6498
|
1 |
(* Title: TFL/rules
|
|
2 |
ID: $Id$
|
|
3 |
Author: Konrad Slind, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1997 University of Cambridge
|
|
5 |
|
|
6 |
Emulation of HOL inference rules for TFL
|
|
7 |
*)
|
|
8 |
|
|
9 |
|
|
10 |
structure Rules : Rules_sig =
|
|
11 |
struct
|
|
12 |
|
|
13 |
open Utils;
|
|
14 |
|
|
15 |
structure USyntax = USyntax;
|
|
16 |
structure S = USyntax;
|
|
17 |
structure U = Utils;
|
|
18 |
structure D = Dcterm;
|
|
19 |
|
|
20 |
|
|
21 |
fun RULES_ERR{func,mesg} = Utils.ERR{module = "Rules",func=func,mesg=mesg};
|
|
22 |
|
|
23 |
|
|
24 |
fun cconcl thm = D.drop_prop(#prop(crep_thm thm));
|
|
25 |
fun chyps thm = map D.drop_prop(#hyps(crep_thm thm));
|
|
26 |
|
|
27 |
fun dest_thm thm =
|
|
28 |
let val {prop,hyps,...} = rep_thm thm
|
|
29 |
in (map HOLogic.dest_Trueprop hyps, HOLogic.dest_Trueprop prop)
|
|
30 |
end;
|
|
31 |
|
|
32 |
|
|
33 |
|
|
34 |
(* Inference rules *)
|
|
35 |
|
|
36 |
(*---------------------------------------------------------------------------
|
|
37 |
* Equality (one step)
|
|
38 |
*---------------------------------------------------------------------------*)
|
|
39 |
fun REFL tm = Thm.reflexive tm RS meta_eq_to_obj_eq;
|
|
40 |
fun SYM thm = thm RS sym;
|
|
41 |
|
|
42 |
fun ALPHA thm ctm1 =
|
|
43 |
let val ctm2 = cprop_of thm
|
|
44 |
val ctm2_eq = reflexive ctm2
|
|
45 |
val ctm1_eq = reflexive ctm1
|
|
46 |
in equal_elim (transitive ctm2_eq ctm1_eq) thm
|
|
47 |
end;
|
|
48 |
|
7262
|
49 |
fun rbeta th =
|
|
50 |
case Dcterm.strip_comb (cconcl th)
|
|
51 |
of (eeq,[l,r]) => transitive th (beta_conversion r)
|
|
52 |
| _ => raise RULES_ERR{func="rbeta", mesg =""};
|
6498
|
53 |
|
|
54 |
(*----------------------------------------------------------------------------
|
|
55 |
* typ instantiation
|
|
56 |
*---------------------------------------------------------------------------*)
|
|
57 |
fun INST_TYPE blist thm =
|
|
58 |
let val {sign,...} = rep_thm thm
|
|
59 |
val blist' = map (fn (TVar(idx,_), B) => (idx, ctyp_of sign B)) blist
|
|
60 |
in Thm.instantiate (blist',[]) thm
|
|
61 |
end
|
|
62 |
handle _ => raise RULES_ERR{func = "INST_TYPE", mesg = ""};
|
|
63 |
|
|
64 |
|
|
65 |
(*----------------------------------------------------------------------------
|
|
66 |
* Implication and the assumption list
|
|
67 |
*
|
|
68 |
* Assumptions get stuck on the meta-language assumption list. Implications
|
|
69 |
* are in the object language, so discharging an assumption "A" from theorem
|
|
70 |
* "B" results in something that looks like "A --> B".
|
|
71 |
*---------------------------------------------------------------------------*)
|
|
72 |
fun ASSUME ctm = Thm.assume (D.mk_prop ctm);
|
|
73 |
|
|
74 |
|
|
75 |
(*---------------------------------------------------------------------------
|
|
76 |
* Implication in TFL is -->. Meta-language implication (==>) is only used
|
|
77 |
* in the implementation of some of the inference rules below.
|
|
78 |
*---------------------------------------------------------------------------*)
|
|
79 |
fun MP th1 th2 = th2 RS (th1 RS mp);
|
|
80 |
|
|
81 |
(*forces the first argument to be a proposition if necessary*)
|
|
82 |
fun DISCH tm thm = Thm.implies_intr (D.mk_prop tm) thm COMP impI;
|
|
83 |
|
|
84 |
fun DISCH_ALL thm = Utils.itlist DISCH (#hyps (crep_thm thm)) thm;
|
|
85 |
|
|
86 |
|
|
87 |
fun FILTER_DISCH_ALL P thm =
|
|
88 |
let fun check tm = U.holds P (#t(rep_cterm tm))
|
|
89 |
in foldr (fn (tm,th) => if (check tm) then DISCH tm th else th)
|
|
90 |
(chyps thm, thm)
|
|
91 |
end;
|
|
92 |
|
|
93 |
(* freezeT expensive! *)
|
|
94 |
fun UNDISCH thm =
|
|
95 |
let val tm = D.mk_prop(#1(D.dest_imp(cconcl (freezeT thm))))
|
|
96 |
in implies_elim (thm RS mp) (ASSUME tm)
|
|
97 |
end
|
|
98 |
handle _ => raise RULES_ERR{func = "UNDISCH", mesg = ""};
|
|
99 |
|
|
100 |
fun PROVE_HYP ath bth = MP (DISCH (cconcl ath) bth) ath;
|
|
101 |
|
|
102 |
local val [p1,p2] = goal HOL.thy "(A-->B) ==> (B --> C) ==> (A-->C)"
|
|
103 |
val dummy = by (rtac impI 1)
|
|
104 |
val dummy = by (rtac (p2 RS mp) 1)
|
|
105 |
val dummy = by (rtac (p1 RS mp) 1)
|
|
106 |
val dummy = by (assume_tac 1)
|
|
107 |
val imp_trans = result()
|
|
108 |
in
|
|
109 |
fun IMP_TRANS th1 th2 = th2 RS (th1 RS imp_trans)
|
|
110 |
end;
|
|
111 |
|
|
112 |
(*----------------------------------------------------------------------------
|
|
113 |
* Conjunction
|
|
114 |
*---------------------------------------------------------------------------*)
|
|
115 |
fun CONJUNCT1 thm = (thm RS conjunct1)
|
|
116 |
fun CONJUNCT2 thm = (thm RS conjunct2);
|
|
117 |
fun CONJUNCTS th = (CONJUNCTS (CONJUNCT1 th) @ CONJUNCTS (CONJUNCT2 th))
|
|
118 |
handle _ => [th];
|
|
119 |
|
|
120 |
fun LIST_CONJ [] = raise RULES_ERR{func = "LIST_CONJ", mesg = "empty list"}
|
|
121 |
| LIST_CONJ [th] = th
|
|
122 |
| LIST_CONJ (th::rst) = MP(MP(conjI COMP (impI RS impI)) th) (LIST_CONJ rst);
|
|
123 |
|
|
124 |
|
|
125 |
(*----------------------------------------------------------------------------
|
|
126 |
* Disjunction
|
|
127 |
*---------------------------------------------------------------------------*)
|
|
128 |
local val {prop,sign,...} = rep_thm disjI1
|
|
129 |
val [P,Q] = term_vars prop
|
|
130 |
val disj1 = forall_intr (cterm_of sign Q) disjI1
|
|
131 |
in
|
|
132 |
fun DISJ1 thm tm = thm RS (forall_elim (D.drop_prop tm) disj1)
|
|
133 |
end;
|
|
134 |
|
|
135 |
local val {prop,sign,...} = rep_thm disjI2
|
|
136 |
val [P,Q] = term_vars prop
|
|
137 |
val disj2 = forall_intr (cterm_of sign P) disjI2
|
|
138 |
in
|
|
139 |
fun DISJ2 tm thm = thm RS (forall_elim (D.drop_prop tm) disj2)
|
|
140 |
end;
|
|
141 |
|
|
142 |
|
|
143 |
(*----------------------------------------------------------------------------
|
|
144 |
*
|
|
145 |
* A1 |- M1, ..., An |- Mn
|
|
146 |
* ---------------------------------------------------
|
|
147 |
* [A1 |- M1 \/ ... \/ Mn, ..., An |- M1 \/ ... \/ Mn]
|
|
148 |
*
|
|
149 |
*---------------------------------------------------------------------------*)
|
|
150 |
|
|
151 |
|
|
152 |
fun EVEN_ORS thms =
|
|
153 |
let fun blue ldisjs [] _ = []
|
|
154 |
| blue ldisjs (th::rst) rdisjs =
|
|
155 |
let val tail = tl rdisjs
|
|
156 |
val rdisj_tl = D.list_mk_disj tail
|
|
157 |
in itlist DISJ2 ldisjs (DISJ1 th rdisj_tl)
|
|
158 |
:: blue (ldisjs@[cconcl th]) rst tail
|
|
159 |
end handle _ => [itlist DISJ2 ldisjs th]
|
|
160 |
in
|
|
161 |
blue [] thms (map cconcl thms)
|
|
162 |
end;
|
|
163 |
|
|
164 |
|
|
165 |
(*----------------------------------------------------------------------------
|
|
166 |
*
|
|
167 |
* A |- P \/ Q B,P |- R C,Q |- R
|
|
168 |
* ---------------------------------------------------
|
|
169 |
* A U B U C |- R
|
|
170 |
*
|
|
171 |
*---------------------------------------------------------------------------*)
|
|
172 |
local val [p1,p2,p3] = goal HOL.thy "(P | Q) ==> (P --> R) ==> (Q --> R) ==> R"
|
|
173 |
val dummy = by (rtac (p1 RS disjE) 1)
|
|
174 |
val dummy = by (rtac (p2 RS mp) 1)
|
|
175 |
val dummy = by (assume_tac 1)
|
|
176 |
val dummy = by (rtac (p3 RS mp) 1)
|
|
177 |
val dummy = by (assume_tac 1)
|
|
178 |
val tfl_exE = result()
|
|
179 |
in
|
|
180 |
fun DISJ_CASES th1 th2 th3 =
|
|
181 |
let val c = D.drop_prop(cconcl th1)
|
|
182 |
val (disj1,disj2) = D.dest_disj c
|
|
183 |
val th2' = DISCH disj1 th2
|
|
184 |
val th3' = DISCH disj2 th3
|
|
185 |
in
|
|
186 |
th3' RS (th2' RS (th1 RS tfl_exE))
|
|
187 |
end
|
|
188 |
end;
|
|
189 |
|
|
190 |
|
|
191 |
(*-----------------------------------------------------------------------------
|
|
192 |
*
|
|
193 |
* |- A1 \/ ... \/ An [A1 |- M, ..., An |- M]
|
|
194 |
* ---------------------------------------------------
|
|
195 |
* |- M
|
|
196 |
*
|
|
197 |
* Note. The list of theorems may be all jumbled up, so we have to
|
|
198 |
* first organize it to align with the first argument (the disjunctive
|
|
199 |
* theorem).
|
|
200 |
*---------------------------------------------------------------------------*)
|
|
201 |
|
|
202 |
fun organize eq = (* a bit slow - analogous to insertion sort *)
|
|
203 |
let fun extract a alist =
|
|
204 |
let fun ex (_,[]) = raise RULES_ERR{func = "organize",
|
|
205 |
mesg = "not a permutation.1"}
|
|
206 |
| ex(left,h::t) = if (eq h a) then (h,rev left@t) else ex(h::left,t)
|
|
207 |
in ex ([],alist)
|
|
208 |
end
|
|
209 |
fun place [] [] = []
|
|
210 |
| place (a::rst) alist =
|
|
211 |
let val (item,next) = extract a alist
|
|
212 |
in item::place rst next
|
|
213 |
end
|
|
214 |
| place _ _ = raise RULES_ERR{func = "organize",
|
|
215 |
mesg = "not a permutation.2"}
|
|
216 |
in place
|
|
217 |
end;
|
|
218 |
(* freezeT expensive! *)
|
|
219 |
fun DISJ_CASESL disjth thl =
|
|
220 |
let val c = cconcl disjth
|
|
221 |
fun eq th atm = exists (fn t => HOLogic.dest_Trueprop t
|
|
222 |
aconv term_of atm)
|
|
223 |
(#hyps(rep_thm th))
|
|
224 |
val tml = D.strip_disj c
|
|
225 |
fun DL th [] = raise RULES_ERR{func="DISJ_CASESL",mesg="no cases"}
|
|
226 |
| DL th [th1] = PROVE_HYP th th1
|
|
227 |
| DL th [th1,th2] = DISJ_CASES th th1 th2
|
|
228 |
| DL th (th1::rst) =
|
|
229 |
let val tm = #2(D.dest_disj(D.drop_prop(cconcl th)))
|
|
230 |
in DISJ_CASES th th1 (DL (ASSUME tm) rst) end
|
|
231 |
in DL (freezeT disjth) (organize eq tml thl)
|
|
232 |
end;
|
|
233 |
|
|
234 |
|
|
235 |
(*----------------------------------------------------------------------------
|
|
236 |
* Universals
|
|
237 |
*---------------------------------------------------------------------------*)
|
|
238 |
local (* this is fragile *)
|
|
239 |
val {prop,sign,...} = rep_thm spec
|
|
240 |
val x = hd (tl (term_vars prop))
|
|
241 |
val (TVar (indx,_)) = type_of x
|
|
242 |
val gspec = forall_intr (cterm_of sign x) spec
|
|
243 |
in
|
|
244 |
fun SPEC tm thm =
|
|
245 |
let val {sign,T,...} = rep_cterm tm
|
|
246 |
val gspec' = instantiate([(indx,ctyp_of sign T)],[]) gspec
|
|
247 |
in
|
|
248 |
thm RS (forall_elim tm gspec')
|
|
249 |
end
|
|
250 |
end;
|
|
251 |
|
|
252 |
fun SPEC_ALL thm = rev_itlist SPEC (#1(D.strip_forall(cconcl thm))) thm;
|
|
253 |
|
|
254 |
val ISPEC = SPEC
|
|
255 |
val ISPECL = rev_itlist ISPEC;
|
|
256 |
|
|
257 |
(* Not optimized! Too complicated. *)
|
|
258 |
local val {prop,sign,...} = rep_thm allI
|
|
259 |
val [P] = add_term_vars (prop, [])
|
|
260 |
fun cty_theta s = map (fn (i,ty) => (i, ctyp_of s ty))
|
|
261 |
fun ctm_theta s = map (fn (i,tm2) =>
|
|
262 |
let val ctm2 = cterm_of s tm2
|
|
263 |
in (cterm_of s (Var(i,#T(rep_cterm ctm2))), ctm2)
|
|
264 |
end)
|
|
265 |
fun certify s (ty_theta,tm_theta) = (cty_theta s ty_theta,
|
|
266 |
ctm_theta s tm_theta)
|
|
267 |
in
|
|
268 |
fun GEN v th =
|
|
269 |
let val gth = forall_intr v th
|
|
270 |
val {prop=Const("all",_)$Abs(x,ty,rst),sign,...} = rep_thm gth
|
|
271 |
val P' = Abs(x,ty, HOLogic.dest_Trueprop rst) (* get rid of trueprop *)
|
|
272 |
val tsig = #tsig(Sign.rep_sg sign)
|
|
273 |
val theta = Pattern.match tsig (P,P')
|
|
274 |
val allI2 = instantiate (certify sign theta) allI
|
|
275 |
val thm = implies_elim allI2 gth
|
|
276 |
val {prop = tp $ (A $ Abs(_,_,M)),sign,...} = rep_thm thm
|
|
277 |
val prop' = tp $ (A $ Abs(x,ty,M))
|
|
278 |
in ALPHA thm (cterm_of sign prop')
|
|
279 |
end
|
|
280 |
end;
|
|
281 |
|
|
282 |
val GENL = itlist GEN;
|
|
283 |
|
|
284 |
fun GEN_ALL thm =
|
|
285 |
let val {prop,sign,...} = rep_thm thm
|
|
286 |
val tycheck = cterm_of sign
|
|
287 |
val vlist = map tycheck (add_term_vars (prop, []))
|
|
288 |
in GENL vlist thm
|
|
289 |
end;
|
|
290 |
|
|
291 |
|
|
292 |
fun MATCH_MP th1 th2 =
|
|
293 |
if (D.is_forall (D.drop_prop(cconcl th1)))
|
|
294 |
then MATCH_MP (th1 RS spec) th2
|
|
295 |
else MP th1 th2;
|
|
296 |
|
|
297 |
|
|
298 |
(*----------------------------------------------------------------------------
|
|
299 |
* Existentials
|
|
300 |
*---------------------------------------------------------------------------*)
|
|
301 |
|
|
302 |
|
|
303 |
|
|
304 |
(*---------------------------------------------------------------------------
|
|
305 |
* Existential elimination
|
|
306 |
*
|
|
307 |
* A1 |- ?x.t[x] , A2, "t[v]" |- t'
|
|
308 |
* ------------------------------------ (variable v occurs nowhere)
|
|
309 |
* A1 u A2 |- t'
|
|
310 |
*
|
|
311 |
*---------------------------------------------------------------------------*)
|
|
312 |
|
|
313 |
local val [p1,p2] = goal HOL.thy "(? x. P x) ==> (!x. P x --> Q) ==> Q"
|
|
314 |
val dummy = by (rtac (p1 RS exE) 1)
|
|
315 |
val dummy = by (rtac ((p2 RS allE) RS mp) 1)
|
|
316 |
val dummy = by (assume_tac 2)
|
|
317 |
val dummy = by (assume_tac 1)
|
|
318 |
val choose_thm = result()
|
|
319 |
in
|
|
320 |
fun CHOOSE(fvar,exth) fact =
|
|
321 |
let val lam = #2(dest_comb(D.drop_prop(cconcl exth)))
|
|
322 |
val redex = capply lam fvar
|
|
323 |
val {sign, t = t$u,...} = rep_cterm redex
|
|
324 |
val residue = cterm_of sign (betapply(t,u))
|
|
325 |
in GEN fvar (DISCH residue fact) RS (exth RS choose_thm)
|
|
326 |
end
|
|
327 |
end;
|
|
328 |
|
|
329 |
|
|
330 |
local val {prop,sign,...} = rep_thm exI
|
|
331 |
val [P,x] = term_vars prop
|
|
332 |
in
|
|
333 |
fun EXISTS (template,witness) thm =
|
|
334 |
let val {prop,sign,...} = rep_thm thm
|
|
335 |
val P' = cterm_of sign P
|
|
336 |
val x' = cterm_of sign x
|
|
337 |
val abstr = #2(dest_comb template)
|
|
338 |
in
|
|
339 |
thm RS (cterm_instantiate[(P',abstr), (x',witness)] exI)
|
|
340 |
end
|
|
341 |
end;
|
|
342 |
|
|
343 |
(*----------------------------------------------------------------------------
|
|
344 |
*
|
|
345 |
* A |- M
|
|
346 |
* ------------------- [v_1,...,v_n]
|
|
347 |
* A |- ?v1...v_n. M
|
|
348 |
*
|
|
349 |
*---------------------------------------------------------------------------*)
|
|
350 |
|
|
351 |
fun EXISTL vlist th =
|
|
352 |
U.itlist (fn v => fn thm => EXISTS(D.mk_exists(v,cconcl thm), v) thm)
|
|
353 |
vlist th;
|
|
354 |
|
|
355 |
|
|
356 |
(*----------------------------------------------------------------------------
|
|
357 |
*
|
|
358 |
* A |- M[x_1,...,x_n]
|
|
359 |
* ---------------------------- [(x |-> y)_1,...,(x |-> y)_n]
|
|
360 |
* A |- ?y_1...y_n. M
|
|
361 |
*
|
|
362 |
*---------------------------------------------------------------------------*)
|
|
363 |
(* Could be improved, but needs "subst_free" for certified terms *)
|
|
364 |
|
|
365 |
fun IT_EXISTS blist th =
|
|
366 |
let val {sign,...} = rep_thm th
|
|
367 |
val tych = cterm_of sign
|
|
368 |
val detype = #t o rep_cterm
|
|
369 |
val blist' = map (fn (x,y) => (detype x, detype y)) blist
|
|
370 |
fun ?v M = cterm_of sign (S.mk_exists{Bvar=v,Body = M})
|
|
371 |
|
|
372 |
in
|
|
373 |
U.itlist (fn (b as (r1,r2)) => fn thm =>
|
|
374 |
EXISTS(?r2(subst_free[b]
|
|
375 |
(HOLogic.dest_Trueprop(#prop(rep_thm thm)))), tych r1)
|
|
376 |
thm)
|
|
377 |
blist' th
|
|
378 |
end;
|
|
379 |
|
|
380 |
(*---------------------------------------------------------------------------
|
|
381 |
* Faster version, that fails for some as yet unknown reason
|
|
382 |
* fun IT_EXISTS blist th =
|
|
383 |
* let val {sign,...} = rep_thm th
|
|
384 |
* val tych = cterm_of sign
|
|
385 |
* fun detype (x,y) = ((#t o rep_cterm) x, (#t o rep_cterm) y)
|
|
386 |
* in
|
|
387 |
* fold (fn (b as (r1,r2), thm) =>
|
|
388 |
* EXISTS(D.mk_exists(r2, tych(subst_free[detype b](#t(rep_cterm(cconcl thm))))),
|
|
389 |
* r1) thm) blist th
|
|
390 |
* end;
|
|
391 |
*---------------------------------------------------------------------------*)
|
|
392 |
|
|
393 |
(*----------------------------------------------------------------------------
|
|
394 |
* Rewriting
|
|
395 |
*---------------------------------------------------------------------------*)
|
|
396 |
|
|
397 |
fun SUBS thl =
|
|
398 |
rewrite_rule (map (fn th => (th RS eq_reflection) handle _ => th) thl);
|
|
399 |
|
|
400 |
local fun rew_conv mss = Thm.rewrite_cterm (true,false,false) mss (K(K None))
|
|
401 |
in
|
|
402 |
fun simpl_conv ss thl ctm =
|
|
403 |
rew_conv (Thm.mss_of (#simps (Thm.dest_mss (#mss (rep_ss ss))) @ thl)) ctm
|
|
404 |
RS meta_eq_to_obj_eq
|
|
405 |
end;
|
|
406 |
|
|
407 |
local fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1])
|
|
408 |
in
|
|
409 |
val RIGHT_ASSOC = rewrite_rule [prover"((a|b)|c) = (a|(b|c))" RS eq_reflection]
|
|
410 |
val ASM = refl RS iffD1
|
|
411 |
end;
|
|
412 |
|
|
413 |
|
|
414 |
|
|
415 |
|
|
416 |
(*---------------------------------------------------------------------------
|
|
417 |
* TERMINATION CONDITION EXTRACTION
|
|
418 |
*---------------------------------------------------------------------------*)
|
|
419 |
|
|
420 |
|
|
421 |
(* Object language quantifier, i.e., "!" *)
|
|
422 |
fun Forall v M = S.mk_forall{Bvar=v, Body=M};
|
|
423 |
|
|
424 |
|
|
425 |
(* Fragile: it's a cong if it is not "R y x ==> cut f R x y = f y" *)
|
|
426 |
fun is_cong thm =
|
|
427 |
let val {prop, ...} = rep_thm thm
|
|
428 |
in case prop
|
|
429 |
of (Const("==>",_)$(Const("Trueprop",_)$ _) $
|
8882
|
430 |
(Const("==",_) $ (Const ("WF.cut",_) $ f $ R $ a $ x) $ _)) => false
|
6498
|
431 |
| _ => true
|
|
432 |
end;
|
|
433 |
|
|
434 |
|
|
435 |
|
|
436 |
fun dest_equal(Const ("==",_) $
|
|
437 |
(Const ("Trueprop",_) $ lhs)
|
|
438 |
$ (Const ("Trueprop",_) $ rhs)) = {lhs=lhs, rhs=rhs}
|
|
439 |
| dest_equal(Const ("==",_) $ lhs $ rhs) = {lhs=lhs, rhs=rhs}
|
|
440 |
| dest_equal tm = S.dest_eq tm;
|
|
441 |
|
|
442 |
fun get_lhs tm = #lhs(dest_equal (HOLogic.dest_Trueprop tm));
|
|
443 |
|
|
444 |
fun dest_all(Const("all",_) $ (a as Abs _)) = S.dest_abs a
|
|
445 |
| dest_all _ = raise RULES_ERR{func = "dest_all", mesg = "not a !!"};
|
|
446 |
|
|
447 |
val is_all = Utils.can dest_all;
|
|
448 |
|
|
449 |
fun strip_all fm =
|
|
450 |
if (is_all fm)
|
|
451 |
then let val {Bvar,Body} = dest_all fm
|
|
452 |
val (bvs,core) = strip_all Body
|
|
453 |
in ((Bvar::bvs), core)
|
|
454 |
end
|
|
455 |
else ([],fm);
|
|
456 |
|
|
457 |
fun break_all(Const("all",_) $ Abs (_,_,body)) = body
|
|
458 |
| break_all _ = raise RULES_ERR{func = "break_all", mesg = "not a !!"};
|
|
459 |
|
|
460 |
fun list_break_all(Const("all",_) $ Abs (s,ty,body)) =
|
|
461 |
let val (L,core) = list_break_all body
|
|
462 |
in ((s,ty)::L, core)
|
|
463 |
end
|
|
464 |
| list_break_all tm = ([],tm);
|
|
465 |
|
|
466 |
(*---------------------------------------------------------------------------
|
|
467 |
* Rename a term of the form
|
|
468 |
*
|
|
469 |
* !!x1 ...xn. x1=M1 ==> ... ==> xn=Mn
|
|
470 |
* ==> ((%v1...vn. Q) x1 ... xn = g x1 ... xn.
|
|
471 |
* to one of
|
|
472 |
*
|
|
473 |
* !!v1 ... vn. v1=M1 ==> ... ==> vn=Mn
|
|
474 |
* ==> ((%v1...vn. Q) v1 ... vn = g v1 ... vn.
|
|
475 |
*
|
|
476 |
* This prevents name problems in extraction, and helps the result to read
|
|
477 |
* better. There is a problem with varstructs, since they can introduce more
|
|
478 |
* than n variables, and some extra reasoning needs to be done.
|
|
479 |
*---------------------------------------------------------------------------*)
|
|
480 |
|
|
481 |
fun get ([],_,L) = rev L
|
|
482 |
| get (ant::rst,n,L) =
|
|
483 |
case (list_break_all ant)
|
|
484 |
of ([],_) => get (rst, n+1,L)
|
|
485 |
| (vlist,body) =>
|
|
486 |
let val eq = Logic.strip_imp_concl body
|
|
487 |
val (f,args) = S.strip_comb (get_lhs eq)
|
|
488 |
val (vstrl,_) = S.strip_abs f
|
|
489 |
val names = variantlist (map (#1 o dest_Free) vstrl,
|
|
490 |
add_term_names(body, []))
|
|
491 |
in get (rst, n+1, (names,n)::L)
|
|
492 |
end handle _ => get (rst, n+1, L);
|
|
493 |
|
|
494 |
(* Note: rename_params_rule counts from 1, not 0 *)
|
|
495 |
fun rename thm =
|
|
496 |
let val {prop,sign,...} = rep_thm thm
|
|
497 |
val tych = cterm_of sign
|
|
498 |
val ants = Logic.strip_imp_prems prop
|
|
499 |
val news = get (ants,1,[])
|
|
500 |
in
|
|
501 |
U.rev_itlist rename_params_rule news thm
|
|
502 |
end;
|
|
503 |
|
|
504 |
|
|
505 |
(*---------------------------------------------------------------------------
|
|
506 |
* Beta-conversion to the rhs of an equation (taken from hol90/drule.sml)
|
|
507 |
*---------------------------------------------------------------------------*)
|
|
508 |
|
|
509 |
fun list_beta_conv tm =
|
|
510 |
let fun rbeta th = transitive th (beta_conversion(#2(D.dest_eq(cconcl th))))
|
|
511 |
fun iter [] = reflexive tm
|
|
512 |
| iter (v::rst) = rbeta (combination(iter rst) (reflexive v))
|
|
513 |
in iter end;
|
|
514 |
|
|
515 |
|
|
516 |
(*---------------------------------------------------------------------------
|
|
517 |
* Trace information for the rewriter
|
|
518 |
*---------------------------------------------------------------------------*)
|
|
519 |
val term_ref = ref[] : term list ref
|
|
520 |
val mss_ref = ref [] : meta_simpset list ref;
|
|
521 |
val thm_ref = ref [] : thm list ref;
|
|
522 |
val tracing = ref false;
|
|
523 |
|
|
524 |
fun say s = if !tracing then writeln s else ();
|
|
525 |
|
|
526 |
fun print_thms s L =
|
|
527 |
say (cat_lines (s :: map string_of_thm L));
|
|
528 |
|
|
529 |
fun print_cterms s L =
|
|
530 |
say (cat_lines (s :: map string_of_cterm L));
|
|
531 |
|
|
532 |
|
|
533 |
(*---------------------------------------------------------------------------
|
|
534 |
* General abstraction handlers, should probably go in USyntax.
|
|
535 |
*---------------------------------------------------------------------------*)
|
|
536 |
fun mk_aabs(vstr,body) = S.mk_abs{Bvar=vstr,Body=body}
|
|
537 |
handle _ => S.mk_pabs{varstruct = vstr, body = body};
|
|
538 |
|
|
539 |
fun list_mk_aabs (vstrl,tm) =
|
|
540 |
U.itlist (fn vstr => fn tm => mk_aabs(vstr,tm)) vstrl tm;
|
|
541 |
|
|
542 |
fun dest_aabs tm =
|
|
543 |
let val {Bvar,Body} = S.dest_abs tm
|
|
544 |
in (Bvar,Body)
|
|
545 |
end handle _ => let val {varstruct,body} = S.dest_pabs tm
|
|
546 |
in (varstruct,body)
|
|
547 |
end;
|
|
548 |
|
|
549 |
fun strip_aabs tm =
|
|
550 |
let val (vstr,body) = dest_aabs tm
|
|
551 |
val (bvs, core) = strip_aabs body
|
|
552 |
in (vstr::bvs, core)
|
|
553 |
end
|
|
554 |
handle _ => ([],tm);
|
|
555 |
|
|
556 |
fun dest_combn tm 0 = (tm,[])
|
|
557 |
| dest_combn tm n =
|
|
558 |
let val {Rator,Rand} = S.dest_comb tm
|
|
559 |
val (f,rands) = dest_combn Rator (n-1)
|
|
560 |
in (f,Rand::rands)
|
|
561 |
end;
|
|
562 |
|
|
563 |
|
|
564 |
|
|
565 |
|
|
566 |
local fun dest_pair M = let val {fst,snd} = S.dest_pair M in (fst,snd) end
|
|
567 |
fun mk_fst tm =
|
|
568 |
let val ty as Type("*", [fty,sty]) = type_of tm
|
|
569 |
in Const ("fst", ty --> fty) $ tm end
|
|
570 |
fun mk_snd tm =
|
|
571 |
let val ty as Type("*", [fty,sty]) = type_of tm
|
|
572 |
in Const ("snd", ty --> sty) $ tm end
|
|
573 |
in
|
|
574 |
fun XFILL tych x vstruct =
|
|
575 |
let fun traverse p xocc L =
|
|
576 |
if (is_Free p)
|
|
577 |
then tych xocc::L
|
|
578 |
else let val (p1,p2) = dest_pair p
|
|
579 |
in traverse p1 (mk_fst xocc) (traverse p2 (mk_snd xocc) L)
|
|
580 |
end
|
|
581 |
in
|
|
582 |
traverse vstruct x []
|
|
583 |
end end;
|
|
584 |
|
|
585 |
(*---------------------------------------------------------------------------
|
|
586 |
* Replace a free tuple (vstr) by a universally quantified variable (a).
|
|
587 |
* Note that the notion of "freeness" for a tuple is different than for a
|
|
588 |
* variable: if variables in the tuple also occur in any other place than
|
|
589 |
* an occurrences of the tuple, they aren't "free" (which is thus probably
|
|
590 |
* the wrong word to use).
|
|
591 |
*---------------------------------------------------------------------------*)
|
|
592 |
|
|
593 |
fun VSTRUCT_ELIM tych a vstr th =
|
|
594 |
let val L = S.free_vars_lr vstr
|
|
595 |
val bind1 = tych (HOLogic.mk_Trueprop (HOLogic.mk_eq(a,vstr)))
|
|
596 |
val thm1 = implies_intr bind1 (SUBS [SYM(assume bind1)] th)
|
|
597 |
val thm2 = forall_intr_list (map tych L) thm1
|
|
598 |
val thm3 = forall_elim_list (XFILL tych a vstr) thm2
|
|
599 |
in refl RS
|
|
600 |
rewrite_rule[symmetric (surjective_pairing RS eq_reflection)] thm3
|
|
601 |
end;
|
|
602 |
|
|
603 |
fun PGEN tych a vstr th =
|
|
604 |
let val a1 = tych a
|
|
605 |
val vstr1 = tych vstr
|
|
606 |
in
|
|
607 |
forall_intr a1
|
|
608 |
(if (is_Free vstr)
|
|
609 |
then cterm_instantiate [(vstr1,a1)] th
|
|
610 |
else VSTRUCT_ELIM tych a vstr th)
|
|
611 |
end;
|
|
612 |
|
|
613 |
|
|
614 |
(*---------------------------------------------------------------------------
|
|
615 |
* Takes apart a paired beta-redex, looking like "(\(x,y).N) vstr", into
|
|
616 |
*
|
|
617 |
* (([x,y],N),vstr)
|
|
618 |
*---------------------------------------------------------------------------*)
|
|
619 |
fun dest_pbeta_redex M n =
|
|
620 |
let val (f,args) = dest_combn M n
|
|
621 |
val dummy = dest_aabs f
|
|
622 |
in (strip_aabs f,args)
|
|
623 |
end;
|
|
624 |
|
|
625 |
fun pbeta_redex M n = U.can (U.C dest_pbeta_redex n) M;
|
|
626 |
|
|
627 |
fun dest_impl tm =
|
|
628 |
let val ants = Logic.strip_imp_prems tm
|
|
629 |
val eq = Logic.strip_imp_concl tm
|
|
630 |
in (ants,get_lhs eq)
|
|
631 |
end;
|
|
632 |
|
|
633 |
fun restricted t = is_some (S.find_term
|
8882
|
634 |
(fn (Const("WF.cut",_)) =>true | _ => false)
|
6498
|
635 |
t)
|
|
636 |
|
|
637 |
fun CONTEXT_REWRITE_RULE (func, G, cut_lemma, congs) th =
|
|
638 |
let val globals = func::G
|
|
639 |
val pbeta_reduce = simpl_conv empty_ss [split RS eq_reflection];
|
|
640 |
val tc_list = ref[]: term list ref
|
|
641 |
val dummy = term_ref := []
|
|
642 |
val dummy = thm_ref := []
|
|
643 |
val dummy = mss_ref := []
|
|
644 |
val cut_lemma' = cut_lemma RS eq_reflection
|
|
645 |
fun prover mss thm =
|
|
646 |
let fun cong_prover mss thm =
|
|
647 |
let val dummy = say "cong_prover:"
|
|
648 |
val cntxt = prems_of_mss mss
|
|
649 |
val dummy = print_thms "cntxt:" cntxt
|
|
650 |
val dummy = say "cong rule:"
|
|
651 |
val dummy = say (string_of_thm thm)
|
|
652 |
val dummy = thm_ref := (thm :: !thm_ref)
|
|
653 |
val dummy = mss_ref := (mss :: !mss_ref)
|
|
654 |
(* Unquantified eliminate *)
|
|
655 |
fun uq_eliminate (thm,imp,sign) =
|
|
656 |
let val tych = cterm_of sign
|
|
657 |
val dummy = print_cterms "To eliminate:" [tych imp]
|
|
658 |
val ants = map tych (Logic.strip_imp_prems imp)
|
|
659 |
val eq = Logic.strip_imp_concl imp
|
|
660 |
val lhs = tych(get_lhs eq)
|
|
661 |
val mss' = add_prems(mss, map ASSUME ants)
|
|
662 |
val lhs_eq_lhs1 = Thm.rewrite_cterm(false,true,false)mss' prover lhs
|
|
663 |
handle _ => reflexive lhs
|
|
664 |
val dummy = print_thms "proven:" [lhs_eq_lhs1]
|
|
665 |
val lhs_eq_lhs2 = implies_intr_list ants lhs_eq_lhs1
|
|
666 |
val lhs_eeq_lhs2 = lhs_eq_lhs2 RS meta_eq_to_obj_eq
|
|
667 |
in
|
|
668 |
lhs_eeq_lhs2 COMP thm
|
|
669 |
end
|
|
670 |
fun pq_eliminate (thm,sign,vlist,imp_body,lhs_eq) =
|
|
671 |
let val ((vstrl,_),args) = dest_pbeta_redex lhs_eq(length vlist)
|
|
672 |
val dummy = assert (forall (op aconv)
|
|
673 |
(ListPair.zip (vlist, args)))
|
|
674 |
"assertion failed in CONTEXT_REWRITE_RULE"
|
|
675 |
val imp_body1 = subst_free (ListPair.zip (args, vstrl))
|
|
676 |
imp_body
|
|
677 |
val tych = cterm_of sign
|
|
678 |
val ants1 = map tych (Logic.strip_imp_prems imp_body1)
|
|
679 |
val eq1 = Logic.strip_imp_concl imp_body1
|
|
680 |
val Q = get_lhs eq1
|
|
681 |
val QeqQ1 = pbeta_reduce (tych Q)
|
|
682 |
val Q1 = #2(D.dest_eq(cconcl QeqQ1))
|
|
683 |
val mss' = add_prems(mss, map ASSUME ants1)
|
|
684 |
val Q1eeqQ2 = Thm.rewrite_cterm (false,true,false) mss' prover Q1
|
|
685 |
handle _ => reflexive Q1
|
|
686 |
val Q2 = #2 (Logic.dest_equals (#prop(rep_thm Q1eeqQ2)))
|
|
687 |
val Q3 = tych(list_comb(list_mk_aabs(vstrl,Q2),vstrl))
|
|
688 |
val Q2eeqQ3 = symmetric(pbeta_reduce Q3 RS eq_reflection)
|
|
689 |
val thA = transitive(QeqQ1 RS eq_reflection) Q1eeqQ2
|
|
690 |
val QeeqQ3 = transitive thA Q2eeqQ3 handle _ =>
|
|
691 |
((Q2eeqQ3 RS meta_eq_to_obj_eq)
|
|
692 |
RS ((thA RS meta_eq_to_obj_eq) RS trans))
|
|
693 |
RS eq_reflection
|
|
694 |
val impth = implies_intr_list ants1 QeeqQ3
|
|
695 |
val impth1 = impth RS meta_eq_to_obj_eq
|
|
696 |
(* Need to abstract *)
|
|
697 |
val ant_th = U.itlist2 (PGEN tych) args vstrl impth1
|
|
698 |
in ant_th COMP thm
|
|
699 |
end
|
|
700 |
fun q_eliminate (thm,imp,sign) =
|
|
701 |
let val (vlist,imp_body) = strip_all imp
|
|
702 |
val (ants,Q) = dest_impl imp_body
|
|
703 |
in if (pbeta_redex Q) (length vlist)
|
|
704 |
then pq_eliminate (thm,sign,vlist,imp_body,Q)
|
|
705 |
else
|
|
706 |
let val tych = cterm_of sign
|
|
707 |
val ants1 = map tych ants
|
|
708 |
val mss' = add_prems(mss, map ASSUME ants1)
|
|
709 |
val Q_eeq_Q1 = Thm.rewrite_cterm(false,true,false) mss'
|
|
710 |
prover (tych Q)
|
|
711 |
handle _ => reflexive (tych Q)
|
|
712 |
val lhs_eeq_lhs2 = implies_intr_list ants1 Q_eeq_Q1
|
|
713 |
val lhs_eq_lhs2 = lhs_eeq_lhs2 RS meta_eq_to_obj_eq
|
|
714 |
val ant_th = forall_intr_list(map tych vlist)lhs_eq_lhs2
|
|
715 |
in
|
|
716 |
ant_th COMP thm
|
|
717 |
end end
|
|
718 |
|
|
719 |
fun eliminate thm =
|
|
720 |
case (rep_thm thm)
|
|
721 |
of {prop = (Const("==>",_) $ imp $ _), sign, ...} =>
|
|
722 |
eliminate
|
|
723 |
(if not(is_all imp)
|
|
724 |
then uq_eliminate (thm,imp,sign)
|
|
725 |
else q_eliminate (thm,imp,sign))
|
|
726 |
(* Assume that the leading constant is ==, *)
|
|
727 |
| _ => thm (* if it is not a ==> *)
|
|
728 |
in Some(eliminate (rename thm))
|
|
729 |
end handle _ => None
|
|
730 |
|
|
731 |
fun restrict_prover mss thm =
|
|
732 |
let val dummy = say "restrict_prover:"
|
|
733 |
val cntxt = rev(prems_of_mss mss)
|
|
734 |
val dummy = print_thms "cntxt:" cntxt
|
|
735 |
val {prop = Const("==>",_) $ (Const("Trueprop",_) $ A) $ _,
|
|
736 |
sign,...} = rep_thm thm
|
|
737 |
fun genl tm = let val vlist = gen_rems (op aconv)
|
|
738 |
(add_term_frees(tm,[]), globals)
|
|
739 |
in U.itlist Forall vlist tm
|
|
740 |
end
|
|
741 |
(*--------------------------------------------------------------
|
|
742 |
* This actually isn't quite right, since it will think that
|
|
743 |
* not-fully applied occs. of "f" in the context mean that the
|
|
744 |
* current call is nested. The real solution is to pass in a
|
|
745 |
* term "f v1..vn" which is a pattern that any full application
|
|
746 |
* of "f" will match.
|
|
747 |
*-------------------------------------------------------------*)
|
|
748 |
val func_name = #1(dest_Const func)
|
|
749 |
fun is_func (Const (name,_)) = (name = func_name)
|
|
750 |
| is_func _ = false
|
|
751 |
val rcontext = rev cntxt
|
|
752 |
val cncl = HOLogic.dest_Trueprop o #prop o rep_thm
|
|
753 |
val antl = case rcontext of [] => []
|
|
754 |
| _ => [S.list_mk_conj(map cncl rcontext)]
|
|
755 |
val TC = genl(S.list_mk_imp(antl, A))
|
|
756 |
val dummy = print_cterms "func:" [cterm_of sign func]
|
|
757 |
val dummy = print_cterms "TC:"
|
|
758 |
[cterm_of sign (HOLogic.mk_Trueprop TC)]
|
|
759 |
val dummy = tc_list := (TC :: !tc_list)
|
|
760 |
val nestedp = is_some (S.find_term is_func TC)
|
|
761 |
val dummy = if nestedp then say "nested" else say "not_nested"
|
|
762 |
val dummy = term_ref := ([func,TC]@(!term_ref))
|
|
763 |
val th' = if nestedp then raise RULES_ERR{func = "solver",
|
|
764 |
mesg = "nested function"}
|
|
765 |
else let val cTC = cterm_of sign
|
|
766 |
(HOLogic.mk_Trueprop TC)
|
|
767 |
in case rcontext of
|
|
768 |
[] => SPEC_ALL(ASSUME cTC)
|
|
769 |
| _ => MP (SPEC_ALL (ASSUME cTC))
|
|
770 |
(LIST_CONJ rcontext)
|
|
771 |
end
|
|
772 |
val th'' = th' RS thm
|
|
773 |
in Some (th'')
|
|
774 |
end handle _ => None
|
|
775 |
in
|
|
776 |
(if (is_cong thm) then cong_prover else restrict_prover) mss thm
|
|
777 |
end
|
|
778 |
val ctm = cprop_of th
|
7262
|
779 |
val th1 = Thm.rewrite_cterm(false,true,false)
|
|
780 |
(add_congs(mss_of [cut_lemma'], congs))
|
6498
|
781 |
prover ctm
|
|
782 |
val th2 = equal_elim th1 th
|
|
783 |
in
|
|
784 |
(th2, filter (not o restricted) (!tc_list))
|
|
785 |
end;
|
|
786 |
|
|
787 |
|
|
788 |
|
|
789 |
fun prove (ptm,tac) =
|
|
790 |
#1 (freeze_thaw (prove_goalw_cterm [] ptm (fn _ => [tac])));
|
|
791 |
|
|
792 |
|
|
793 |
end; (* Rules *)
|