| author | huffman | 
| Mon, 17 May 2010 12:00:10 -0700 | |
| changeset 36971 | 522ed38eb70a | 
| parent 32960 | 69916a850301 | 
| child 41229 | d797baa3d57c | 
| permissions | -rw-r--r-- | 
| 13163 | 1  | 
(* Title: ZF/func.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
Copyright 1991 University of Cambridge  | 
|
4  | 
*)  | 
|
5  | 
||
| 13355 | 6  | 
header{*Functions, Function Spaces, Lambda-Abstraction*}
 | 
7  | 
||
| 16417 | 8  | 
theory func imports equalities Sum begin  | 
| 13163 | 9  | 
|
| 13355 | 10  | 
subsection{*The Pi Operator: Dependent Function Space*}
 | 
11  | 
||
| 13248 | 12  | 
lemma subset_Sigma_imp_relation: "r <= Sigma(A,B) ==> relation(r)"  | 
13  | 
by (simp add: relation_def, blast)  | 
|
14  | 
||
| 13221 | 15  | 
lemma relation_converse_converse [simp]:  | 
16  | 
"relation(r) ==> converse(converse(r)) = r"  | 
|
17  | 
by (simp add: relation_def, blast)  | 
|
18  | 
||
19  | 
lemma relation_restrict [simp]: "relation(restrict(r,A))"  | 
|
20  | 
by (simp add: restrict_def relation_def, blast)  | 
|
21  | 
||
| 13163 | 22  | 
lemma Pi_iff:  | 
23  | 
"f: Pi(A,B) <-> function(f) & f<=Sigma(A,B) & A<=domain(f)"  | 
|
24  | 
by (unfold Pi_def, blast)  | 
|
25  | 
||
26  | 
(*For upward compatibility with the former definition*)  | 
|
27  | 
lemma Pi_iff_old:  | 
|
28  | 
"f: Pi(A,B) <-> f<=Sigma(A,B) & (ALL x:A. EX! y. <x,y>: f)"  | 
|
29  | 
by (unfold Pi_def function_def, blast)  | 
|
30  | 
||
31  | 
lemma fun_is_function: "f: Pi(A,B) ==> function(f)"  | 
|
32  | 
by (simp only: Pi_iff)  | 
|
33  | 
||
| 13219 | 34  | 
lemma function_imp_Pi:  | 
35  | 
"[|function(f); relation(f)|] ==> f \<in> domain(f) -> range(f)"  | 
|
36  | 
by (simp add: Pi_iff relation_def, blast)  | 
|
37  | 
||
| 13172 | 38  | 
lemma functionI:  | 
39  | 
"[| !!x y y'. [| <x,y>:r; <x,y'>:r |] ==> y=y' |] ==> function(r)"  | 
|
40  | 
by (simp add: function_def, blast)  | 
|
41  | 
||
| 13163 | 42  | 
(*Functions are relations*)  | 
43  | 
lemma fun_is_rel: "f: Pi(A,B) ==> f <= Sigma(A,B)"  | 
|
44  | 
by (unfold Pi_def, blast)  | 
|
45  | 
||
46  | 
lemma Pi_cong:  | 
|
47  | 
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==> Pi(A,B) = Pi(A',B')"  | 
|
48  | 
by (simp add: Pi_def cong add: Sigma_cong)  | 
|
49  | 
||
50  | 
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause  | 
|
51  | 
flex-flex pairs and the "Check your prover" error. Most  | 
|
52  | 
Sigmas and Pis are abbreviated as * or -> *)  | 
|
53  | 
||
54  | 
(*Weakening one function type to another; see also Pi_type*)  | 
|
55  | 
lemma fun_weaken_type: "[| f: A->B; B<=D |] ==> f: A->D"  | 
|
56  | 
by (unfold Pi_def, best)  | 
|
57  | 
||
| 13355 | 58  | 
subsection{*Function Application*}
 | 
| 13163 | 59  | 
|
60  | 
lemma apply_equality2: "[| <a,b>: f; <a,c>: f; f: Pi(A,B) |] ==> b=c"  | 
|
61  | 
by (unfold Pi_def function_def, blast)  | 
|
62  | 
||
63  | 
lemma function_apply_equality: "[| <a,b>: f; function(f) |] ==> f`a = b"  | 
|
64  | 
by (unfold apply_def function_def, blast)  | 
|
65  | 
||
66  | 
lemma apply_equality: "[| <a,b>: f; f: Pi(A,B) |] ==> f`a = b"  | 
|
67  | 
apply (unfold Pi_def)  | 
|
68  | 
apply (blast intro: function_apply_equality)  | 
|
69  | 
done  | 
|
70  | 
||
71  | 
(*Applying a function outside its domain yields 0*)  | 
|
72  | 
lemma apply_0: "a ~: domain(f) ==> f`a = 0"  | 
|
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
73  | 
by (unfold apply_def, blast)  | 
| 13163 | 74  | 
|
75  | 
lemma Pi_memberD: "[| f: Pi(A,B); c: f |] ==> EX x:A. c = <x,f`x>"  | 
|
76  | 
apply (frule fun_is_rel)  | 
|
77  | 
apply (blast dest: apply_equality)  | 
|
78  | 
done  | 
|
79  | 
||
80  | 
lemma function_apply_Pair: "[| function(f); a : domain(f)|] ==> <a,f`a>: f"  | 
|
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
81  | 
apply (simp add: function_def, clarify)  | 
| 
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
82  | 
apply (subgoal_tac "f`a = y", blast)  | 
| 
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
83  | 
apply (simp add: apply_def, blast)  | 
| 13163 | 84  | 
done  | 
85  | 
||
86  | 
lemma apply_Pair: "[| f: Pi(A,B); a:A |] ==> <a,f`a>: f"  | 
|
87  | 
apply (simp add: Pi_iff)  | 
|
88  | 
apply (blast intro: function_apply_Pair)  | 
|
89  | 
done  | 
|
90  | 
||
| 27150 | 91  | 
(*Conclusion is flexible -- use rule_tac or else apply_funtype below!*)  | 
| 13163 | 92  | 
lemma apply_type [TC]: "[| f: Pi(A,B); a:A |] ==> f`a : B(a)"  | 
93  | 
by (blast intro: apply_Pair dest: fun_is_rel)  | 
|
94  | 
||
95  | 
(*This version is acceptable to the simplifier*)  | 
|
96  | 
lemma apply_funtype: "[| f: A->B; a:A |] ==> f`a : B"  | 
|
97  | 
by (blast dest: apply_type)  | 
|
98  | 
||
99  | 
lemma apply_iff: "f: Pi(A,B) ==> <a,b>: f <-> a:A & f`a = b"  | 
|
100  | 
apply (frule fun_is_rel)  | 
|
101  | 
apply (blast intro!: apply_Pair apply_equality)  | 
|
102  | 
done  | 
|
103  | 
||
104  | 
(*Refining one Pi type to another*)  | 
|
105  | 
lemma Pi_type: "[| f: Pi(A,C); !!x. x:A ==> f`x : B(x) |] ==> f : Pi(A,B)"  | 
|
106  | 
apply (simp only: Pi_iff)  | 
|
107  | 
apply (blast dest: function_apply_equality)  | 
|
108  | 
done  | 
|
109  | 
||
110  | 
(*Such functions arise in non-standard datatypes, ZF/ex/Ntree for instance*)  | 
|
111  | 
lemma Pi_Collect_iff:  | 
|
112  | 
     "(f : Pi(A, %x. {y:B(x). P(x,y)}))
 | 
|
113  | 
<-> f : Pi(A,B) & (ALL x: A. P(x, f`x))"  | 
|
114  | 
by (blast intro: Pi_type dest: apply_type)  | 
|
115  | 
||
116  | 
lemma Pi_weaken_type:  | 
|
117  | 
"[| f : Pi(A,B); !!x. x:A ==> B(x)<=C(x) |] ==> f : Pi(A,C)"  | 
|
118  | 
by (blast intro: Pi_type dest: apply_type)  | 
|
119  | 
||
120  | 
||
121  | 
(** Elimination of membership in a function **)  | 
|
122  | 
||
123  | 
lemma domain_type: "[| <a,b> : f; f: Pi(A,B) |] ==> a : A"  | 
|
124  | 
by (blast dest: fun_is_rel)  | 
|
125  | 
||
126  | 
lemma range_type: "[| <a,b> : f; f: Pi(A,B) |] ==> b : B(a)"  | 
|
127  | 
by (blast dest: fun_is_rel)  | 
|
128  | 
||
129  | 
lemma Pair_mem_PiD: "[| <a,b>: f; f: Pi(A,B) |] ==> a:A & b:B(a) & f`a = b"  | 
|
130  | 
by (blast intro: domain_type range_type apply_equality)  | 
|
131  | 
||
| 13355 | 132  | 
subsection{*Lambda Abstraction*}
 | 
| 13163 | 133  | 
|
134  | 
lemma lamI: "a:A ==> <a,b(a)> : (lam x:A. b(x))"  | 
|
135  | 
apply (unfold lam_def)  | 
|
136  | 
apply (erule RepFunI)  | 
|
137  | 
done  | 
|
138  | 
||
139  | 
lemma lamE:  | 
|
140  | 
"[| p: (lam x:A. b(x)); !!x.[| x:A; p=<x,b(x)> |] ==> P  | 
|
141  | 
|] ==> P"  | 
|
142  | 
by (simp add: lam_def, blast)  | 
|
143  | 
||
144  | 
lemma lamD: "[| <a,c>: (lam x:A. b(x)) |] ==> c = b(a)"  | 
|
145  | 
by (simp add: lam_def)  | 
|
146  | 
||
147  | 
lemma lam_type [TC]:  | 
|
148  | 
"[| !!x. x:A ==> b(x): B(x) |] ==> (lam x:A. b(x)) : Pi(A,B)"  | 
|
149  | 
by (simp add: lam_def Pi_def function_def, blast)  | 
|
150  | 
||
151  | 
lemma lam_funtype: "(lam x:A. b(x)) : A -> {b(x). x:A}"
 | 
|
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
152  | 
by (blast intro: lam_type)  | 
| 13163 | 153  | 
|
| 13172 | 154  | 
lemma function_lam: "function (lam x:A. b(x))"  | 
155  | 
by (simp add: function_def lam_def)  | 
|
156  | 
||
157  | 
lemma relation_lam: "relation (lam x:A. b(x))"  | 
|
158  | 
by (simp add: relation_def lam_def)  | 
|
159  | 
||
| 
13175
 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 
paulson 
parents: 
13174 
diff
changeset
 | 
160  | 
lemma beta_if [simp]: "(lam x:A. b(x)) ` a = (if a : A then b(a) else 0)"  | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
161  | 
by (simp add: apply_def lam_def, blast)  | 
| 
13175
 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 
paulson 
parents: 
13174 
diff
changeset
 | 
162  | 
|
| 
 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 
paulson 
parents: 
13174 
diff
changeset
 | 
163  | 
lemma beta: "a : A ==> (lam x:A. b(x)) ` a = b(a)"  | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
164  | 
by (simp add: apply_def lam_def, blast)  | 
| 13163 | 165  | 
|
166  | 
lemma lam_empty [simp]: "(lam x:0. b(x)) = 0"  | 
|
167  | 
by (simp add: lam_def)  | 
|
168  | 
||
169  | 
lemma domain_lam [simp]: "domain(Lambda(A,b)) = A"  | 
|
170  | 
by (simp add: lam_def, blast)  | 
|
171  | 
||
172  | 
(*congruence rule for lambda abstraction*)  | 
|
173  | 
lemma lam_cong [cong]:  | 
|
174  | 
"[| A=A'; !!x. x:A' ==> b(x)=b'(x) |] ==> Lambda(A,b) = Lambda(A',b')"  | 
|
175  | 
by (simp only: lam_def cong add: RepFun_cong)  | 
|
176  | 
||
177  | 
lemma lam_theI:  | 
|
178  | 
"(!!x. x:A ==> EX! y. Q(x,y)) ==> EX f. ALL x:A. Q(x, f`x)"  | 
|
| 
13175
 
81082cfa5618
new definition of "apply" and new simprule "beta_if"
 
paulson 
parents: 
13174 
diff
changeset
 | 
179  | 
apply (rule_tac x = "lam x: A. THE y. Q (x,y)" in exI)  | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
180  | 
apply simp  | 
| 13163 | 181  | 
apply (blast intro: theI)  | 
182  | 
done  | 
|
183  | 
||
184  | 
lemma lam_eqE: "[| (lam x:A. f(x)) = (lam x:A. g(x)); a:A |] ==> f(a)=g(a)"  | 
|
185  | 
by (fast intro!: lamI elim: equalityE lamE)  | 
|
186  | 
||
187  | 
||
188  | 
(*Empty function spaces*)  | 
|
189  | 
lemma Pi_empty1 [simp]: "Pi(0,A) = {0}"
 | 
|
190  | 
by (unfold Pi_def function_def, blast)  | 
|
191  | 
||
192  | 
(*The singleton function*)  | 
|
193  | 
lemma singleton_fun [simp]: "{<a,b>} : {a} -> {b}"
 | 
|
194  | 
by (unfold Pi_def function_def, blast)  | 
|
195  | 
||
196  | 
lemma Pi_empty2 [simp]: "(A->0) = (if A=0 then {0} else 0)"
 | 
|
197  | 
by (unfold Pi_def function_def, force)  | 
|
198  | 
||
199  | 
lemma fun_space_empty_iff [iff]: "(A->X)=0 \<longleftrightarrow> X=0 & (A \<noteq> 0)"  | 
|
200  | 
apply auto  | 
|
201  | 
apply (fast intro!: equals0I intro: lam_type)  | 
|
202  | 
done  | 
|
203  | 
||
204  | 
||
| 13355 | 205  | 
subsection{*Extensionality*}
 | 
| 13163 | 206  | 
|
207  | 
(*Semi-extensionality!*)  | 
|
208  | 
||
209  | 
lemma fun_subset:  | 
|
210  | 
"[| f : Pi(A,B); g: Pi(C,D); A<=C;  | 
|
211  | 
!!x. x:A ==> f`x = g`x |] ==> f<=g"  | 
|
212  | 
by (force dest: Pi_memberD intro: apply_Pair)  | 
|
213  | 
||
214  | 
lemma fun_extension:  | 
|
215  | 
"[| f : Pi(A,B); g: Pi(A,D);  | 
|
216  | 
!!x. x:A ==> f`x = g`x |] ==> f=g"  | 
|
217  | 
by (blast del: subsetI intro: subset_refl sym fun_subset)  | 
|
218  | 
||
219  | 
lemma eta [simp]: "f : Pi(A,B) ==> (lam x:A. f`x) = f"  | 
|
220  | 
apply (rule fun_extension)  | 
|
221  | 
apply (auto simp add: lam_type apply_type beta)  | 
|
222  | 
done  | 
|
223  | 
||
224  | 
lemma fun_extension_iff:  | 
|
225  | 
"[| f:Pi(A,B); g:Pi(A,C) |] ==> (ALL a:A. f`a = g`a) <-> f=g"  | 
|
226  | 
by (blast intro: fun_extension)  | 
|
227  | 
||
228  | 
(*thm by Mark Staples, proof by lcp*)  | 
|
229  | 
lemma fun_subset_eq: "[| f:Pi(A,B); g:Pi(A,C) |] ==> f <= g <-> (f = g)"  | 
|
230  | 
by (blast dest: apply_Pair  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
27702 
diff
changeset
 | 
231  | 
intro: fun_extension apply_equality [symmetric])  | 
| 13163 | 232  | 
|
233  | 
||
234  | 
(*Every element of Pi(A,B) may be expressed as a lambda abstraction!*)  | 
|
235  | 
lemma Pi_lamE:  | 
|
236  | 
assumes major: "f: Pi(A,B)"  | 
|
237  | 
and minor: "!!b. [| ALL x:A. b(x):B(x); f = (lam x:A. b(x)) |] ==> P"  | 
|
238  | 
shows "P"  | 
|
239  | 
apply (rule minor)  | 
|
240  | 
apply (rule_tac [2] eta [symmetric])  | 
|
241  | 
apply (blast intro: major apply_type)+  | 
|
242  | 
done  | 
|
243  | 
||
244  | 
||
| 13355 | 245  | 
subsection{*Images of Functions*}
 | 
| 13163 | 246  | 
|
247  | 
lemma image_lam: "C <= A ==> (lam x:A. b(x)) `` C = {b(x). x:C}"
 | 
|
248  | 
by (unfold lam_def, blast)  | 
|
249  | 
||
| 13179 | 250  | 
lemma Repfun_function_if:  | 
251  | 
"function(f)  | 
|
252  | 
      ==> {f`x. x:C} = (if C <= domain(f) then f``C else cons(0,f``C))";
 | 
|
253  | 
apply simp  | 
|
254  | 
apply (intro conjI impI)  | 
|
255  | 
apply (blast dest: function_apply_equality intro: function_apply_Pair)  | 
|
256  | 
apply (rule equalityI)  | 
|
257  | 
apply (blast intro!: function_apply_Pair apply_0)  | 
|
258  | 
apply (blast dest: function_apply_equality intro: apply_0 [symmetric])  | 
|
259  | 
done  | 
|
260  | 
||
261  | 
(*For this lemma and the next, the right-hand side could equivalently  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13357 
diff
changeset
 | 
262  | 
  be written \<Union>x\<in>C. {f`x} *)
 | 
| 13174 | 263  | 
lemma image_function:  | 
264  | 
     "[| function(f);  C <= domain(f) |] ==> f``C = {f`x. x:C}";
 | 
|
| 13179 | 265  | 
by (simp add: Repfun_function_if)  | 
| 13174 | 266  | 
|
| 13163 | 267  | 
lemma image_fun: "[| f : Pi(A,B);  C <= A |] ==> f``C = {f`x. x:C}"
 | 
| 13174 | 268  | 
apply (simp add: Pi_iff)  | 
269  | 
apply (blast intro: image_function)  | 
|
| 13163 | 270  | 
done  | 
271  | 
||
| 14883 | 272  | 
lemma image_eq_UN:  | 
273  | 
  assumes f: "f \<in> Pi(A,B)" "C \<subseteq> A" shows "f``C = (\<Union>x\<in>C. {f ` x})"
 | 
|
274  | 
by (auto simp add: image_fun [OF f])  | 
|
275  | 
||
| 13163 | 276  | 
lemma Pi_image_cons:  | 
277  | 
"[| f: Pi(A,B); x: A |] ==> f `` cons(x,y) = cons(f`x, f``y)"  | 
|
278  | 
by (blast dest: apply_equality apply_Pair)  | 
|
279  | 
||
| 124 | 280  | 
|
| 13355 | 281  | 
subsection{*Properties of @{term "restrict(f,A)"}*}
 | 
| 13163 | 282  | 
|
| 13179 | 283  | 
lemma restrict_subset: "restrict(f,A) <= f"  | 
284  | 
by (unfold restrict_def, blast)  | 
|
| 13163 | 285  | 
|
286  | 
lemma function_restrictI:  | 
|
287  | 
"function(f) ==> function(restrict(f,A))"  | 
|
288  | 
by (unfold restrict_def function_def, blast)  | 
|
289  | 
||
290  | 
lemma restrict_type2: "[| f: Pi(C,B); A<=C |] ==> restrict(f,A) : Pi(A,B)"  | 
|
291  | 
by (simp add: Pi_iff function_def restrict_def, blast)  | 
|
292  | 
||
| 13179 | 293  | 
lemma restrict: "restrict(f,A) ` a = (if a : A then f`a else 0)"  | 
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
294  | 
by (simp add: apply_def restrict_def, blast)  | 
| 13163 | 295  | 
|
296  | 
lemma restrict_empty [simp]: "restrict(f,0) = 0"  | 
|
| 13179 | 297  | 
by (unfold restrict_def, simp)  | 
| 13163 | 298  | 
|
| 13172 | 299  | 
lemma restrict_iff: "z \<in> restrict(r,A) \<longleftrightarrow> z \<in> r & (\<exists>x\<in>A. \<exists>y. z = \<langle>x, y\<rangle>)"  | 
300  | 
by (simp add: restrict_def)  | 
|
301  | 
||
| 13163 | 302  | 
lemma restrict_restrict [simp]:  | 
303  | 
"restrict(restrict(r,A),B) = restrict(r, A Int B)"  | 
|
304  | 
by (unfold restrict_def, blast)  | 
|
305  | 
||
306  | 
lemma domain_restrict [simp]: "domain(restrict(f,C)) = domain(f) Int C"  | 
|
307  | 
apply (unfold restrict_def)  | 
|
308  | 
apply (auto simp add: domain_def)  | 
|
309  | 
done  | 
|
310  | 
||
| 13248 | 311  | 
lemma restrict_idem: "f <= Sigma(A,B) ==> restrict(f,A) = f"  | 
| 13163 | 312  | 
by (simp add: restrict_def, blast)  | 
313  | 
||
| 13248 | 314  | 
|
315  | 
(*converse probably holds too*)  | 
|
316  | 
lemma domain_restrict_idem:  | 
|
317  | 
"[| domain(r) <= A; relation(r) |] ==> restrict(r,A) = r"  | 
|
318  | 
by (simp add: restrict_def relation_def, blast)  | 
|
319  | 
||
320  | 
lemma domain_restrict_lam [simp]: "domain(restrict(Lambda(A,f),C)) = A Int C"  | 
|
321  | 
apply (unfold restrict_def lam_def)  | 
|
322  | 
apply (rule equalityI)  | 
|
323  | 
apply (auto simp add: domain_iff)  | 
|
324  | 
done  | 
|
325  | 
||
| 13163 | 326  | 
lemma restrict_if [simp]: "restrict(f,A) ` a = (if a : A then f`a else 0)"  | 
327  | 
by (simp add: restrict apply_0)  | 
|
328  | 
||
329  | 
lemma restrict_lam_eq:  | 
|
330  | 
"A<=C ==> restrict(lam x:C. b(x), A) = (lam x:A. b(x))"  | 
|
331  | 
by (unfold restrict_def lam_def, auto)  | 
|
332  | 
||
333  | 
lemma fun_cons_restrict_eq:  | 
|
334  | 
"f : cons(a, b) -> B ==> f = cons(<a, f ` a>, restrict(f, b))"  | 
|
335  | 
apply (rule equalityI)  | 
|
| 13248 | 336  | 
prefer 2 apply (blast intro: apply_Pair restrict_subset [THEN subsetD])  | 
| 13163 | 337  | 
apply (auto dest!: Pi_memberD simp add: restrict_def lam_def)  | 
338  | 
done  | 
|
339  | 
||
340  | 
||
| 13355 | 341  | 
subsection{*Unions of Functions*}
 | 
| 13163 | 342  | 
|
343  | 
(** The Union of a set of COMPATIBLE functions is a function **)  | 
|
344  | 
||
345  | 
lemma function_Union:  | 
|
346  | 
"[| ALL x:S. function(x);  | 
|
347  | 
ALL x:S. ALL y:S. x<=y | y<=x |]  | 
|
348  | 
==> function(Union(S))"  | 
|
349  | 
by (unfold function_def, blast)  | 
|
350  | 
||
351  | 
lemma fun_Union:  | 
|
352  | 
"[| ALL f:S. EX C D. f:C->D;  | 
|
353  | 
ALL f:S. ALL y:S. f<=y | y<=f |] ==>  | 
|
354  | 
Union(S) : domain(Union(S)) -> range(Union(S))"  | 
|
355  | 
apply (unfold Pi_def)  | 
|
356  | 
apply (blast intro!: rel_Union function_Union)  | 
|
357  | 
done  | 
|
358  | 
||
| 13174 | 359  | 
lemma gen_relation_Union [rule_format]:  | 
360  | 
"\<forall>f\<in>F. relation(f) \<Longrightarrow> relation(Union(F))"  | 
|
361  | 
by (simp add: relation_def)  | 
|
362  | 
||
| 13163 | 363  | 
|
364  | 
(** The Union of 2 disjoint functions is a function **)  | 
|
365  | 
||
366  | 
lemmas Un_rls = Un_subset_iff SUM_Un_distrib1 prod_Un_distrib2  | 
|
367  | 
subset_trans [OF _ Un_upper1]  | 
|
368  | 
subset_trans [OF _ Un_upper2]  | 
|
369  | 
||
370  | 
lemma fun_disjoint_Un:  | 
|
371  | 
"[| f: A->B; g: C->D; A Int C = 0 |]  | 
|
372  | 
==> (f Un g) : (A Un C) -> (B Un D)"  | 
|
373  | 
(*Prove the product and domain subgoals using distributive laws*)  | 
|
374  | 
apply (simp add: Pi_iff extension Un_rls)  | 
|
375  | 
apply (unfold function_def, blast)  | 
|
376  | 
done  | 
|
377  | 
||
| 13179 | 378  | 
lemma fun_disjoint_apply1: "a \<notin> domain(g) ==> (f Un g)`a = f`a"  | 
379  | 
by (simp add: apply_def, blast)  | 
|
| 13163 | 380  | 
|
| 13179 | 381  | 
lemma fun_disjoint_apply2: "c \<notin> domain(f) ==> (f Un g)`c = g`c"  | 
382  | 
by (simp add: apply_def, blast)  | 
|
| 13163 | 383  | 
|
| 13355 | 384  | 
subsection{*Domain and Range of a Function or Relation*}
 | 
| 13163 | 385  | 
|
386  | 
lemma domain_of_fun: "f : Pi(A,B) ==> domain(f)=A"  | 
|
387  | 
by (unfold Pi_def, blast)  | 
|
388  | 
||
389  | 
lemma apply_rangeI: "[| f : Pi(A,B); a: A |] ==> f`a : range(f)"  | 
|
390  | 
by (erule apply_Pair [THEN rangeI], assumption)  | 
|
391  | 
||
392  | 
lemma range_of_fun: "f : Pi(A,B) ==> f : A->range(f)"  | 
|
393  | 
by (blast intro: Pi_type apply_rangeI)  | 
|
394  | 
||
| 13355 | 395  | 
subsection{*Extensions of Functions*}
 | 
| 13163 | 396  | 
|
397  | 
lemma fun_extend:  | 
|
398  | 
"[| f: A->B; c~:A |] ==> cons(<c,b>,f) : cons(c,A) -> cons(b,B)"  | 
|
399  | 
apply (frule singleton_fun [THEN fun_disjoint_Un], blast)  | 
|
400  | 
apply (simp add: cons_eq)  | 
|
401  | 
done  | 
|
402  | 
||
403  | 
lemma fun_extend3:  | 
|
404  | 
"[| f: A->B; c~:A; b: B |] ==> cons(<c,b>,f) : cons(c,A) -> B"  | 
|
405  | 
by (blast intro: fun_extend [THEN fun_weaken_type])  | 
|
406  | 
||
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
407  | 
lemma extend_apply:  | 
| 
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
408  | 
"c ~: domain(f) ==> cons(<c,b>,f)`a = (if a=c then b else f`a)"  | 
| 
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
409  | 
by (auto simp add: apply_def)  | 
| 13163 | 410  | 
|
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
411  | 
lemma fun_extend_apply [simp]:  | 
| 
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
412  | 
"[| f: A->B; c~:A |] ==> cons(<c,b>,f)`a = (if a=c then b else f`a)"  | 
| 
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
413  | 
apply (rule extend_apply)  | 
| 
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
414  | 
apply (simp add: Pi_def, blast)  | 
| 13163 | 415  | 
done  | 
416  | 
||
417  | 
lemmas singleton_apply = apply_equality [OF singletonI singleton_fun, simp]  | 
|
418  | 
||
419  | 
(*For Finite.ML. Inclusion of right into left is easy*)  | 
|
420  | 
lemma cons_fun_eq:  | 
|
| 13269 | 421  | 
     "c ~: A ==> cons(c,A) -> B = (\<Union>f \<in> A->B. \<Union>b\<in>B. {cons(<c,b>, f)})"
 | 
| 13163 | 422  | 
apply (rule equalityI)  | 
423  | 
apply (safe elim!: fun_extend3)  | 
|
424  | 
(*Inclusion of left into right*)  | 
|
425  | 
apply (subgoal_tac "restrict (x, A) : A -> B")  | 
|
426  | 
prefer 2 apply (blast intro: restrict_type2)  | 
|
427  | 
apply (rule UN_I, assumption)  | 
|
428  | 
apply (rule apply_funtype [THEN UN_I])  | 
|
429  | 
apply assumption  | 
|
430  | 
apply (rule consI1)  | 
|
431  | 
apply (simp (no_asm))  | 
|
432  | 
apply (rule fun_extension)  | 
|
433  | 
apply assumption  | 
|
434  | 
apply (blast intro: fun_extend)  | 
|
| 
13176
 
312bd350579b
conversion of Perm to Isar.  Strengthening of comp_fun_apply
 
paulson 
parents: 
13175 
diff
changeset
 | 
435  | 
apply (erule consE, simp_all)  | 
| 13163 | 436  | 
done  | 
437  | 
||
| 13269 | 438  | 
lemma succ_fun_eq: "succ(n) -> B = (\<Union>f \<in> n->B. \<Union>b\<in>B. {cons(<n,b>, f)})"
 | 
439  | 
by (simp add: succ_def mem_not_refl cons_fun_eq)  | 
|
440  | 
||
| 13355 | 441  | 
|
442  | 
subsection{*Function Updates*}
 | 
|
443  | 
||
| 24893 | 444  | 
definition  | 
445  | 
update :: "[i,i,i] => i" where  | 
|
| 13355 | 446  | 
"update(f,a,b) == lam x: cons(a, domain(f)). if(x=a, b, f`x)"  | 
447  | 
||
448  | 
nonterminals  | 
|
449  | 
updbinds updbind  | 
|
450  | 
||
451  | 
syntax  | 
|
452  | 
||
453  | 
(* Let expressions *)  | 
|
454  | 
||
455  | 
  "_updbind"    :: "[i, i] => updbind"               ("(2_ :=/ _)")
 | 
|
456  | 
  ""            :: "updbind => updbinds"             ("_")
 | 
|
457  | 
  "_updbinds"   :: "[updbind, updbinds] => updbinds" ("_,/ _")
 | 
|
458  | 
  "_Update"     :: "[i, updbinds] => i"              ("_/'((_)')" [900,0] 900)
 | 
|
459  | 
||
460  | 
translations  | 
|
461  | 
"_Update (f, _updbinds(b,bs))" == "_Update (_Update(f,b), bs)"  | 
|
| 24893 | 462  | 
"f(x:=y)" == "CONST update(f,x,y)"  | 
| 13355 | 463  | 
|
464  | 
||
465  | 
lemma update_apply [simp]: "f(x:=y) ` z = (if z=x then y else f`z)"  | 
|
466  | 
apply (simp add: update_def)  | 
|
| 14153 | 467  | 
apply (case_tac "z \<in> domain(f)")  | 
| 13355 | 468  | 
apply (simp_all add: apply_0)  | 
469  | 
done  | 
|
470  | 
||
471  | 
lemma update_idem: "[| f`x = y; f: Pi(A,B); x: A |] ==> f(x:=y) = f"  | 
|
472  | 
apply (unfold update_def)  | 
|
473  | 
apply (simp add: domain_of_fun cons_absorb)  | 
|
474  | 
apply (rule fun_extension)  | 
|
475  | 
apply (best intro: apply_type if_type lam_type, assumption, simp)  | 
|
476  | 
done  | 
|
477  | 
||
478  | 
||
479  | 
(* [| f: Pi(A, B); x:A |] ==> f(x := f`x) = f *)  | 
|
480  | 
declare refl [THEN update_idem, simp]  | 
|
481  | 
||
482  | 
lemma domain_update [simp]: "domain(f(x:=y)) = cons(x, domain(f))"  | 
|
483  | 
by (unfold update_def, simp)  | 
|
484  | 
||
| 14046 | 485  | 
lemma update_type: "[| f:Pi(A,B); x : A; y: B(x) |] ==> f(x:=y) : Pi(A, B)"  | 
| 13355 | 486  | 
apply (unfold update_def)  | 
487  | 
apply (simp add: domain_of_fun cons_absorb apply_funtype lam_type)  | 
|
488  | 
done  | 
|
489  | 
||
490  | 
||
| 13357 | 491  | 
subsection{*Monotonicity Theorems*}
 | 
492  | 
||
493  | 
subsubsection{*Replacement in its Various Forms*}
 | 
|
494  | 
||
495  | 
(*Not easy to express monotonicity in P, since any "bigger" predicate  | 
|
496  | 
would have to be single-valued*)  | 
|
497  | 
lemma Replace_mono: "A<=B ==> Replace(A,P) <= Replace(B,P)"  | 
|
498  | 
by (blast elim!: ReplaceE)  | 
|
499  | 
||
500  | 
lemma RepFun_mono: "A<=B ==> {f(x). x:A} <= {f(x). x:B}"
 | 
|
501  | 
by blast  | 
|
502  | 
||
503  | 
lemma Pow_mono: "A<=B ==> Pow(A) <= Pow(B)"  | 
|
504  | 
by blast  | 
|
505  | 
||
506  | 
lemma Union_mono: "A<=B ==> Union(A) <= Union(B)"  | 
|
507  | 
by blast  | 
|
508  | 
||
509  | 
lemma UN_mono:  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13357 
diff
changeset
 | 
510  | 
"[| A<=C; !!x. x:A ==> B(x)<=D(x) |] ==> (\<Union>x\<in>A. B(x)) <= (\<Union>x\<in>C. D(x))"  | 
| 13357 | 511  | 
by blast  | 
512  | 
||
513  | 
(*Intersection is ANTI-monotonic. There are TWO premises! *)  | 
|
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14046 
diff
changeset
 | 
514  | 
lemma Inter_anti_mono: "[| A<=B; A\<noteq>0 |] ==> Inter(B) <= Inter(A)"  | 
| 13357 | 515  | 
by blast  | 
516  | 
||
517  | 
lemma cons_mono: "C<=D ==> cons(a,C) <= cons(a,D)"  | 
|
518  | 
by blast  | 
|
519  | 
||
520  | 
lemma Un_mono: "[| A<=C; B<=D |] ==> A Un B <= C Un D"  | 
|
521  | 
by blast  | 
|
522  | 
||
523  | 
lemma Int_mono: "[| A<=C; B<=D |] ==> A Int B <= C Int D"  | 
|
524  | 
by blast  | 
|
525  | 
||
526  | 
lemma Diff_mono: "[| A<=C; D<=B |] ==> A-B <= C-D"  | 
|
527  | 
by blast  | 
|
528  | 
||
529  | 
subsubsection{*Standard Products, Sums and Function Spaces *}
 | 
|
530  | 
||
531  | 
lemma Sigma_mono [rule_format]:  | 
|
532  | 
"[| A<=C; !!x. x:A --> B(x) <= D(x) |] ==> Sigma(A,B) <= Sigma(C,D)"  | 
|
533  | 
by blast  | 
|
534  | 
||
535  | 
lemma sum_mono: "[| A<=C; B<=D |] ==> A+B <= C+D"  | 
|
536  | 
by (unfold sum_def, blast)  | 
|
537  | 
||
538  | 
(*Note that B->A and C->A are typically disjoint!*)  | 
|
539  | 
lemma Pi_mono: "B<=C ==> A->B <= A->C"  | 
|
540  | 
by (blast intro: lam_type elim: Pi_lamE)  | 
|
541  | 
||
542  | 
lemma lam_mono: "A<=B ==> Lambda(A,c) <= Lambda(B,c)"  | 
|
543  | 
apply (unfold lam_def)  | 
|
544  | 
apply (erule RepFun_mono)  | 
|
545  | 
done  | 
|
546  | 
||
547  | 
subsubsection{*Converse, Domain, Range, Field*}
 | 
|
548  | 
||
549  | 
lemma converse_mono: "r<=s ==> converse(r) <= converse(s)"  | 
|
550  | 
by blast  | 
|
551  | 
||
552  | 
lemma domain_mono: "r<=s ==> domain(r)<=domain(s)"  | 
|
553  | 
by blast  | 
|
554  | 
||
555  | 
lemmas domain_rel_subset = subset_trans [OF domain_mono domain_subset]  | 
|
556  | 
||
557  | 
lemma range_mono: "r<=s ==> range(r)<=range(s)"  | 
|
558  | 
by blast  | 
|
559  | 
||
560  | 
lemmas range_rel_subset = subset_trans [OF range_mono range_subset]  | 
|
561  | 
||
562  | 
lemma field_mono: "r<=s ==> field(r)<=field(s)"  | 
|
563  | 
by blast  | 
|
564  | 
||
565  | 
lemma field_rel_subset: "r <= A*A ==> field(r) <= A"  | 
|
566  | 
by (erule field_mono [THEN subset_trans], blast)  | 
|
567  | 
||
568  | 
||
569  | 
subsubsection{*Images*}
 | 
|
570  | 
||
571  | 
lemma image_pair_mono:  | 
|
572  | 
"[| !! x y. <x,y>:r ==> <x,y>:s; A<=B |] ==> r``A <= s``B"  | 
|
573  | 
by blast  | 
|
574  | 
||
575  | 
lemma vimage_pair_mono:  | 
|
576  | 
"[| !! x y. <x,y>:r ==> <x,y>:s; A<=B |] ==> r-``A <= s-``B"  | 
|
577  | 
by blast  | 
|
578  | 
||
579  | 
lemma image_mono: "[| r<=s; A<=B |] ==> r``A <= s``B"  | 
|
580  | 
by blast  | 
|
581  | 
||
582  | 
lemma vimage_mono: "[| r<=s; A<=B |] ==> r-``A <= s-``B"  | 
|
583  | 
by blast  | 
|
584  | 
||
585  | 
lemma Collect_mono:  | 
|
586  | 
"[| A<=B; !!x. x:A ==> P(x) --> Q(x) |] ==> Collect(A,P) <= Collect(B,Q)"  | 
|
587  | 
by blast  | 
|
588  | 
||
589  | 
(*Used in intr_elim.ML and in individual datatype definitions*)  | 
|
590  | 
lemmas basic_monos = subset_refl imp_refl disj_mono conj_mono ex_mono  | 
|
591  | 
Collect_mono Part_mono in_mono  | 
|
592  | 
||
| 27702 | 593  | 
(* Useful with simp; contributed by Clemens Ballarin. *)  | 
594  | 
||
595  | 
lemma bex_image_simp:  | 
|
596  | 
"[| f : Pi(X, Y); A \<subseteq> X |] ==> (EX x : f``A. P(x)) <-> (EX x:A. P(f`x))"  | 
|
597  | 
apply safe  | 
|
598  | 
apply rule  | 
|
599  | 
prefer 2 apply assumption  | 
|
600  | 
apply (simp add: apply_equality)  | 
|
601  | 
apply (blast intro: apply_Pair)  | 
|
602  | 
done  | 
|
603  | 
||
604  | 
lemma ball_image_simp:  | 
|
605  | 
"[| f : Pi(X, Y); A \<subseteq> X |] ==> (ALL x : f``A. P(x)) <-> (ALL x:A. P(f`x))"  | 
|
606  | 
apply safe  | 
|
607  | 
apply (blast intro: apply_Pair)  | 
|
608  | 
apply (drule bspec) apply assumption  | 
|
609  | 
apply (simp add: apply_equality)  | 
|
610  | 
done  | 
|
611  | 
||
| 13163 | 612  | 
end  |