author | haftmann |
Tue, 08 Aug 2006 08:19:44 +0200 | |
changeset 20355 | 50aaae6ae4db |
parent 17508 | c84af7f39a6b |
child 21213 | c81f016883df |
permissions | -rw-r--r-- |
14738 | 1 |
(* Title: HOL/LOrder.thy |
2 |
ID: $Id$ |
|
3 |
Author: Steven Obua, TU Muenchen |
|
4 |
*) |
|
5 |
||
6 |
header {* Lattice Orders *} |
|
7 |
||
15131 | 8 |
theory LOrder |
15524
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15140
diff
changeset
|
9 |
imports Orderings |
15131 | 10 |
begin |
14738 | 11 |
|
12 |
text {* |
|
13 |
The theory of lattices developed here is taken from the book: |
|
14 |
\begin{itemize} |
|
15 |
\item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979. |
|
16 |
\end{itemize} |
|
17 |
*} |
|
18 |
||
19 |
constdefs |
|
20 |
is_meet :: "(('a::order) \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool" |
|
21 |
"is_meet m == ! a b x. m a b \<le> a \<and> m a b \<le> b \<and> (x \<le> a \<and> x \<le> b \<longrightarrow> x \<le> m a b)" |
|
22 |
is_join :: "(('a::order) \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> bool" |
|
23 |
"is_join j == ! a b x. a \<le> j a b \<and> b \<le> j a b \<and> (a \<le> x \<and> b \<le> x \<longrightarrow> j a b \<le> x)" |
|
24 |
||
25 |
lemma is_meet_unique: |
|
26 |
assumes "is_meet u" "is_meet v" shows "u = v" |
|
27 |
proof - |
|
28 |
{ |
|
29 |
fix a b :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
30 |
assume a: "is_meet a" |
|
31 |
assume b: "is_meet b" |
|
32 |
{ |
|
33 |
fix x y |
|
34 |
let ?za = "a x y" |
|
35 |
let ?zb = "b x y" |
|
36 |
from a have za_le: "?za <= x & ?za <= y" by (auto simp add: is_meet_def) |
|
37 |
with b have "?za <= ?zb" by (auto simp add: is_meet_def) |
|
38 |
} |
|
39 |
} |
|
40 |
note f_le = this |
|
41 |
show "u = v" by ((rule ext)+, simp_all add: order_antisym prems f_le) |
|
42 |
qed |
|
43 |
||
44 |
lemma is_join_unique: |
|
45 |
assumes "is_join u" "is_join v" shows "u = v" |
|
46 |
proof - |
|
47 |
{ |
|
48 |
fix a b :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
49 |
assume a: "is_join a" |
|
50 |
assume b: "is_join b" |
|
51 |
{ |
|
52 |
fix x y |
|
53 |
let ?za = "a x y" |
|
54 |
let ?zb = "b x y" |
|
55 |
from a have za_le: "x <= ?za & y <= ?za" by (auto simp add: is_join_def) |
|
56 |
with b have "?zb <= ?za" by (auto simp add: is_join_def) |
|
57 |
} |
|
58 |
} |
|
59 |
note f_le = this |
|
60 |
show "u = v" by ((rule ext)+, simp_all add: order_antisym prems f_le) |
|
61 |
qed |
|
62 |
||
63 |
axclass join_semilorder < order |
|
64 |
join_exists: "? j. is_join j" |
|
65 |
||
66 |
axclass meet_semilorder < order |
|
67 |
meet_exists: "? m. is_meet m" |
|
68 |
||
69 |
axclass lorder < join_semilorder, meet_semilorder |
|
70 |
||
71 |
constdefs |
|
72 |
meet :: "('a::meet_semilorder) \<Rightarrow> 'a \<Rightarrow> 'a" |
|
73 |
"meet == THE m. is_meet m" |
|
74 |
join :: "('a::join_semilorder) \<Rightarrow> 'a \<Rightarrow> 'a" |
|
75 |
"join == THE j. is_join j" |
|
76 |
||
77 |
lemma is_meet_meet: "is_meet (meet::'a \<Rightarrow> 'a \<Rightarrow> ('a::meet_semilorder))" |
|
78 |
proof - |
|
79 |
from meet_exists obtain k::"'a \<Rightarrow> 'a \<Rightarrow> 'a" where "is_meet k" .. |
|
80 |
with is_meet_unique[of _ k] show ?thesis |
|
81 |
by (simp add: meet_def theI[of is_meet]) |
|
82 |
qed |
|
83 |
||
84 |
lemma meet_unique: "(is_meet m) = (m = meet)" |
|
85 |
by (insert is_meet_meet, auto simp add: is_meet_unique) |
|
86 |
||
87 |
lemma is_join_join: "is_join (join::'a \<Rightarrow> 'a \<Rightarrow> ('a::join_semilorder))" |
|
88 |
proof - |
|
89 |
from join_exists obtain k::"'a \<Rightarrow> 'a \<Rightarrow> 'a" where "is_join k" .. |
|
90 |
with is_join_unique[of _ k] show ?thesis |
|
91 |
by (simp add: join_def theI[of is_join]) |
|
92 |
qed |
|
93 |
||
94 |
lemma join_unique: "(is_join j) = (j = join)" |
|
95 |
by (insert is_join_join, auto simp add: is_join_unique) |
|
96 |
||
97 |
lemma meet_left_le: "meet a b \<le> (a::'a::meet_semilorder)" |
|
98 |
by (insert is_meet_meet, auto simp add: is_meet_def) |
|
99 |
||
100 |
lemma meet_right_le: "meet a b \<le> (b::'a::meet_semilorder)" |
|
101 |
by (insert is_meet_meet, auto simp add: is_meet_def) |
|
102 |
||
103 |
lemma meet_imp_le: "x \<le> a \<Longrightarrow> x \<le> b \<Longrightarrow> x \<le> meet a (b::'a::meet_semilorder)" |
|
104 |
by (insert is_meet_meet, auto simp add: is_meet_def) |
|
105 |
||
106 |
lemma join_left_le: "a \<le> join a (b::'a::join_semilorder)" |
|
107 |
by (insert is_join_join, auto simp add: is_join_def) |
|
108 |
||
109 |
lemma join_right_le: "b \<le> join a (b::'a::join_semilorder)" |
|
110 |
by (insert is_join_join, auto simp add: is_join_def) |
|
111 |
||
112 |
lemma join_imp_le: "a \<le> x \<Longrightarrow> b \<le> x \<Longrightarrow> join a b \<le> (x::'a::join_semilorder)" |
|
113 |
by (insert is_join_join, auto simp add: is_join_def) |
|
114 |
||
115 |
lemmas meet_join_le = meet_left_le meet_right_le join_left_le join_right_le |
|
116 |
||
117 |
lemma is_meet_min: "is_meet (min::'a \<Rightarrow> 'a \<Rightarrow> ('a::linorder))" |
|
118 |
by (auto simp add: is_meet_def min_def) |
|
119 |
||
120 |
lemma is_join_max: "is_join (max::'a \<Rightarrow> 'a \<Rightarrow> ('a::linorder))" |
|
121 |
by (auto simp add: is_join_def max_def) |
|
122 |
||
123 |
instance linorder \<subseteq> meet_semilorder |
|
124 |
proof |
|
125 |
from is_meet_min show "? (m::'a\<Rightarrow>'a\<Rightarrow>('a::linorder)). is_meet m" by auto |
|
126 |
qed |
|
127 |
||
128 |
instance linorder \<subseteq> join_semilorder |
|
129 |
proof |
|
130 |
from is_join_max show "? (j::'a\<Rightarrow>'a\<Rightarrow>('a::linorder)). is_join j" by auto |
|
131 |
qed |
|
132 |
||
133 |
instance linorder \<subseteq> lorder .. |
|
134 |
||
135 |
lemma meet_min: "meet = (min :: 'a\<Rightarrow>'a\<Rightarrow>('a::linorder))" |
|
136 |
by (simp add: is_meet_meet is_meet_min is_meet_unique) |
|
137 |
||
138 |
lemma join_max: "join = (max :: 'a\<Rightarrow>'a\<Rightarrow>('a::linorder))" |
|
139 |
by (simp add: is_join_join is_join_max is_join_unique) |
|
140 |
||
141 |
lemma meet_idempotent[simp]: "meet x x = x" |
|
142 |
by (rule order_antisym, simp_all add: meet_left_le meet_imp_le) |
|
143 |
||
144 |
lemma join_idempotent[simp]: "join x x = x" |
|
145 |
by (rule order_antisym, simp_all add: join_left_le join_imp_le) |
|
146 |
||
147 |
lemma meet_comm: "meet x y = meet y x" |
|
148 |
by (rule order_antisym, (simp add: meet_left_le meet_right_le meet_imp_le)+) |
|
149 |
||
150 |
lemma join_comm: "join x y = join y x" |
|
151 |
by (rule order_antisym, (simp add: join_right_le join_left_le join_imp_le)+) |
|
152 |
||
153 |
lemma meet_assoc: "meet (meet x y) z = meet x (meet y z)" (is "?l=?r") |
|
154 |
proof - |
|
155 |
have "?l <= meet x y & meet x y <= x & ?l <= z & meet x y <= y" by (simp add: meet_left_le meet_right_le) |
|
156 |
hence "?l <= x & ?l <= y & ?l <= z" by auto |
|
157 |
hence "?l <= ?r" by (simp add: meet_imp_le) |
|
158 |
hence a:"?l <= meet x (meet y z)" by (simp add: meet_imp_le) |
|
159 |
have "?r <= meet y z & meet y z <= y & meet y z <= z & ?r <= x" by (simp add: meet_left_le meet_right_le) |
|
160 |
hence "?r <= x & ?r <= y & ?r <= z" by (auto) |
|
161 |
hence "?r <= meet x y & ?r <= z" by (simp add: meet_imp_le) |
|
162 |
hence b:"?r <= ?l" by (simp add: meet_imp_le) |
|
163 |
from a b show "?l = ?r" by auto |
|
164 |
qed |
|
165 |
||
166 |
lemma join_assoc: "join (join x y) z = join x (join y z)" (is "?l=?r") |
|
167 |
proof - |
|
168 |
have "join x y <= ?l & x <= join x y & z <= ?l & y <= join x y" by (simp add: join_left_le join_right_le) |
|
169 |
hence "x <= ?l & y <= ?l & z <= ?l" by auto |
|
170 |
hence "join y z <= ?l & x <= ?l" by (simp add: join_imp_le) |
|
171 |
hence a:"?r <= ?l" by (simp add: join_imp_le) |
|
172 |
have "join y z <= ?r & y <= join y z & z <= join y z & x <= ?r" by (simp add: join_left_le join_right_le) |
|
173 |
hence "y <= ?r & z <= ?r & x <= ?r" by auto |
|
174 |
hence "join x y <= ?r & z <= ?r" by (simp add: join_imp_le) |
|
175 |
hence b:"?l <= ?r" by (simp add: join_imp_le) |
|
176 |
from a b show "?l = ?r" by auto |
|
177 |
qed |
|
178 |
||
179 |
lemma meet_left_comm: "meet a (meet b c) = meet b (meet a c)" |
|
180 |
by (simp add: meet_assoc[symmetric, of a b c], simp add: meet_comm[of a b], simp add: meet_assoc) |
|
181 |
||
182 |
lemma meet_left_idempotent: "meet y (meet y x) = meet y x" |
|
183 |
by (simp add: meet_assoc meet_comm meet_left_comm) |
|
184 |
||
185 |
lemma join_left_comm: "join a (join b c) = join b (join a c)" |
|
186 |
by (simp add: join_assoc[symmetric, of a b c], simp add: join_comm[of a b], simp add: join_assoc) |
|
187 |
||
188 |
lemma join_left_idempotent: "join y (join y x) = join y x" |
|
189 |
by (simp add: join_assoc join_comm join_left_comm) |
|
190 |
||
191 |
lemmas meet_aci = meet_assoc meet_comm meet_left_comm meet_left_idempotent |
|
192 |
||
193 |
lemmas join_aci = join_assoc join_comm join_left_comm join_left_idempotent |
|
194 |
||
195 |
lemma le_def_meet: "(x <= y) = (meet x y = x)" |
|
196 |
proof - |
|
197 |
have u: "x <= y \<longrightarrow> meet x y = x" |
|
198 |
proof |
|
199 |
assume "x <= y" |
|
200 |
hence "x <= meet x y & meet x y <= x" by (simp add: meet_imp_le meet_left_le) |
|
201 |
thus "meet x y = x" by auto |
|
202 |
qed |
|
203 |
have v:"meet x y = x \<longrightarrow> x <= y" |
|
204 |
proof |
|
205 |
have a:"meet x y <= y" by (simp add: meet_right_le) |
|
206 |
assume "meet x y = x" |
|
207 |
hence "x = meet x y" by auto |
|
208 |
with a show "x <= y" by (auto) |
|
209 |
qed |
|
210 |
from u v show ?thesis by blast |
|
211 |
qed |
|
212 |
||
213 |
lemma le_def_join: "(x <= y) = (join x y = y)" |
|
214 |
proof - |
|
215 |
have u: "x <= y \<longrightarrow> join x y = y" |
|
216 |
proof |
|
217 |
assume "x <= y" |
|
218 |
hence "join x y <= y & y <= join x y" by (simp add: join_imp_le join_right_le) |
|
219 |
thus "join x y = y" by auto |
|
220 |
qed |
|
221 |
have v:"join x y = y \<longrightarrow> x <= y" |
|
222 |
proof |
|
223 |
have a:"x <= join x y" by (simp add: join_left_le) |
|
224 |
assume "join x y = y" |
|
225 |
hence "y = join x y" by auto |
|
226 |
with a show "x <= y" by (auto) |
|
227 |
qed |
|
228 |
from u v show ?thesis by blast |
|
229 |
qed |
|
230 |
||
231 |
lemma meet_join_absorp: "meet x (join x y) = x" |
|
232 |
proof - |
|
233 |
have a:"meet x (join x y) <= x" by (simp add: meet_left_le) |
|
234 |
have b:"x <= meet x (join x y)" by (rule meet_imp_le, simp_all add: join_left_le) |
|
235 |
from a b show ?thesis by auto |
|
236 |
qed |
|
237 |
||
238 |
lemma join_meet_absorp: "join x (meet x y) = x" |
|
239 |
proof - |
|
240 |
have a:"x <= join x (meet x y)" by (simp add: join_left_le) |
|
241 |
have b:"join x (meet x y) <= x" by (rule join_imp_le, simp_all add: meet_left_le) |
|
242 |
from a b show ?thesis by auto |
|
243 |
qed |
|
244 |
||
245 |
lemma meet_mono: "y \<le> z \<Longrightarrow> meet x y \<le> meet x z" |
|
246 |
proof - |
|
247 |
assume a: "y <= z" |
|
248 |
have "meet x y <= x & meet x y <= y" by (simp add: meet_left_le meet_right_le) |
|
249 |
with a have "meet x y <= x & meet x y <= z" by auto |
|
250 |
thus "meet x y <= meet x z" by (simp add: meet_imp_le) |
|
251 |
qed |
|
252 |
||
253 |
lemma join_mono: "y \<le> z \<Longrightarrow> join x y \<le> join x z" |
|
254 |
proof - |
|
255 |
assume a: "y \<le> z" |
|
256 |
have "x <= join x z & z <= join x z" by (simp add: join_left_le join_right_le) |
|
257 |
with a have "x <= join x z & y <= join x z" by auto |
|
258 |
thus "join x y <= join x z" by (simp add: join_imp_le) |
|
259 |
qed |
|
260 |
||
261 |
lemma distrib_join_le: "join x (meet y z) \<le> meet (join x y) (join x z)" (is "_ <= ?r") |
|
262 |
proof - |
|
263 |
have a: "x <= ?r" by (rule meet_imp_le, simp_all add: join_left_le) |
|
264 |
from meet_join_le have b: "meet y z <= ?r" |
|
265 |
by (rule_tac meet_imp_le, (blast intro: order_trans)+) |
|
266 |
from a b show ?thesis by (simp add: join_imp_le) |
|
267 |
qed |
|
268 |
||
269 |
lemma distrib_meet_le: "join (meet x y) (meet x z) \<le> meet x (join y z)" (is "?l <= _") |
|
270 |
proof - |
|
271 |
have a: "?l <= x" by (rule join_imp_le, simp_all add: meet_left_le) |
|
272 |
from meet_join_le have b: "?l <= join y z" |
|
273 |
by (rule_tac join_imp_le, (blast intro: order_trans)+) |
|
274 |
from a b show ?thesis by (simp add: meet_imp_le) |
|
275 |
qed |
|
276 |
||
277 |
lemma meet_join_eq_imp_le: "a = c \<or> a = d \<or> b = c \<or> b = d \<Longrightarrow> meet a b \<le> join c d" |
|
278 |
by (insert meet_join_le, blast intro: order_trans) |
|
279 |
||
280 |
lemma modular_le: "x \<le> z \<Longrightarrow> join x (meet y z) \<le> meet (join x y) z" (is "_ \<Longrightarrow> ?t <= _") |
|
281 |
proof - |
|
282 |
assume a: "x <= z" |
|
283 |
have b: "?t <= join x y" by (rule join_imp_le, simp_all add: meet_join_le meet_join_eq_imp_le) |
|
284 |
have c: "?t <= z" by (rule join_imp_le, simp_all add: meet_join_le a) |
|
285 |
from b c show ?thesis by (simp add: meet_imp_le) |
|
286 |
qed |
|
287 |
||
15131 | 288 |
end |