| 
1478
 | 
     1  | 
(*  Title:      ZF/IMP/Equiv.thy
  | 
| 
12610
 | 
     2  | 
    Author:     Heiko Loetzbeyer and Robert Sandner, TU München
  | 
| 
482
 | 
     3  | 
*)
  | 
| 
 | 
     4  | 
  | 
| 
12610
 | 
     5  | 
header {* Equivalence *}
 | 
| 
 | 
     6  | 
  | 
| 
16417
 | 
     7  | 
theory Equiv imports Denotation Com begin
  | 
| 
12606
 | 
     8  | 
  | 
| 
 | 
     9  | 
lemma aexp_iff [rule_format]:
  | 
| 
12610
 | 
    10  | 
  "[| a \<in> aexp; sigma: loc -> nat |] 
  | 
| 
 | 
    11  | 
    ==> ALL n. <a,sigma> -a-> n <-> A(a,sigma) = n"
  | 
| 
 | 
    12  | 
  apply (erule aexp.induct)
  | 
| 
 | 
    13  | 
     apply (force intro!: evala.intros)+
  | 
| 
 | 
    14  | 
  done
  | 
| 
12606
 | 
    15  | 
  | 
| 
 | 
    16  | 
declare aexp_iff [THEN iffD1, simp]
  | 
| 
 | 
    17  | 
        aexp_iff [THEN iffD2, intro!]
  | 
| 
 | 
    18  | 
  | 
| 
12610
 | 
    19  | 
inductive_cases [elim!]:
  | 
| 
 | 
    20  | 
  "<true,sigma> -b-> x"
  | 
| 
 | 
    21  | 
  "<false,sigma> -b-> x"
  | 
| 
 | 
    22  | 
  "<ROp(f,a0,a1),sigma> -b-> x"
  | 
| 
 | 
    23  | 
  "<noti(b),sigma> -b-> x"
  | 
| 
 | 
    24  | 
  "<b0 andi b1,sigma> -b-> x"
  | 
| 
 | 
    25  | 
  "<b0 ori b1,sigma> -b-> x"
  | 
| 
12606
 | 
    26  | 
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma bexp_iff [rule_format]:
  | 
| 
12610
 | 
    29  | 
  "[| b \<in> bexp; sigma: loc -> nat |] 
  | 
| 
 | 
    30  | 
    ==> ALL w. <b,sigma> -b-> w <-> B(b,sigma) = w"
  | 
| 
 | 
    31  | 
  apply (erule bexp.induct) 
  | 
| 
 | 
    32  | 
  apply (auto intro!: evalb.intros)
  | 
| 
 | 
    33  | 
  done
  | 
| 
12606
 | 
    34  | 
  | 
| 
 | 
    35  | 
declare bexp_iff [THEN iffD1, simp]
  | 
| 
 | 
    36  | 
        bexp_iff [THEN iffD2, intro!]
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
lemma com1: "<c,sigma> -c-> sigma' ==> <sigma,sigma'> \<in> C(c)"
  | 
| 
12610
 | 
    39  | 
  apply (erule evalc.induct)
  | 
| 
13612
 | 
    40  | 
        apply (simp_all (no_asm_simp))
  | 
| 
12610
 | 
    41  | 
     txt {* @{text assign} *}
 | 
| 
 | 
    42  | 
     apply (simp add: update_type)
  | 
| 
 | 
    43  | 
    txt {* @{text comp} *}
 | 
| 
 | 
    44  | 
    apply fast
  | 
| 
 | 
    45  | 
   txt {* @{text while} *}
 | 
| 
 | 
    46  | 
   apply (erule Gamma_bnd_mono [THEN lfp_unfold, THEN ssubst, OF C_subset])
  | 
| 
 | 
    47  | 
   apply (simp add: Gamma_def)
  | 
| 
 | 
    48  | 
  txt {* recursive case of @{text while} *}
 | 
| 
 | 
    49  | 
  apply (erule Gamma_bnd_mono [THEN lfp_unfold, THEN ssubst, OF C_subset])
  | 
| 
 | 
    50  | 
  apply (auto simp add: Gamma_def)
  | 
| 
 | 
    51  | 
  done
  | 
| 
12606
 | 
    52  | 
  | 
| 
 | 
    53  | 
declare B_type [intro!] A_type [intro!]
  | 
| 
 | 
    54  | 
declare evalc.intros [intro]
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lemma com2 [rule_format]: "c \<in> com ==> \<forall>x \<in> C(c). <c,fst(x)> -c-> snd(x)"
  | 
| 
12610
 | 
    58  | 
  apply (erule com.induct)
  | 
| 
 | 
    59  | 
      txt {* @{text skip} *}
 | 
| 
 | 
    60  | 
      apply force
  | 
| 
 | 
    61  | 
     txt {* @{text assign} *}
 | 
| 
 | 
    62  | 
     apply force
  | 
| 
 | 
    63  | 
    txt {* @{text comp} *}
 | 
| 
 | 
    64  | 
    apply force
  | 
| 
 | 
    65  | 
   txt {* @{text while} *}
 | 
| 
 | 
    66  | 
   apply safe
  | 
| 
 | 
    67  | 
   apply simp_all
  | 
| 
 | 
    68  | 
   apply (frule Gamma_bnd_mono [OF C_subset], erule Fixedpt.induct, assumption)
  | 
| 
 | 
    69  | 
   apply (unfold Gamma_def)
  | 
| 
 | 
    70  | 
   apply force
  | 
| 
19796
 | 
    71  | 
  txt {* @{text "if"} *}
 | 
| 
12610
 | 
    72  | 
  apply auto
  | 
| 
 | 
    73  | 
  done
  | 
| 
12606
 | 
    74  | 
  | 
| 
 | 
    75  | 
  | 
| 
12610
 | 
    76  | 
subsection {* Main theorem *}
 | 
| 
12606
 | 
    77  | 
  | 
| 
12610
 | 
    78  | 
theorem com_equivalence:
  | 
| 
 | 
    79  | 
    "c \<in> com ==> C(c) = {io \<in> (loc->nat) \<times> (loc->nat). <c,fst(io)> -c-> snd(io)}"
 | 
| 
 | 
    80  | 
  by (force intro: C_subset [THEN subsetD] elim: com2 dest: com1)
  | 
| 
12606
 | 
    81  | 
  | 
| 
 | 
    82  | 
end
  | 
| 
 | 
    83  | 
  |