author | paulson |
Wed, 05 Aug 1998 10:57:25 +0200 | |
changeset 5253 | 82a5ca6290aa |
parent 5143 | b94cd208f073 |
child 5459 | 1dbaf888f4e7 |
permissions | -rw-r--r-- |
5078 | 1 |
(* Title : RealAbs.ML |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998 University of Cambridge |
|
4 |
Description : Absolute value function for the reals |
|
5 |
*) |
|
6 |
||
7 |
open RealAbs; |
|
8 |
||
9 |
(*---------------------------------------------------------------------------- |
|
10 |
Properties of the absolute value function over the reals |
|
11 |
(adapted version of previously proved theorems about abs) |
|
12 |
----------------------------------------------------------------------------*) |
|
13 |
Goalw [rabs_def] "rabs r = (if 0r<=r then r else %~r)"; |
|
14 |
by (Step_tac 1); |
|
15 |
qed "rabs_iff"; |
|
16 |
||
17 |
Goalw [rabs_def] "rabs 0r = 0r"; |
|
18 |
by (rtac (real_le_refl RS if_P) 1); |
|
19 |
qed "rabs_zero"; |
|
20 |
||
21 |
Addsimps [rabs_zero]; |
|
22 |
||
23 |
Goalw [rabs_def] "rabs 0r = %~0r"; |
|
24 |
by (stac real_minus_zero 1); |
|
25 |
by (rtac if_cancel 1); |
|
26 |
qed "rabs_minus_zero"; |
|
27 |
||
28 |
val [prem] = goalw thy [rabs_def] "0r<=x ==> rabs x = x"; |
|
29 |
by (rtac (prem RS if_P) 1); |
|
30 |
qed "rabs_eqI1"; |
|
31 |
||
32 |
val [prem] = goalw thy [rabs_def] "0r<x ==> rabs x = x"; |
|
33 |
by (simp_tac (simpset() addsimps [(prem RS real_less_imp_le),rabs_eqI1]) 1); |
|
34 |
qed "rabs_eqI2"; |
|
35 |
||
36 |
val [prem] = goalw thy [rabs_def,real_le_def] "x<0r ==> rabs x = %~x"; |
|
37 |
by (simp_tac (simpset() addsimps [prem,if_not_P]) 1); |
|
38 |
qed "rabs_minus_eqI2"; |
|
39 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5078
diff
changeset
|
40 |
Goal "x<=0r ==> rabs x = %~x"; |
5078 | 41 |
by (dtac real_le_imp_less_or_eq 1); |
42 |
by (fast_tac (HOL_cs addIs [rabs_minus_zero,rabs_minus_eqI2]) 1); |
|
43 |
qed "rabs_minus_eqI1"; |
|
44 |
||
45 |
Goalw [rabs_def,real_le_def] "0r<= rabs x"; |
|
46 |
by (full_simp_tac (simpset() setloop (split_tac [expand_if])) 1); |
|
47 |
by (blast_tac (claset() addDs [real_minus_zero_less_iff RS iffD2, |
|
48 |
real_less_asym]) 1); |
|
49 |
qed "rabs_ge_zero"; |
|
50 |
||
51 |
Goal "rabs(rabs x)=rabs x"; |
|
52 |
by (res_inst_tac [("r1","rabs x")] (rabs_iff RS ssubst) 1); |
|
53 |
by (blast_tac (claset() addIs [if_P,rabs_ge_zero]) 1); |
|
54 |
qed "rabs_idempotent"; |
|
55 |
||
56 |
Goalw [rabs_def] "(x=0r) = (rabs x = 0r)"; |
|
57 |
by (full_simp_tac (simpset() setloop (split_tac [expand_if])) 1); |
|
58 |
qed "rabs_zero_iff"; |
|
59 |
||
60 |
Goal "(x ~= 0r) = (rabs x ~= 0r)"; |
|
61 |
by (full_simp_tac (simpset() addsimps [rabs_zero_iff RS sym] |
|
62 |
setloop (split_tac [expand_if])) 1); |
|
63 |
qed "rabs_not_zero_iff"; |
|
64 |
||
65 |
Goalw [rabs_def] "x<=rabs x"; |
|
66 |
by (full_simp_tac (simpset() addsimps [real_le_refl] setloop (split_tac [expand_if])) 1); |
|
67 |
by (auto_tac (claset() addDs [not_real_leE RS real_less_imp_le], |
|
68 |
simpset() addsimps [real_le_zero_iff])); |
|
69 |
qed "rabs_ge_self"; |
|
70 |
||
71 |
Goalw [rabs_def] "%~x<=rabs x"; |
|
72 |
by (full_simp_tac (simpset() addsimps [real_le_refl, |
|
73 |
real_ge_zero_iff] setloop (split_tac [expand_if])) 1); |
|
74 |
qed "rabs_ge_minus_self"; |
|
75 |
||
76 |
(* case splits nightmare *) |
|
77 |
Goalw [rabs_def] "rabs(x*y) = (rabs x)*(rabs y)"; |
|
78 |
by (auto_tac (claset(),simpset() addsimps [real_minus_mult_eq1, |
|
79 |
real_minus_mult_commute,real_minus_mult_eq2] setloop (split_tac [expand_if]))); |
|
80 |
by (blast_tac (claset() addDs [real_le_mult_order]) 1); |
|
81 |
by (auto_tac (claset() addSDs [not_real_leE],simpset())); |
|
82 |
by (EVERY1[dtac real_mult_le_zero, assume_tac, dtac real_le_anti_sym]); |
|
83 |
by (EVERY[dtac real_mult_le_zero 3, assume_tac 3, dtac real_le_anti_sym 3]); |
|
84 |
by (dtac real_mult_less_zero1 5 THEN assume_tac 5); |
|
85 |
by (auto_tac (claset() addDs [real_less_asym,sym], |
|
86 |
simpset() addsimps [real_minus_mult_eq2 RS sym] @real_mult_ac)); |
|
87 |
qed "rabs_mult"; |
|
88 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5078
diff
changeset
|
89 |
Goalw [rabs_def] "x~= 0r ==> rabs(rinv(x)) = rinv(rabs(x))"; |
5078 | 90 |
by (auto_tac (claset(),simpset() addsimps [real_minus_rinv] |
91 |
setloop (split_tac [expand_if]))); |
|
92 |
by (ALLGOALS(dtac not_real_leE)); |
|
93 |
by (etac real_less_asym 1); |
|
94 |
by (blast_tac (claset() addDs [real_le_imp_less_or_eq, |
|
95 |
real_rinv_gt_zero]) 1); |
|
96 |
by (dtac (rinv_not_zero RS not_sym) 1); |
|
97 |
by (rtac (real_rinv_less_zero RSN (2,real_less_asym)) 1); |
|
98 |
by (assume_tac 2); |
|
99 |
by (blast_tac (claset() addSDs [real_le_imp_less_or_eq]) 1); |
|
100 |
qed "rabs_rinv"; |
|
101 |
||
102 |
val [prem] = goal thy "y ~= 0r ==> rabs(x*rinv(y)) = rabs(x)*rinv(rabs(y))"; |
|
103 |
by (res_inst_tac [("c1","rabs y")] (real_mult_left_cancel RS subst) 1); |
|
104 |
by (simp_tac (simpset() addsimps [(rabs_not_zero_iff RS sym), prem]) 1); |
|
105 |
by (simp_tac (simpset() addsimps [(rabs_mult RS sym) ,real_mult_inv_right, |
|
106 |
prem,rabs_not_zero_iff RS sym] @ real_mult_ac) 1); |
|
107 |
qed "rabs_mult_rinv"; |
|
108 |
||
109 |
Goal "rabs(x+y) <= rabs x + rabs y"; |
|
110 |
by (EVERY1 [res_inst_tac [("Q1","0r<=x+y")] (expand_if RS ssubst), rtac conjI]); |
|
111 |
by (asm_simp_tac (simpset() addsimps [rabs_eqI1,real_add_le_mono,rabs_ge_self]) 1); |
|
112 |
by (asm_simp_tac (simpset() addsimps [not_real_leE,rabs_minus_eqI2,real_add_le_mono, |
|
113 |
rabs_ge_minus_self,real_minus_add_eq]) 1); |
|
114 |
qed "rabs_triangle_ineq"; |
|
115 |
||
116 |
Goal "rabs(w + x + y + z) <= rabs(w) + rabs(x) + rabs(y) + rabs(z)"; |
|
117 |
by (full_simp_tac (simpset() addsimps [real_add_assoc]) 1); |
|
118 |
by (blast_tac (claset() addSIs [(rabs_triangle_ineq RS real_le_trans), |
|
119 |
real_add_left_le_mono1,real_le_refl]) 1); |
|
120 |
qed "rabs_triangle_ineq_four"; |
|
121 |
||
122 |
Goalw [rabs_def] "rabs(%~x)=rabs(x)"; |
|
123 |
by (auto_tac (claset() addSDs [not_real_leE,real_less_asym] addIs [real_le_anti_sym], |
|
124 |
simpset() addsimps [real_ge_zero_iff] setloop (split_tac [expand_if]))); |
|
125 |
qed "rabs_minus_cancel"; |
|
126 |
||
127 |
Goal "rabs(x + %~y) <= rabs x + rabs y"; |
|
128 |
by (res_inst_tac [("x1","y")] (rabs_minus_cancel RS subst) 1); |
|
129 |
by (rtac rabs_triangle_ineq 1); |
|
130 |
qed "rabs_triangle_minus_ineq"; |
|
131 |
||
132 |
Goal "rabs (x + y + (%~l + %~m)) <= rabs(x + %~l) + rabs(y + %~m)"; |
|
133 |
by (full_simp_tac (simpset() addsimps [real_add_assoc]) 1); |
|
134 |
by (res_inst_tac [("x1","y")] (real_add_left_commute RS ssubst) 1); |
|
135 |
by (rtac (real_add_assoc RS subst) 1); |
|
136 |
by (rtac rabs_triangle_ineq 1); |
|
137 |
qed "rabs_sum_triangle_ineq"; |
|
138 |
||
139 |
Goal "[| rabs x < r; rabs y < s |] ==> rabs(x+y) < r+s"; |
|
140 |
by (rtac real_le_less_trans 1); |
|
141 |
by (rtac rabs_triangle_ineq 1); |
|
142 |
by (REPEAT (ares_tac [real_add_less_mono] 1)); |
|
143 |
qed "rabs_add_less"; |
|
144 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5078
diff
changeset
|
145 |
Goal "[| rabs x < r; rabs y < s |] ==> rabs(x+ %~y) < r+s"; |
5078 | 146 |
by (rotate_tac 1 1); |
147 |
by (dtac (rabs_minus_cancel RS ssubst) 1); |
|
148 |
by (asm_simp_tac (simpset() addsimps [rabs_add_less]) 1); |
|
149 |
qed "rabs_add_minus_less"; |
|
150 |
||
151 |
(* lemmas manipulating terms *) |
|
152 |
Goal "(0r*x<r)=(0r<r)"; |
|
153 |
by (Simp_tac 1); |
|
154 |
qed "real_mult_0_less"; |
|
155 |
||
156 |
Goal "[| 0r<y; x<r; y*r<t*s |] ==> y*x<t*s"; |
|
157 |
(*why PROOF FAILED for this*) |
|
158 |
by (best_tac (claset() addIs [real_mult_less_mono2, real_less_trans]) 1); |
|
159 |
qed "real_mult_less_trans"; |
|
160 |
||
161 |
Goal "!!(x::real) y.[| 0r<=y; x<r; y*r<t*s; 0r<t*s|] ==> y*x<t*s"; |
|
162 |
by (dtac real_le_imp_less_or_eq 1); |
|
163 |
by (fast_tac (HOL_cs addEs [(real_mult_0_less RS iffD2),real_mult_less_trans]) 1); |
|
164 |
qed "real_mult_le_less_trans"; |
|
165 |
||
166 |
(* proofs lifted from previous older version *) |
|
167 |
Goal "[| rabs x<r; rabs y<s |] ==> rabs(x*y)<r*s"; |
|
168 |
by (simp_tac (simpset() addsimps [rabs_mult]) 1); |
|
169 |
by (rtac real_mult_le_less_trans 1); |
|
170 |
by (rtac rabs_ge_zero 1); |
|
171 |
by (assume_tac 1); |
|
172 |
by (blast_tac (HOL_cs addIs [rabs_ge_zero, real_mult_less_mono1, |
|
173 |
real_le_less_trans]) 1); |
|
174 |
by (blast_tac (HOL_cs addIs [rabs_ge_zero, real_mult_order, |
|
175 |
real_le_less_trans]) 1); |
|
176 |
qed "rabs_mult_less"; |
|
177 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5078
diff
changeset
|
178 |
Goal "[| rabs x < r; rabs y < s |] \ |
5078 | 179 |
\ ==> rabs(x)*rabs(y)<r*s"; |
180 |
by (auto_tac (claset() addIs [rabs_mult_less], |
|
181 |
simpset() addsimps [rabs_mult RS sym])); |
|
182 |
qed "rabs_mult_less2"; |
|
183 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5078
diff
changeset
|
184 |
Goal "1r < rabs x ==> rabs y <= rabs(x*y)"; |
5078 | 185 |
by (cut_inst_tac [("x1","y")] (rabs_ge_zero RS real_le_imp_less_or_eq) 1); |
186 |
by (EVERY1[etac disjE,rtac real_less_imp_le]); |
|
187 |
by (dres_inst_tac [("W","1r")] real_less_sum_gt_zero 1); |
|
188 |
by (forw_inst_tac [("y","rabs x + %~1r")] real_mult_order 1); |
|
189 |
by (assume_tac 1); |
|
190 |
by (rtac real_sum_gt_zero_less 1); |
|
191 |
by (asm_full_simp_tac (simpset() addsimps [real_add_mult_distrib2, |
|
192 |
rabs_mult, real_mult_commute,real_minus_mult_eq1 RS sym]) 1); |
|
193 |
by (dtac sym 1); |
|
194 |
by (asm_full_simp_tac (simpset() addsimps [real_le_refl,rabs_mult]) 1); |
|
195 |
qed "rabs_mult_le"; |
|
196 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5078
diff
changeset
|
197 |
Goal "[| 1r < rabs x; r < rabs y|] ==> r < rabs(x*y)"; |
5078 | 198 |
by (fast_tac (HOL_cs addIs [rabs_mult_le, real_less_le_trans]) 1); |
199 |
qed "rabs_mult_gt"; |
|
200 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5078
diff
changeset
|
201 |
Goal "rabs(x)<r ==> 0r<r"; |
5078 | 202 |
by (blast_tac (claset() addSIs [real_le_less_trans,rabs_ge_zero]) 1); |
203 |
qed "rabs_less_gt_zero"; |
|
204 |
||
205 |
Goalw [rabs_def] "rabs 1r = 1r"; |
|
206 |
by (auto_tac (claset() addSDs [not_real_leE RS real_less_asym], |
|
207 |
simpset() addsimps [real_zero_less_one] setloop (split_tac [expand_if]))); |
|
208 |
qed "rabs_one"; |
|
209 |
||
210 |
Goal "[| 0r < x ; x < r |] ==> rabs x < r"; |
|
211 |
by (asm_simp_tac (simpset() addsimps [rabs_eqI2]) 1); |
|
212 |
qed "rabs_lessI"; |
|
213 |
||
214 |
Goal "rabs x =x | rabs x = %~x"; |
|
215 |
by (cut_inst_tac [("R1.0","0r"),("R2.0","x")] real_linear 1); |
|
216 |
by (fast_tac (claset() addIs [rabs_eqI2,rabs_minus_eqI2, |
|
217 |
rabs_zero,rabs_minus_zero]) 1); |
|
218 |
qed "rabs_disj"; |
|
219 |
||
5143
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
paulson
parents:
5078
diff
changeset
|
220 |
Goal "rabs x = y ==> x = y | %~x = y"; |
5078 | 221 |
by (dtac sym 1); |
222 |
by (hyp_subst_tac 1); |
|
223 |
by (res_inst_tac [("x1","x")] (rabs_disj RS disjE) 1); |
|
224 |
by (REPEAT(Asm_simp_tac 1)); |
|
225 |
qed "rabs_eq_disj"; |
|
226 |
||
227 |
Goal "(rabs x < r) = (%~r<x & x<r)"; |
|
228 |
by (Step_tac 1); |
|
229 |
by (rtac (real_less_swap_iff RS iffD2) 1); |
|
230 |
by (asm_simp_tac (simpset() addsimps [(rabs_ge_minus_self |
|
231 |
RS real_le_less_trans)]) 1); |
|
232 |
by (asm_simp_tac (simpset() addsimps [(rabs_ge_self |
|
233 |
RS real_le_less_trans)]) 1); |
|
234 |
by (EVERY1 [dtac (real_less_swap_iff RS iffD1), rotate_tac 1, |
|
235 |
dtac (real_minus_minus RS subst), |
|
236 |
cut_inst_tac [("x","x")] rabs_disj, dtac disjE ]); |
|
237 |
by (assume_tac 3 THEN Auto_tac); |
|
238 |
qed "rabs_interval_iff"; |
|
239 |