| 
105
 | 
     1  | 
(**** quantifier examples -- process using Doc/tout quant.txt  ****)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
Pretty.setmargin 72;  (*existing macros just allow this margin*)
  | 
| 
 | 
     4  | 
print_depth 0;
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
goal Int_Rule.thy "(ALL x y.P(x,y))  -->  (ALL z w.P(w,z))";
  | 
| 
 | 
     8  | 
by (resolve_tac [impI] 1);
  | 
| 
 | 
     9  | 
by (dresolve_tac [spec] 1);
  | 
| 
 | 
    10  | 
by (resolve_tac [allI] 1);
  | 
| 
 | 
    11  | 
by (dresolve_tac [spec] 1);
  | 
| 
 | 
    12  | 
by (resolve_tac [allI] 1);
  | 
| 
 | 
    13  | 
by (assume_tac 1);
  | 
| 
 | 
    14  | 
choplev 1;
  | 
| 
 | 
    15  | 
by (resolve_tac [allI] 1);
  | 
| 
 | 
    16  | 
by (resolve_tac [allI] 1);
  | 
| 
 | 
    17  | 
by (dresolve_tac [spec] 1);
  | 
| 
 | 
    18  | 
by (dresolve_tac [spec] 1);
  | 
| 
 | 
    19  | 
by (assume_tac 1);
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
choplev 0;
  | 
| 
 | 
    22  | 
by (REPEAT (assume_tac 1
  | 
| 
 | 
    23  | 
     ORELSE resolve_tac [impI,allI] 1
  | 
| 
 | 
    24  | 
     ORELSE dresolve_tac [spec] 1));
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
- goal Int_Rule.thy "(ALL x y.P(x,y))  -->  (ALL z w.P(w,z))";
  | 
| 
 | 
    28  | 
Level 0
  | 
| 
 | 
    29  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    30  | 
 1. (ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    31  | 
val it = [] : thm list
  | 
| 
 | 
    32  | 
- by (resolve_tac [impI] 1);
  | 
| 
 | 
    33  | 
Level 1
  | 
| 
 | 
    34  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    35  | 
 1. ALL x y. P(x,y) ==> ALL z w. P(w,z)
  | 
| 
 | 
    36  | 
val it = () : unit
  | 
| 
 | 
    37  | 
- by (dresolve_tac [spec] 1);
  | 
| 
 | 
    38  | 
Level 2
  | 
| 
 | 
    39  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    40  | 
 1. ALL y. P(?x1,y) ==> ALL z w. P(w,z)
  | 
| 
 | 
    41  | 
val it = () : unit
  | 
| 
 | 
    42  | 
- by (resolve_tac [allI] 1);
  | 
| 
 | 
    43  | 
Level 3
  | 
| 
 | 
    44  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    45  | 
 1. !!z. ALL y. P(?x1,y) ==> ALL w. P(w,z)
  | 
| 
 | 
    46  | 
val it = () : unit
  | 
| 
 | 
    47  | 
- by (dresolve_tac [spec] 1);
  | 
| 
 | 
    48  | 
Level 4
  | 
| 
 | 
    49  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    50  | 
 1. !!z. P(?x1,?y3(z)) ==> ALL w. P(w,z)
  | 
| 
 | 
    51  | 
val it = () : unit
  | 
| 
 | 
    52  | 
- by (resolve_tac [allI] 1);
  | 
| 
 | 
    53  | 
Level 5
  | 
| 
 | 
    54  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    55  | 
 1. !!z w. P(?x1,?y3(z)) ==> P(w,z)
  | 
| 
 | 
    56  | 
val it = () : unit
  | 
| 
 | 
    57  | 
- by (assume_tac 1);
  | 
| 
 | 
    58  | 
by: tactic returned no results
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
uncaught exception ERROR
  | 
| 
 | 
    61  | 
- choplev 1;
  | 
| 
 | 
    62  | 
Level 1
  | 
| 
 | 
    63  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    64  | 
 1. ALL x y. P(x,y) ==> ALL z w. P(w,z)
  | 
| 
 | 
    65  | 
val it = () : unit
  | 
| 
 | 
    66  | 
- by (resolve_tac [allI] 1);
  | 
| 
 | 
    67  | 
Level 2
  | 
| 
 | 
    68  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    69  | 
 1. !!z. ALL x y. P(x,y) ==> ALL w. P(w,z)
  | 
| 
 | 
    70  | 
val it = () : unit
  | 
| 
 | 
    71  | 
- by (resolve_tac [allI] 1);
  | 
| 
 | 
    72  | 
Level 3
  | 
| 
 | 
    73  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    74  | 
 1. !!z w. ALL x y. P(x,y) ==> P(w,z)
  | 
| 
 | 
    75  | 
val it = () : unit
  | 
| 
 | 
    76  | 
- by (dresolve_tac [spec] 1);
  | 
| 
 | 
    77  | 
Level 4
  | 
| 
 | 
    78  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    79  | 
 1. !!z w. ALL y. P(?x3(z,w),y) ==> P(w,z)
  | 
| 
 | 
    80  | 
val it = () : unit
  | 
| 
 | 
    81  | 
- by (dresolve_tac [spec] 1);
  | 
| 
 | 
    82  | 
Level 5
  | 
| 
 | 
    83  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    84  | 
 1. !!z w. P(?x3(z,w),?y4(z,w)) ==> P(w,z)
  | 
| 
 | 
    85  | 
val it = () : unit
  | 
| 
 | 
    86  | 
- by (assume_tac 1);
  | 
| 
 | 
    87  | 
Level 6
  | 
| 
 | 
    88  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    89  | 
No subgoals!
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
> choplev 0;
  | 
| 
 | 
    92  | 
Level 0
  | 
| 
 | 
    93  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    94  | 
 1. (ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
    95  | 
> by (REPEAT (assume_tac 1
  | 
| 
 | 
    96  | 
#      ORELSE resolve_tac [impI,allI] 1
  | 
| 
 | 
    97  | 
#      ORELSE dresolve_tac [spec] 1));
  | 
| 
 | 
    98  | 
Level 1
  | 
| 
 | 
    99  | 
(ALL x y. P(x,y)) --> (ALL z w. P(w,z))
  | 
| 
 | 
   100  | 
No subgoals!
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
goal FOL_thy "ALL x. EX y. x=y";
  | 
| 
 | 
   105  | 
by (resolve_tac [allI] 1);
  | 
| 
 | 
   106  | 
by (resolve_tac [exI] 1);
  | 
| 
 | 
   107  | 
by (resolve_tac [refl] 1);
  | 
| 
 | 
   108  | 
  | 
| 
 | 
   109  | 
- goal Int_Rule.thy "ALL x. EX y. x=y";
  | 
| 
 | 
   110  | 
Level 0
  | 
| 
 | 
   111  | 
ALL x. EX y. x = y
  | 
| 
 | 
   112  | 
 1. ALL x. EX y. x = y
  | 
| 
 | 
   113  | 
val it = [] : thm list
  | 
| 
 | 
   114  | 
- by (resolve_tac [allI] 1);
  | 
| 
 | 
   115  | 
Level 1
  | 
| 
 | 
   116  | 
ALL x. EX y. x = y
  | 
| 
 | 
   117  | 
 1. !!x. EX y. x = y
  | 
| 
 | 
   118  | 
val it = () : unit
  | 
| 
 | 
   119  | 
- by (resolve_tac [exI] 1);
  | 
| 
 | 
   120  | 
Level 2
  | 
| 
 | 
   121  | 
ALL x. EX y. x = y
  | 
| 
 | 
   122  | 
 1. !!x. x = ?y1(x)
  | 
| 
 | 
   123  | 
val it = () : unit
  | 
| 
 | 
   124  | 
- by (resolve_tac [refl] 1);
  | 
| 
 | 
   125  | 
Level 3
  | 
| 
 | 
   126  | 
ALL x. EX y. x = y
  | 
| 
 | 
   127  | 
No subgoals!
  | 
| 
 | 
   128  | 
val it = () : unit
  | 
| 
 | 
   129  | 
-
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
goal FOL_thy "EX y. ALL x. x=y";
  | 
| 
 | 
   132  | 
by (resolve_tac [exI] 1);
  | 
| 
 | 
   133  | 
by (resolve_tac [allI] 1);
  | 
| 
 | 
   134  | 
by (resolve_tac [refl] 1);
  | 
| 
 | 
   135  | 
  | 
| 
 | 
   136  | 
- goal Int_Rule.thy "EX y. ALL x. x=y";
  | 
| 
 | 
   137  | 
Level 0
  | 
| 
 | 
   138  | 
EX y. ALL x. x = y
  | 
| 
 | 
   139  | 
 1. EX y. ALL x. x = y
  | 
| 
 | 
   140  | 
val it = [] : thm list
  | 
| 
 | 
   141  | 
- by (resolve_tac [exI] 1);
  | 
| 
 | 
   142  | 
Level 1
  | 
| 
 | 
   143  | 
EX y. ALL x. x = y
  | 
| 
 | 
   144  | 
 1. ALL x. x = ?y
  | 
| 
 | 
   145  | 
val it = () : unit
  | 
| 
 | 
   146  | 
- by (resolve_tac [allI] 1);
  | 
| 
 | 
   147  | 
Level 2
  | 
| 
 | 
   148  | 
EX y. ALL x. x = y
  | 
| 
 | 
   149  | 
 1. !!x. x = ?y
  | 
| 
 | 
   150  | 
val it = () : unit
  | 
| 
 | 
   151  | 
- by (resolve_tac [refl] 1);
  | 
| 
 | 
   152  | 
by: tactic returned no results
  | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
uncaught exception ERROR
  | 
| 
 | 
   155  | 
  | 
| 
 | 
   156  | 
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
goal FOL_thy "EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)";
  | 
| 
 | 
   159  | 
by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   160  | 
by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   161  | 
by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   162  | 
by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   163  | 
by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
- goal Int_Rule.thy "EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)";
  | 
| 
 | 
   166  | 
Level 0
  | 
| 
 | 
   167  | 
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
  | 
| 
 | 
   168  | 
 1. EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
  | 
| 
 | 
   169  | 
val it = [] : thm list
  | 
| 
 | 
   170  | 
- by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   171  | 
Level 1
  | 
| 
 | 
   172  | 
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
  | 
| 
 | 
   173  | 
 1. ALL x. EX v. ALL y. EX w. P(?u,x,v,y,w)
  | 
| 
 | 
   174  | 
val it = () : unit
  | 
| 
 | 
   175  | 
- by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   176  | 
Level 2
  | 
| 
 | 
   177  | 
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
  | 
| 
 | 
   178  | 
 1. !!x. EX v. ALL y. EX w. P(?u,x,v,y,w)
  | 
| 
 | 
   179  | 
val it = () : unit
  | 
| 
 | 
   180  | 
- by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   181  | 
Level 3
  | 
| 
 | 
   182  | 
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
  | 
| 
 | 
   183  | 
 1. !!x. ALL y. EX w. P(?u,x,?v2(x),y,w)
  | 
| 
 | 
   184  | 
val it = () : unit
  | 
| 
 | 
   185  | 
- by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   186  | 
Level 4
  | 
| 
 | 
   187  | 
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
  | 
| 
 | 
   188  | 
 1. !!x y. EX w. P(?u,x,?v2(x),y,w)
  | 
| 
 | 
   189  | 
val it = () : unit
  | 
| 
 | 
   190  | 
- by (resolve_tac [exI, allI] 1);
  | 
| 
 | 
   191  | 
Level 5
  | 
| 
 | 
   192  | 
EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)
  | 
| 
 | 
   193  | 
 1. !!x y. P(?u,x,?v2(x),y,?w4(x,y))
  | 
| 
 | 
   194  | 
val it = () : unit
  | 
| 
 | 
   195  | 
  | 
| 
 | 
   196  | 
  | 
| 
 | 
   197  | 
goal FOL_thy "(ALL x.P(x) --> Q) --> (EX x.P(x))-->Q";
  | 
| 
 | 
   198  | 
by (REPEAT (resolve_tac [impI] 1));
  | 
| 
 | 
   199  | 
by (eresolve_tac [exE] 1);
  | 
| 
 | 
   200  | 
by (dresolve_tac [spec] 1);
  | 
| 
 | 
   201  | 
by (eresolve_tac [mp] 1);
  | 
| 
 | 
   202  | 
by (assume_tac 1);
  | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
- goal Int_Rule.thy "(ALL x.P(x) --> Q) --> (EX x.P(x))-->Q";
  | 
| 
 | 
   205  | 
Level 0
  | 
| 
 | 
   206  | 
(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q
  | 
| 
 | 
   207  | 
 1. (ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q
  | 
| 
 | 
   208  | 
val it = [] : thm list
  | 
| 
 | 
   209  | 
- by (REPEAT (resolve_tac [impI] 1));
  | 
| 
 | 
   210  | 
Level 1
  | 
| 
 | 
   211  | 
(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q
  | 
| 
 | 
   212  | 
 1. [| ALL x. P(x) --> Q; EX x. P(x) |] ==> Q
  | 
| 
 | 
   213  | 
val it = () : unit
  | 
| 
 | 
   214  | 
- by (eresolve_tac [exE] 1);
  | 
| 
 | 
   215  | 
Level 2
  | 
| 
 | 
   216  | 
(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q
  | 
| 
 | 
   217  | 
 1. !!x. [| ALL x. P(x) --> Q; P(x) |] ==> Q
  | 
| 
 | 
   218  | 
val it = () : unit
  | 
| 
 | 
   219  | 
- by (dresolve_tac [spec] 1);
  | 
| 
 | 
   220  | 
Level 3
  | 
| 
 | 
   221  | 
(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q
  | 
| 
 | 
   222  | 
 1. !!x. [| P(x); P(?x3(x)) --> Q |] ==> Q
  | 
| 
 | 
   223  | 
val it = () : unit
  | 
| 
 | 
   224  | 
- by (eresolve_tac [mp] 1);
  | 
| 
 | 
   225  | 
Level 4
  | 
| 
 | 
   226  | 
(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q
  | 
| 
 | 
   227  | 
 1. !!x. P(x) ==> P(?x3(x))
  | 
| 
 | 
   228  | 
val it = () : unit
  | 
| 
 | 
   229  | 
- by (assume_tac 1);
  | 
| 
 | 
   230  | 
Level 5
  | 
| 
 | 
   231  | 
(ALL x. P(x) --> Q) --> (EX x. P(x)) --> Q
  | 
| 
 | 
   232  | 
No subgoals!
  | 
| 
 | 
   233  | 
  | 
| 
 | 
   234  | 
  | 
| 
 | 
   235  | 
goal FOL_thy "((EX x.P(x)) --> Q) --> (ALL x.P(x)-->Q)";
  | 
| 
 | 
   236  | 
by (REPEAT (resolve_tac [impI] 1));
  | 
| 
 | 
   237  | 
  | 
| 
 | 
   238  | 
  | 
| 
 | 
   239  | 
goal FOL_thy "(EX x.P(x) --> Q) --> (ALL x.P(x))-->Q";
  | 
| 
 | 
   240  | 
by (REPEAT (resolve_tac [impI] 1));
  | 
| 
 | 
   241  | 
by (eresolve_tac [exE] 1);
  | 
| 
 | 
   242  | 
by (eresolve_tac [mp] 1);
  | 
| 
 | 
   243  | 
by (eresolve_tac [spec] 1);
  | 
| 
 | 
   244  | 
  |