| author | paulson | 
| Wed, 13 Jan 1999 11:56:28 +0100 | |
| changeset 6111 | 5347c9a22897 | 
| parent 170 | 590c9d1e0d73 | 
| permissions | -rw-r--r-- | 
| 0 | 1  | 
(* Title: ZF/quniv  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1993 University of Cambridge  | 
|
5  | 
||
6  | 
For quniv.thy. A small universe for lazy recursive types  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
open QUniv;  | 
|
10  | 
||
11  | 
(** Introduction and elimination rules avoid tiresome folding/unfolding **)  | 
|
12  | 
||
13  | 
goalw QUniv.thy [quniv_def]  | 
|
14  | 
"!!X A. X <= univ(eclose(A)) ==> X : quniv(A)";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
15  | 
by (etac PowI 1);  | 
| 0 | 16  | 
val qunivI = result();  | 
17  | 
||
18  | 
goalw QUniv.thy [quniv_def]  | 
|
19  | 
"!!X A. X : quniv(A) ==> X <= univ(eclose(A))";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
20  | 
by (etac PowD 1);  | 
| 0 | 21  | 
val qunivD = result();  | 
22  | 
||
23  | 
goalw QUniv.thy [quniv_def] "!!A B. A<=B ==> quniv(A) <= quniv(B)";  | 
|
24  | 
by (etac (eclose_mono RS univ_mono RS Pow_mono) 1);  | 
|
25  | 
val quniv_mono = result();  | 
|
26  | 
||
27  | 
(*** Closure properties ***)  | 
|
28  | 
||
29  | 
goalw QUniv.thy [quniv_def] "univ(eclose(A)) <= quniv(A)";  | 
|
30  | 
by (rtac (Transset_iff_Pow RS iffD1) 1);  | 
|
31  | 
by (rtac (Transset_eclose RS Transset_univ) 1);  | 
|
32  | 
val univ_eclose_subset_quniv = result();  | 
|
33  | 
||
| 
170
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
34  | 
(*Key property for proving A_subset_quniv; requires eclose in def of quniv*)  | 
| 0 | 35  | 
goal QUniv.thy "univ(A) <= quniv(A)";  | 
36  | 
by (rtac (arg_subset_eclose RS univ_mono RS subset_trans) 1);  | 
|
37  | 
by (rtac univ_eclose_subset_quniv 1);  | 
|
38  | 
val univ_subset_quniv = result();  | 
|
39  | 
||
40  | 
val univ_into_quniv = standard (univ_subset_quniv RS subsetD);  | 
|
41  | 
||
42  | 
goalw QUniv.thy [quniv_def] "Pow(univ(A)) <= quniv(A)";  | 
|
43  | 
by (rtac (arg_subset_eclose RS univ_mono RS Pow_mono) 1);  | 
|
44  | 
val Pow_univ_subset_quniv = result();  | 
|
45  | 
||
46  | 
val univ_subset_into_quniv = standard  | 
|
47  | 
(PowI RS (Pow_univ_subset_quniv RS subsetD));  | 
|
48  | 
||
49  | 
val zero_in_quniv = standard (zero_in_univ RS univ_into_quniv);  | 
|
50  | 
val one_in_quniv = standard (one_in_univ RS univ_into_quniv);  | 
|
51  | 
val two_in_quniv = standard (two_in_univ RS univ_into_quniv);  | 
|
52  | 
||
53  | 
val A_subset_quniv = standard  | 
|
54  | 
([A_subset_univ, univ_subset_quniv] MRS subset_trans);  | 
|
55  | 
||
56  | 
val A_into_quniv = A_subset_quniv RS subsetD;  | 
|
57  | 
||
58  | 
(*** univ(A) closure for Quine-inspired pairs and injections ***)  | 
|
59  | 
||
60  | 
(*Quine ordered pairs*)  | 
|
61  | 
goalw QUniv.thy [QPair_def]  | 
|
62  | 
"!!A a. [| a <= univ(A); b <= univ(A) |] ==> <a;b> <= univ(A)";  | 
|
63  | 
by (REPEAT (ares_tac [sum_subset_univ] 1));  | 
|
64  | 
val QPair_subset_univ = result();  | 
|
65  | 
||
66  | 
(** Quine disjoint sum **)  | 
|
67  | 
||
68  | 
goalw QUniv.thy [QInl_def] "!!A a. a <= univ(A) ==> QInl(a) <= univ(A)";  | 
|
69  | 
by (etac (empty_subsetI RS QPair_subset_univ) 1);  | 
|
70  | 
val QInl_subset_univ = result();  | 
|
71  | 
||
72  | 
val naturals_subset_nat =  | 
|
73  | 
rewrite_rule [Transset_def] (Ord_nat RS Ord_is_Transset)  | 
|
74  | 
RS bspec;  | 
|
75  | 
||
76  | 
val naturals_subset_univ =  | 
|
77  | 
[naturals_subset_nat, nat_subset_univ] MRS subset_trans;  | 
|
78  | 
||
79  | 
goalw QUniv.thy [QInr_def] "!!A a. a <= univ(A) ==> QInr(a) <= univ(A)";  | 
|
80  | 
by (etac (nat_1I RS naturals_subset_univ RS QPair_subset_univ) 1);  | 
|
81  | 
val QInr_subset_univ = result();  | 
|
82  | 
||
83  | 
(*** Closure for Quine-inspired products and sums ***)  | 
|
84  | 
||
85  | 
(*Quine ordered pairs*)  | 
|
86  | 
goalw QUniv.thy [quniv_def,QPair_def]  | 
|
87  | 
"!!A a. [| a: quniv(A); b: quniv(A) |] ==> <a;b> : quniv(A)";  | 
|
88  | 
by (REPEAT (dtac PowD 1));  | 
|
89  | 
by (REPEAT (ares_tac [PowI, sum_subset_univ] 1));  | 
|
90  | 
val QPair_in_quniv = result();  | 
|
91  | 
||
92  | 
goal QUniv.thy "quniv(A) <*> quniv(A) <= quniv(A)";  | 
|
93  | 
by (REPEAT (ares_tac [subsetI, QPair_in_quniv] 1  | 
|
94  | 
ORELSE eresolve_tac [QSigmaE, ssubst] 1));  | 
|
95  | 
val QSigma_quniv = result();  | 
|
96  | 
||
97  | 
val QSigma_subset_quniv = standard  | 
|
98  | 
(QSigma_mono RS (QSigma_quniv RSN (2,subset_trans)));  | 
|
99  | 
||
100  | 
(*The opposite inclusion*)  | 
|
101  | 
goalw QUniv.thy [quniv_def,QPair_def]  | 
|
102  | 
"!!A a b. <a;b> : quniv(A) ==> a: quniv(A) & b: quniv(A)";  | 
|
| 129 | 103  | 
by (etac ([Transset_eclose RS Transset_univ, PowD] MRS  | 
104  | 
Transset_includes_summands RS conjE) 1);  | 
|
| 0 | 105  | 
by (REPEAT (ares_tac [conjI,PowI] 1));  | 
106  | 
val quniv_QPair_D = result();  | 
|
107  | 
||
108  | 
val quniv_QPair_E = standard (quniv_QPair_D RS conjE);  | 
|
109  | 
||
110  | 
goal QUniv.thy "<a;b> : quniv(A) <-> a: quniv(A) & b: quniv(A)";  | 
|
111  | 
by (REPEAT (ares_tac [iffI, QPair_in_quniv, quniv_QPair_D] 1  | 
|
112  | 
ORELSE etac conjE 1));  | 
|
113  | 
val quniv_QPair_iff = result();  | 
|
114  | 
||
115  | 
||
116  | 
(** Quine disjoint sum **)  | 
|
117  | 
||
118  | 
goalw QUniv.thy [QInl_def] "!!A a. a: quniv(A) ==> QInl(a) : quniv(A)";  | 
|
119  | 
by (REPEAT (ares_tac [zero_in_quniv,QPair_in_quniv] 1));  | 
|
120  | 
val QInl_in_quniv = result();  | 
|
121  | 
||
122  | 
goalw QUniv.thy [QInr_def] "!!A b. b: quniv(A) ==> QInr(b) : quniv(A)";  | 
|
123  | 
by (REPEAT (ares_tac [one_in_quniv, QPair_in_quniv] 1));  | 
|
124  | 
val QInr_in_quniv = result();  | 
|
125  | 
||
126  | 
goal QUniv.thy "quniv(C) <+> quniv(C) <= quniv(C)";  | 
|
127  | 
by (REPEAT (ares_tac [subsetI, QInl_in_quniv, QInr_in_quniv] 1  | 
|
128  | 
ORELSE eresolve_tac [qsumE, ssubst] 1));  | 
|
129  | 
val qsum_quniv = result();  | 
|
130  | 
||
131  | 
val qsum_subset_quniv = standard  | 
|
132  | 
(qsum_mono RS (qsum_quniv RSN (2,subset_trans)));  | 
|
133  | 
||
134  | 
(*** The natural numbers ***)  | 
|
135  | 
||
136  | 
val nat_subset_quniv = standard  | 
|
137  | 
([nat_subset_univ, univ_subset_quniv] MRS subset_trans);  | 
|
138  | 
||
139  | 
(* n:nat ==> n:quniv(A) *)  | 
|
140  | 
val nat_into_quniv = standard (nat_subset_quniv RS subsetD);  | 
|
141  | 
||
142  | 
val bool_subset_quniv = standard  | 
|
143  | 
([bool_subset_univ, univ_subset_quniv] MRS subset_trans);  | 
|
144  | 
||
145  | 
val bool_into_quniv = standard (bool_subset_quniv RS subsetD);  | 
|
146  | 
||
147  | 
||
148  | 
(**** Properties of Vfrom analogous to the "take-lemma" ****)  | 
|
149  | 
||
150  | 
(*** Intersecting a*b with Vfrom... ***)  | 
|
151  | 
||
152  | 
(*This version says a, b exist one level down, in the smaller set Vfrom(X,i)*)  | 
|
153  | 
goal Univ.thy  | 
|
154  | 
    "!!X. [| {a,b} : Vfrom(X,succ(i));  Transset(X) |] ==> \
 | 
|
155  | 
\ a: Vfrom(X,i) & b: Vfrom(X,i)";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
156  | 
by (dtac (Transset_Vfrom_succ RS equalityD1 RS subsetD RS PowD) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
157  | 
by (assume_tac 1);  | 
| 0 | 158  | 
by (fast_tac ZF_cs 1);  | 
159  | 
val doubleton_in_Vfrom_D = result();  | 
|
160  | 
||
161  | 
(*This weaker version says a, b exist at the same level*)  | 
|
162  | 
val Vfrom_doubleton_D = standard (Transset_Vfrom RS Transset_doubleton_D);  | 
|
163  | 
||
164  | 
(** Using only the weaker theorem would prove <a,b> : Vfrom(X,i)  | 
|
165  | 
implies a, b : Vfrom(X,i), which is useless for induction.  | 
|
166  | 
Using only the stronger theorem would prove <a,b> : Vfrom(X,succ(succ(i)))  | 
|
167  | 
implies a, b : Vfrom(X,i), leaving the succ(i) case untreated.  | 
|
168  | 
The combination gives a reduction by precisely one level, which is  | 
|
169  | 
most convenient for proofs.  | 
|
170  | 
**)  | 
|
171  | 
||
172  | 
goalw Univ.thy [Pair_def]  | 
|
173  | 
"!!X. [| <a,b> : Vfrom(X,succ(i)); Transset(X) |] ==> \  | 
|
174  | 
\ a: Vfrom(X,i) & b: Vfrom(X,i)";  | 
|
175  | 
by (fast_tac (ZF_cs addSDs [doubleton_in_Vfrom_D, Vfrom_doubleton_D]) 1);  | 
|
176  | 
val Pair_in_Vfrom_D = result();  | 
|
177  | 
||
178  | 
goal Univ.thy  | 
|
179  | 
"!!X. Transset(X) ==> \  | 
|
180  | 
\ (a*b) Int Vfrom(X, succ(i)) <= (a Int Vfrom(X,i)) * (b Int Vfrom(X,i))";  | 
|
181  | 
by (fast_tac (ZF_cs addSDs [Pair_in_Vfrom_D]) 1);  | 
|
182  | 
val product_Int_Vfrom_subset = result();  | 
|
183  | 
||
184  | 
(*** Intersecting <a;b> with Vfrom... ***)  | 
|
185  | 
||
186  | 
goalw QUniv.thy [QPair_def,sum_def]  | 
|
187  | 
"!!X. Transset(X) ==> \  | 
|
188  | 
\ <a;b> Int Vfrom(X, succ(i)) <= <a Int Vfrom(X,i); b Int Vfrom(X,i)>";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
189  | 
by (rtac (Int_Un_distrib RS ssubst) 1);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
190  | 
by (rtac Un_mono 1);  | 
| 0 | 191  | 
by (REPEAT (ares_tac [product_Int_Vfrom_subset RS subset_trans,  | 
192  | 
[Int_lower1, subset_refl] MRS Sigma_mono] 1));  | 
|
193  | 
val QPair_Int_Vfrom_succ_subset = result();  | 
|
194  | 
||
| 
170
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
195  | 
(**** "Take-lemma" rules for proving a=b by coinduction and c: quniv(A) ****)  | 
| 0 | 196  | 
|
| 
170
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
197  | 
(*Rule for level i -- preserving the level, not decreasing it*)  | 
| 0 | 198  | 
|
199  | 
goalw QUniv.thy [QPair_def]  | 
|
200  | 
"!!X. Transset(X) ==> \  | 
|
201  | 
\ <a;b> Int Vfrom(X,i) <= <a Int Vfrom(X,i); b Int Vfrom(X,i)>";  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
6 
diff
changeset
 | 
202  | 
by (etac (Transset_Vfrom RS Transset_sum_Int_subset) 1);  | 
| 0 | 203  | 
val QPair_Int_Vfrom_subset = result();  | 
204  | 
||
| 
170
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
205  | 
(*[| a Int Vset(i) <= c; b Int Vset(i) <= d |] ==> <a;b> Int Vset(i) <= <c;d>*)  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
206  | 
val QPair_Int_Vset_subset_trans = standard  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
207  | 
([Transset_0 RS QPair_Int_Vfrom_subset, QPair_mono] MRS subset_trans);  | 
| 0 | 208  | 
|
| 
170
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
209  | 
goal QUniv.thy  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
210  | 
"!!i. [| Ord(i) \  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
211  | 
\ |] ==> <a;b> Int Vset(i) <= (UN j:i. <a Int Vset(j); b Int Vset(j)>)";  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
212  | 
by (etac Ord_cases 1 THEN REPEAT_FIRST hyp_subst_tac);  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
213  | 
(*0 case*)  | 
| 0 | 214  | 
by (rtac (Vfrom_0 RS ssubst) 1);  | 
215  | 
by (fast_tac ZF_cs 1);  | 
|
| 
170
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
216  | 
(*succ(j) case*)  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
217  | 
by (rtac (Transset_0 RS QPair_Int_Vfrom_succ_subset RS subset_trans) 1);  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
218  | 
by (rtac (succI1 RS UN_upper) 1);  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
219  | 
(*Limit(i) case*)  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
220  | 
by (asm_simp_tac (ZF_ss addsimps [Limit_Vfrom_eq, Int_UN_distrib, subset_refl,  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
221  | 
UN_mono, QPair_Int_Vset_subset_trans]) 1);  | 
| 
 
590c9d1e0d73
ZF/quniv/QPair_Int_Vset_subset_UN: new, isolates key argument of many
 
lcp 
parents: 
129 
diff
changeset
 | 
222  | 
val QPair_Int_Vset_subset_UN = result();  |