +\<natural> {xs}\<natural>" |
|
259 |
"{x}\<natural>" == "CONST convex_unit\<cdot>x" |
|
260 |
||
261 |
lemma convex_unit_Rep_compact_basis [simp]: |
|
262 |
"{Rep_compact_basis a}\<natural> = convex_principal (PDUnit a)" |
|
263 |
unfolding convex_unit_def |
|
27289 | 264 |
by (simp add: compact_basis.basis_fun_principal PDUnit_convex_mono) |
26927 | 265 |
|
25904 | 266 |
lemma convex_plus_principal [simp]: |
26927 | 267 |
"convex_principal t +\<natural> convex_principal u = convex_principal (PDPlus t u)" |
25904 | 268 |
unfolding convex_plus_def |
269 |
by (simp add: convex_pd.basis_fun_principal |
|
270 |
convex_pd.basis_fun_mono PDPlus_convex_mono) |
|
271 |
||
26927 | 272 |
lemma approx_convex_unit [simp]: |
273 |
"approx n\<cdot>{x}\<natural> = {approx n\<cdot>x}\<natural>" |
|
27289 | 274 |
apply (induct x rule: compact_basis.principal_induct, simp) |
26927 | 275 |
apply (simp add: approx_Rep_compact_basis) |
276 |
done |
|
277 |
||
25904 | 278 |
lemma approx_convex_plus [simp]: |
26927 | 279 |
"approx n\<cdot>(xs +\<natural> ys) = approx n\<cdot>xs +\<natural> approx n\<cdot>ys" |
27289 | 280 |
by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) |
25904 | 281 |
|
282 |
lemma convex_plus_assoc: |
|
26927 | 283 |
"(xs +\<natural> ys) +\<natural> zs = xs +\<natural> (ys +\<natural> zs)" |
27289 | 284 |
apply (induct xs ys arbitrary: zs rule: convex_pd.principal_induct2, simp, simp) |
285 |
apply (rule_tac x=zs in convex_pd.principal_induct, simp) |
|
25904 | 286 |
apply (simp add: PDPlus_assoc) |
287 |
done |
|
288 |
||
26927 | 289 |
lemma convex_plus_commute: "xs +\<natural> ys = ys +\<natural> xs" |
27289 | 290 |
apply (induct xs ys rule: convex_pd.principal_induct2, simp, simp) |
26927 | 291 |
apply (simp add: PDPlus_commute) |
292 |
done |
|
293 |
||
29990
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
294 |
lemma convex_plus_absorb [simp]: "xs +\<natural> xs = xs" |
27289 | 295 |
apply (induct xs rule: convex_pd.principal_induct, simp) |
25904 | 296 |
apply (simp add: PDPlus_absorb) |
297 |
done |
|
298 |
||
29990
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
299 |
lemma convex_plus_left_commute: "xs +\<natural> (ys +\<natural> zs) = ys +\<natural> (xs +\<natural> zs)" |
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
300 |
by (rule mk_left_commute |
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
301 |
[of "op +\<natural>", OF convex_plus_assoc convex_plus_commute]) |
26927 | 302 |
|
29990
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
303 |
lemma convex_plus_left_absorb [simp]: "xs +\<natural> (xs +\<natural> ys) = xs +\<natural> ys" |
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
304 |
by (simp only: convex_plus_assoc [symmetric] convex_plus_absorb) |
26927 | 305 |
|
29990
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
306 |
text {* Useful for @{text "simp add: convex_plus_ac"} *} |
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
307 |
lemmas convex_plus_ac = |
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
308 |
convex_plus_assoc convex_plus_commute convex_plus_left_commute |
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
309 |
|
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
310 |
text {* Useful for @{text "simp only: convex_plus_aci"} *} |
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
311 |
lemmas convex_plus_aci = |
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
312 |
convex_plus_ac convex_plus_absorb convex_plus_left_absorb |
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
313 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
314 |
lemma convex_unit_below_plus_iff [simp]: |
26927 | 315 |
"{x}\<natural> \<sqsubseteq> ys +\<natural> zs \<longleftrightarrow> {x}\<natural> \<sqsubseteq> ys \<and> {x}\<natural> \<sqsubseteq> zs" |
25904 | 316 |
apply (rule iffI) |
317 |
apply (subgoal_tac |
|
26927 | 318 |
"adm (\<lambda>f. f\<cdot>{x}\<natural> \<sqsubseteq> f\<cdot>ys \<and> f\<cdot>{x}\<natural> \<sqsubseteq> f\<cdot>zs)") |
25925 | 319 |
apply (drule admD, rule chain_approx) |
25904 | 320 |
apply (drule_tac f="approx i" in monofun_cfun_arg) |
27289 | 321 |
apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp) |
322 |
apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp) |
|
323 |
apply (cut_tac x="approx i\<cdot>zs" in convex_pd.compact_imp_principal, simp) |
|
25904 | 324 |
apply (clarify, simp) |
325 |
apply simp |
|
326 |
apply simp |
|
327 |
apply (erule conjE) |
|
26927 | 328 |
apply (subst convex_plus_absorb [of "{x}\<natural>", symmetric]) |
25904 | 329 |
apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) |
330 |
done |
|
331 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
332 |
lemma convex_plus_below_unit_iff [simp]: |
26927 | 333 |
"xs +\<natural> ys \<sqsubseteq> {z}\<natural> \<longleftrightarrow> xs \<sqsubseteq> {z}\<natural> \<and> ys \<sqsubseteq> {z}\<natural>" |
25904 | 334 |
apply (rule iffI) |
335 |
apply (subgoal_tac |
|
26927 | 336 |
"adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>{z}\<natural> \<and> f\<cdot>ys \<sqsubseteq> f\<cdot>{z}\<natural>)") |
25925 | 337 |
apply (drule admD, rule chain_approx) |
25904 | 338 |
apply (drule_tac f="approx i" in monofun_cfun_arg) |
27289 | 339 |
apply (cut_tac x="approx i\<cdot>xs" in convex_pd.compact_imp_principal, simp) |
340 |
apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp) |
|
341 |
apply (cut_tac x="approx i\<cdot>z" in compact_basis.compact_imp_principal, simp) |
|
25904 | 342 |
apply (clarify, simp) |
343 |
apply simp |
|
344 |
apply simp |
|
345 |
apply (erule conjE) |
|
26927 | 346 |
apply (subst convex_plus_absorb [of "{z}\<natural>", symmetric]) |
25904 | 347 |
apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) |
348 |
done |
|
349 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
350 |
lemma convex_unit_below_iff [simp]: "{x}\<natural> \<sqsubseteq> {y}\<natural> \<longleftrightarrow> x \<sqsubseteq> y" |
26927 | 351 |
apply (rule iffI) |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
352 |
apply (rule profinite_below_ext) |
26927 | 353 |
apply (drule_tac f="approx i" in monofun_cfun_arg, simp) |
27289 | 354 |
apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp) |
355 |
apply (cut_tac x="approx i\<cdot>y" in compact_basis.compact_imp_principal, simp) |
|
356 |
apply clarsimp |
|
26927 | 357 |
apply (erule monofun_cfun_arg) |
358 |
done |
|
359 |
||
360 |
lemma convex_unit_eq_iff [simp]: "{x}\<natural> = {y}\<natural> \<longleftrightarrow> x = y" |
|
361 |
unfolding po_eq_conv by simp |
|
362 |
||
363 |
lemma convex_unit_strict [simp]: "{\<bottom>}\<natural> = \<bottom>" |
|
364 |
unfolding inst_convex_pd_pcpo Rep_compact_bot [symmetric] by simp |
|
365 |
||
366 |
lemma convex_unit_strict_iff [simp]: "{x}\<natural> = \<bottom> \<longleftrightarrow> x = \<bottom>" |
|
367 |
unfolding convex_unit_strict [symmetric] by (rule convex_unit_eq_iff) |
|
368 |
||
369 |
lemma compact_convex_unit_iff [simp]: |
|
370 |
"compact {x}\<natural> \<longleftrightarrow> compact x" |
|
27309 | 371 |
unfolding profinite_compact_iff by simp |
26927 | 372 |
|
373 |
lemma compact_convex_plus [simp]: |
|
374 |
"\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<natural> ys)" |
|
27289 | 375 |
by (auto dest!: convex_pd.compact_imp_principal) |
26927 | 376 |
|
25904 | 377 |
|
378 |
subsection {* Induction rules *} |
|
379 |
||
380 |
lemma convex_pd_induct1: |
|
381 |
assumes P: "adm P" |
|
26927 | 382 |
assumes unit: "\<And>x. P {x}\<natural>" |
383 |
assumes insert: "\<And>x ys. \<lbrakk>P {x}\<natural>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<natural> +\<natural> ys)" |
|
25904 | 384 |
shows "P (xs::'a convex_pd)" |
27289 | 385 |
apply (induct xs rule: convex_pd.principal_induct, rule P) |
386 |
apply (induct_tac a rule: pd_basis_induct1) |
|
25904 | 387 |
apply (simp only: convex_unit_Rep_compact_basis [symmetric]) |
388 |
apply (rule unit) |
|
389 |
apply (simp only: convex_unit_Rep_compact_basis [symmetric] |
|
390 |
convex_plus_principal [symmetric]) |
|
391 |
apply (erule insert [OF unit]) |
|
392 |
done |
|
393 |
||
394 |
lemma convex_pd_induct: |
|
395 |
assumes P: "adm P" |
|
26927 | 396 |
assumes unit: "\<And>x. P {x}\<natural>" |
397 |
assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<natural> ys)" |
|
25904 | 398 |
shows "P (xs::'a convex_pd)" |
27289 | 399 |
apply (induct xs rule: convex_pd.principal_induct, rule P) |
400 |
apply (induct_tac a rule: pd_basis_induct) |
|
25904 | 401 |
apply (simp only: convex_unit_Rep_compact_basis [symmetric] unit) |
402 |
apply (simp only: convex_plus_principal [symmetric] plus) |
|
403 |
done |
|
404 |
||
405 |
||
406 |
subsection {* Monadic bind *} |
|
407 |
||
408 |
definition |
|
409 |
convex_bind_basis :: |
|
410 |
"'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where |
|
411 |
"convex_bind_basis = fold_pd |
|
412 |
(\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a)) |
|
26927 | 413 |
(\<lambda>x y. \<Lambda> f. x\<cdot>f +\<natural> y\<cdot>f)" |
25904 | 414 |
|
26927 | 415 |
lemma ACI_convex_bind: |
416 |
"ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<natural> y\<cdot>f)" |
|
25904 | 417 |
apply unfold_locales |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25925
diff
changeset
|
418 |
apply (simp add: convex_plus_assoc) |
25904 | 419 |
apply (simp add: convex_plus_commute) |
29990
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
huffman
parents:
29672
diff
changeset
|
420 |
apply (simp add: eta_cfun) |
25904 | 421 |
done |
422 |
||
423 |
lemma convex_bind_basis_simps [simp]: |
|
424 |
"convex_bind_basis (PDUnit a) = |
|
425 |
(\<Lambda> f. f\<cdot>(Rep_compact_basis a))" |
|
426 |
"convex_bind_basis (PDPlus t u) = |
|
26927 | 427 |
(\<Lambda> f. convex_bind_basis t\<cdot>f +\<natural> convex_bind_basis u\<cdot>f)" |
25904 | 428 |
unfolding convex_bind_basis_def |
429 |
apply - |
|
26927 | 430 |
apply (rule fold_pd_PDUnit [OF ACI_convex_bind]) |
431 |
apply (rule fold_pd_PDPlus [OF ACI_convex_bind]) |
|
25904 | 432 |
done |
433 |
||
434 |
lemma monofun_LAM: |
|
435 |
"\<lbrakk>cont f; cont g; \<And>x. f x \<sqsubseteq> g x\<rbrakk> \<Longrightarrow> (\<Lambda> x. f x) \<sqsubseteq> (\<Lambda> x. g x)" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
436 |
by (simp add: expand_cfun_below) |
25904 | 437 |
|
438 |
lemma convex_bind_basis_mono: |
|
439 |
"t \<le>\<natural> u \<Longrightarrow> convex_bind_basis t \<sqsubseteq> convex_bind_basis u" |
|
440 |
apply (erule convex_le_induct) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
441 |
apply (erule (1) below_trans) |
27289 | 442 |
apply (simp add: monofun_LAM monofun_cfun) |
443 |
apply (simp add: monofun_LAM monofun_cfun) |
|
25904 | 444 |
done |
445 |
||
446 |
definition |
|
447 |
convex_bind :: "'a convex_pd \<rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where |
|
448 |
"convex_bind = convex_pd.basis_fun convex_bind_basis" |
|
449 |
||
450 |
lemma convex_bind_principal [simp]: |
|
451 |
"convex_bind\<cdot>(convex_principal t) = convex_bind_basis t" |
|
452 |
unfolding convex_bind_def |
|
453 |
apply (rule convex_pd.basis_fun_principal) |
|
454 |
apply (erule convex_bind_basis_mono) |
|
455 |
done |
|
456 |
||
457 |
lemma convex_bind_unit [simp]: |
|
26927 | 458 |
"convex_bind\<cdot>{x}\<natural>\<cdot>f = f\<cdot>x" |
27289 | 459 |
by (induct x rule: compact_basis.principal_induct, simp, simp) |
25904 | 460 |
|
461 |
lemma convex_bind_plus [simp]: |
|
26927 | 462 |
"convex_bind\<cdot>(xs +\<natural> ys)\<cdot>f = convex_bind\<cdot>xs\<cdot>f +\<natural> convex_bind\<cdot>ys\<cdot>f" |
27289 | 463 |
by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) |
25904 | 464 |
|
465 |
lemma convex_bind_strict [simp]: "convex_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>" |
|
466 |
unfolding convex_unit_strict [symmetric] by (rule convex_bind_unit) |
|
467 |
||
468 |
||
469 |
subsection {* Map and join *} |
|
470 |
||
471 |
definition |
|
472 |
convex_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a convex_pd \<rightarrow> 'b convex_pd" where |
|
26927 | 473 |
"convex_map = (\<Lambda> f xs. convex_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<natural>))" |
25904 | 474 |
|
475 |
definition |
|
476 |
convex_join :: "'a convex_pd convex_pd \<rightarrow> 'a convex_pd" where |
|
477 |
"convex_join = (\<Lambda> xss. convex_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))" |
|
478 |
||
479 |
lemma convex_map_unit [simp]: |
|
480 |
"convex_map\<cdot>f\<cdot>(convex_unit\<cdot>x) = convex_unit\<cdot>(f\<cdot>x)" |
|
481 |
unfolding convex_map_def by simp |
|
482 |
||
483 |
lemma convex_map_plus [simp]: |
|
26927 | 484 |
"convex_map\<cdot>f\<cdot>(xs +\<natural> ys) = convex_map\<cdot>f\<cdot>xs +\<natural> convex_map\<cdot>f\<cdot>ys" |
25904 | 485 |
unfolding convex_map_def by simp |
486 |
||
487 |
lemma convex_join_unit [simp]: |
|
26927 | 488 |
"convex_join\<cdot>{xs}\<natural> = xs" |
25904 | 489 |
unfolding convex_join_def by simp |
490 |
||
491 |
lemma convex_join_plus [simp]: |
|
26927 | 492 |
"convex_join\<cdot>(xss +\<natural> yss) = convex_join\<cdot>xss +\<natural> convex_join\<cdot>yss" |
25904 | 493 |
unfolding convex_join_def by simp |
494 |
||
495 |
lemma convex_map_ident: "convex_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs" |
|
496 |
by (induct xs rule: convex_pd_induct, simp_all) |
|
497 |
||
498 |
lemma convex_map_map: |
|
499 |
"convex_map\<cdot>f\<cdot>(convex_map\<cdot>g\<cdot>xs) = convex_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs" |
|
500 |
by (induct xs rule: convex_pd_induct, simp_all) |
|
501 |
||
502 |
lemma convex_join_map_unit: |
|
503 |
"convex_join\<cdot>(convex_map\<cdot>convex_unit\<cdot>xs) = xs" |
|
504 |
by (induct xs rule: convex_pd_induct, simp_all) |
|
505 |
||
506 |
lemma convex_join_map_join: |
|
507 |
"convex_join\<cdot>(convex_map\<cdot>convex_join\<cdot>xsss) = convex_join\<cdot>(convex_join\<cdot>xsss)" |
|
508 |
by (induct xsss rule: convex_pd_induct, simp_all) |
|
509 |
||
510 |
lemma convex_join_map_map: |
|
511 |
"convex_join\<cdot>(convex_map\<cdot>(convex_map\<cdot>f)\<cdot>xss) = |
|
512 |
convex_map\<cdot>f\<cdot>(convex_join\<cdot>xss)" |
|
513 |
by (induct xss rule: convex_pd_induct, simp_all) |
|
514 |
||
515 |
lemma convex_map_approx: "convex_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs" |
|
516 |
by (induct xs rule: convex_pd_induct, simp_all) |
|
517 |
||
518 |
||
519 |
subsection {* Conversions to other powerdomains *} |
|
520 |
||
521 |
text {* Convex to upper *} |
|
522 |
||
523 |
lemma convex_le_imp_upper_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<sharp> u" |
|
524 |
unfolding convex_le_def by simp |
|
525 |
||
526 |
definition |
|
527 |
convex_to_upper :: "'a convex_pd \<rightarrow> 'a upper_pd" where |
|
528 |
"convex_to_upper = convex_pd.basis_fun upper_principal" |
|
529 |
||
530 |
lemma convex_to_upper_principal [simp]: |
|
531 |
"convex_to_upper\<cdot>(convex_principal t) = upper_principal t" |
|
532 |
unfolding convex_to_upper_def |
|
533 |
apply (rule convex_pd.basis_fun_principal) |
|
27289 | 534 |
apply (rule upper_pd.principal_mono) |
25904 | 535 |
apply (erule convex_le_imp_upper_le) |
536 |
done |
|
537 |
||
538 |
lemma convex_to_upper_unit [simp]: |
|
26927 | 539 |
"convex_to_upper\<cdot>{x}\<natural> = {x}\<sharp>" |
27289 | 540 |
by (induct x rule: compact_basis.principal_induct, simp, simp) |
25904 | 541 |
|
542 |
lemma convex_to_upper_plus [simp]: |
|
26927 | 543 |
"convex_to_upper\<cdot>(xs +\<natural> ys) = convex_to_upper\<cdot>xs +\<sharp> convex_to_upper\<cdot>ys" |
27289 | 544 |
by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) |
25904 | 545 |
|
546 |
lemma approx_convex_to_upper: |
|
547 |
"approx i\<cdot>(convex_to_upper\<cdot>xs) = convex_to_upper\<cdot>(approx i\<cdot>xs)" |
|
548 |
by (induct xs rule: convex_pd_induct, simp, simp, simp) |
|
549 |
||
27289 | 550 |
lemma convex_to_upper_bind [simp]: |
551 |
"convex_to_upper\<cdot>(convex_bind\<cdot>xs\<cdot>f) = |
|
552 |
upper_bind\<cdot>(convex_to_upper\<cdot>xs)\<cdot>(convex_to_upper oo f)" |
|
553 |
by (induct xs rule: convex_pd_induct, simp, simp, simp) |
|
554 |
||
555 |
lemma convex_to_upper_map [simp]: |
|
556 |
"convex_to_upper\<cdot>(convex_map\<cdot>f\<cdot>xs) = upper_map\<cdot>f\<cdot>(convex_to_upper\<cdot>xs)" |
|
557 |
by (simp add: convex_map_def upper_map_def cfcomp_LAM) |
|
558 |
||
559 |
lemma convex_to_upper_join [simp]: |
|
560 |
"convex_to_upper\<cdot>(convex_join\<cdot>xss) = |
|
561 |
upper_bind\<cdot>(convex_to_upper\<cdot>xss)\<cdot>convex_to_upper" |
|
562 |
by (simp add: convex_join_def upper_join_def cfcomp_LAM eta_cfun) |
|
563 |
||
25904 | 564 |
text {* Convex to lower *} |
565 |
||
566 |
lemma convex_le_imp_lower_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<flat> u" |
|
567 |
unfolding convex_le_def by simp |
|
568 |
||
569 |
definition |
|
570 |
convex_to_lower :: "'a convex_pd \<rightarrow> 'a lower_pd" where |
|
571 |
"convex_to_lower = convex_pd.basis_fun lower_principal" |
|
572 |
||
573 |
lemma convex_to_lower_principal [simp]: |
|
574 |
"convex_to_lower\<cdot>(convex_principal t) = lower_principal t" |
|
575 |
unfolding convex_to_lower_def |
|
576 |
apply (rule convex_pd.basis_fun_principal) |
|
27289 | 577 |
apply (rule lower_pd.principal_mono) |
25904 | 578 |
apply (erule convex_le_imp_lower_le) |
579 |
done |
|
580 |
||
581 |
lemma convex_to_lower_unit [simp]: |
|
26927 | 582 |
"convex_to_lower\<cdot>{x}\<natural> = {x}\<flat>" |
27289 | 583 |
by (induct x rule: compact_basis.principal_induct, simp, simp) |
25904 | 584 |
|
585 |
lemma convex_to_lower_plus [simp]: |
|
26927 | 586 |
"convex_to_lower\<cdot>(xs +\<natural> ys) = convex_to_lower\<cdot>xs +\<flat> convex_to_lower\<cdot>ys" |
27289 | 587 |
by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp) |
25904 | 588 |
|
589 |
lemma approx_convex_to_lower: |
|
590 |
"approx i\<cdot>(convex_to_lower\<cdot>xs) = convex_to_lower\<cdot>(approx i\<cdot>xs)" |
|
591 |
by (induct xs rule: convex_pd_induct, simp, simp, simp) |
|
592 |
||
27289 | 593 |
lemma convex_to_lower_bind [simp]: |
594 |
"convex_to_lower\<cdot>(convex_bind\<cdot>xs\<cdot>f) = |
|
595 |
lower_bind\<cdot>(convex_to_lower\<cdot>xs)\<cdot>(convex_to_lower oo f)" |
|
596 |
by (induct xs rule: convex_pd_induct, simp, simp, simp) |
|
597 |
||
598 |
lemma convex_to_lower_map [simp]: |
|
599 |
"convex_to_lower\<cdot>(convex_map\<cdot>f\<cdot>xs) = lower_map\<cdot>f\<cdot>(convex_to_lower\<cdot>xs)" |
|
600 |
by (simp add: convex_map_def lower_map_def cfcomp_LAM) |
|
601 |
||
602 |
lemma convex_to_lower_join [simp]: |
|
603 |
"convex_to_lower\<cdot>(convex_join\<cdot>xss) = |
|
604 |
lower_bind\<cdot>(convex_to_lower\<cdot>xss)\<cdot>convex_to_lower" |
|
605 |
by (simp add: convex_join_def lower_join_def cfcomp_LAM eta_cfun) |
|
606 |
||
25904 | 607 |
text {* Ordering property *} |
608 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
609 |
lemma convex_pd_below_iff: |
25904 | 610 |
"(xs \<sqsubseteq> ys) = |
611 |
(convex_to_upper\<cdot>xs \<sqsubseteq> convex_to_upper\<cdot>ys \<and> |
|
612 |
convex_to_lower\<cdot>xs \<sqsubseteq> convex_to_lower\<cdot>ys)" |
|
613 |
apply (safe elim!: monofun_cfun_arg) |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
614 |
apply (rule profinite_below_ext) |
25904 | 615 |
apply (drule_tac f="approx i" in monofun_cfun_arg) |
616 |
apply (drule_tac f="approx i" in monofun_cfun_arg) |
|
27289 | 617 |
apply (cut_tac x="approx i\<cdot>xs" in convex_pd.compact_imp_principal, simp) |
618 |
apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp) |
|
25904 | 619 |
apply clarify |
620 |
apply (simp add: approx_convex_to_upper approx_convex_to_lower convex_le_def) |
|
621 |
done |
|
622 |
||
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
623 |
lemmas convex_plus_below_plus_iff = |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
624 |
convex_pd_below_iff [where xs="xs +\<natural> ys" and ys="zs +\<natural> ws", standard] |
26927 | 625 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
626 |
lemmas convex_pd_below_simps = |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
627 |
convex_unit_below_plus_iff |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
628 |
convex_plus_below_unit_iff |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
629 |
convex_plus_below_plus_iff |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
630 |
convex_unit_below_iff |
26927 | 631 |
convex_to_upper_unit |
632 |
convex_to_upper_plus |
|
633 |
convex_to_lower_unit |
|
634 |
convex_to_lower_plus |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
635 |
upper_pd_below_simps |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
30729
diff
changeset
|
636 |
lower_pd_below_simps |
26927 | 637 |
|
25904 | 638 |
end |