| author | nipkow | 
| Mon, 17 Mar 2008 16:47:45 +0100 | |
| changeset 26298 | 53e382ccf71f | 
| parent 25966 | 74f6817870f9 | 
| child 26411 | cd74690f3bfb | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/HOL.thy | 
| 2 | ID: $Id$ | |
| 11750 | 3 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 4 | *) | |
| 923 | 5 | |
| 11750 | 6 | header {* The basis of Higher-Order Logic *}
 | 
| 923 | 7 | |
| 15131 | 8 | theory HOL | 
| 15140 | 9 | imports CPure | 
| 23163 | 10 | uses | 
| 23553 | 11 |   ("hologic.ML")
 | 
| 23171 | 12 | "~~/src/Tools/IsaPlanner/zipper.ML" | 
| 13 | "~~/src/Tools/IsaPlanner/isand.ML" | |
| 14 | "~~/src/Tools/IsaPlanner/rw_tools.ML" | |
| 15 | "~~/src/Tools/IsaPlanner/rw_inst.ML" | |
| 23263 | 16 | "~~/src/Provers/project_rule.ML" | 
| 17 | "~~/src/Provers/hypsubst.ML" | |
| 18 | "~~/src/Provers/splitter.ML" | |
| 23163 | 19 | "~~/src/Provers/classical.ML" | 
| 20 | "~~/src/Provers/blast.ML" | |
| 21 | "~~/src/Provers/clasimp.ML" | |
| 23263 | 22 | "~~/src/Provers/eqsubst.ML" | 
| 23163 | 23 | "~~/src/Provers/quantifier1.ML" | 
| 24 |   ("simpdata.ML")
 | |
| 25741 | 25 | "~~/src/Tools/random_word.ML" | 
| 24901 
d3cbf79769b9
added first version of user-space type system for class target
 haftmann parents: 
24844diff
changeset | 26 | "~~/src/Tools/induct.ML" | 
| 24280 | 27 | "~~/src/Tools/code/code_name.ML" | 
| 28 | "~~/src/Tools/code/code_funcgr.ML" | |
| 29 | "~~/src/Tools/code/code_thingol.ML" | |
| 30 | "~~/src/Tools/code/code_target.ML" | |
| 31 | "~~/src/Tools/code/code_package.ML" | |
| 24166 | 32 | "~~/src/Tools/nbe.ML" | 
| 15131 | 33 | begin | 
| 2260 | 34 | |
| 11750 | 35 | subsection {* Primitive logic *}
 | 
| 36 | ||
| 37 | subsubsection {* Core syntax *}
 | |
| 2260 | 38 | |
| 14854 | 39 | classes type | 
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12281diff
changeset | 40 | defaultsort type | 
| 25494 
b2484a7912ac
replaced typedecl interpretation by ObjectLogic.typedecl (based on base_sort);
 wenzelm parents: 
25460diff
changeset | 41 | setup {* ObjectLogic.add_base_sort @{sort type} *}
 | 
| 25460 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 42 | |
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 43 | arities | 
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 44 | "fun" :: (type, type) type | 
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 45 | itself :: (type) type | 
| 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 46 | |
| 12338 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 wenzelm parents: 
12281diff
changeset | 47 | global | 
| 923 | 48 | |
| 7357 | 49 | typedecl bool | 
| 923 | 50 | |
| 11750 | 51 | judgment | 
| 52 |   Trueprop      :: "bool => prop"                   ("(_)" 5)
 | |
| 923 | 53 | |
| 11750 | 54 | consts | 
| 7357 | 55 |   Not           :: "bool => bool"                   ("~ _" [40] 40)
 | 
| 56 | True :: bool | |
| 57 | False :: bool | |
| 3947 | 58 | arbitrary :: 'a | 
| 923 | 59 | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 60 |   The           :: "('a => bool) => 'a"
 | 
| 7357 | 61 |   All           :: "('a => bool) => bool"           (binder "ALL " 10)
 | 
| 62 |   Ex            :: "('a => bool) => bool"           (binder "EX " 10)
 | |
| 63 |   Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
 | |
| 64 | Let :: "['a, 'a => 'b] => 'b" | |
| 923 | 65 | |
| 22839 | 66 | "op =" :: "['a, 'a] => bool" (infixl "=" 50) | 
| 67 | "op &" :: "[bool, bool] => bool" (infixr "&" 35) | |
| 68 | "op |" :: "[bool, bool] => bool" (infixr "|" 30) | |
| 69 | "op -->" :: "[bool, bool] => bool" (infixr "-->" 25) | |
| 923 | 70 | |
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 71 | local | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 72 | |
| 16587 | 73 | consts | 
| 74 |   If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
 | |
| 2260 | 75 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 76 | |
| 11750 | 77 | subsubsection {* Additional concrete syntax *}
 | 
| 2260 | 78 | |
| 21210 | 79 | notation (output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 80 | "op =" (infix "=" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 81 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 82 | abbreviation | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 83 | not_equal :: "['a, 'a] => bool" (infixl "~=" 50) where | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 84 | "x ~= y == ~ (x = y)" | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 85 | |
| 21210 | 86 | notation (output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 87 | not_equal (infix "~=" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 88 | |
| 21210 | 89 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 90 |   Not  ("\<not> _" [40] 40) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 91 | "op &" (infixr "\<and>" 35) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 92 | "op |" (infixr "\<or>" 30) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 93 | "op -->" (infixr "\<longrightarrow>" 25) and | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 94 | not_equal (infix "\<noteq>" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 95 | |
| 21210 | 96 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 97 |   Not  ("\<not> _" [40] 40) and
 | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 98 | "op &" (infixr "\<and>" 35) and | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 99 | "op |" (infixr "\<or>" 30) and | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 100 | not_equal (infix "\<noteq>" 50) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 101 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 102 | abbreviation (iff) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21250diff
changeset | 103 | iff :: "[bool, bool] => bool" (infixr "<->" 25) where | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 104 | "A <-> B == A = B" | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 105 | |
| 21210 | 106 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 107 | iff (infixr "\<longleftrightarrow>" 25) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 108 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 109 | |
| 4868 | 110 | nonterminals | 
| 923 | 111 | letbinds letbind | 
| 112 | case_syn cases_syn | |
| 113 | ||
| 114 | syntax | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 115 |   "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
 | 
| 923 | 116 | |
| 7357 | 117 |   "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
 | 
| 118 |   ""            :: "letbind => letbinds"                 ("_")
 | |
| 119 |   "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
 | |
| 120 |   "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
 | |
| 923 | 121 | |
| 9060 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 wenzelm parents: 
8959diff
changeset | 122 |   "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
 | 
| 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 wenzelm parents: 
8959diff
changeset | 123 |   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
 | 
| 7357 | 124 |   ""            :: "case_syn => cases_syn"               ("_")
 | 
| 9060 
b0dd884b1848
rename @case to _case_syntax (improves on low-level errors);
 wenzelm parents: 
8959diff
changeset | 125 |   "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
 | 
| 923 | 126 | |
| 127 | translations | |
| 13764 | 128 | "THE x. P" == "The (%x. P)" | 
| 923 | 129 | "_Let (_binds b bs) e" == "_Let b (_Let bs e)" | 
| 1114 | 130 | "let x = a in e" == "Let a (%x. e)" | 
| 923 | 131 | |
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 132 | print_translation {*
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 133 | (* To avoid eta-contraction of body: *) | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 134 | [("The", fn [Abs abs] =>
 | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 135 | let val (x,t) = atomic_abs_tr' abs | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 136 | in Syntax.const "_The" $ x $ t end)] | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 137 | *} | 
| 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 138 | |
| 12114 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 wenzelm parents: 
12023diff
changeset | 139 | syntax (xsymbols) | 
| 11687 | 140 |   "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
 | 
| 21524 | 141 | |
| 142 | notation (xsymbols) | |
| 143 | All (binder "\<forall>" 10) and | |
| 144 | Ex (binder "\<exists>" 10) and | |
| 145 | Ex1 (binder "\<exists>!" 10) | |
| 2372 | 146 | |
| 21524 | 147 | notation (HTML output) | 
| 148 | All (binder "\<forall>" 10) and | |
| 149 | Ex (binder "\<exists>" 10) and | |
| 150 | Ex1 (binder "\<exists>!" 10) | |
| 6340 | 151 | |
| 21524 | 152 | notation (HOL) | 
| 153 | All (binder "! " 10) and | |
| 154 | Ex (binder "? " 10) and | |
| 155 | Ex1 (binder "?! " 10) | |
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 156 | |
| 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 157 | |
| 11750 | 158 | subsubsection {* Axioms and basic definitions *}
 | 
| 2260 | 159 | |
| 7357 | 160 | axioms | 
| 15380 | 161 | eq_reflection: "(x=y) ==> (x==y)" | 
| 923 | 162 | |
| 15380 | 163 | refl: "t = (t::'a)" | 
| 6289 | 164 | |
| 15380 | 165 | ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)" | 
| 166 |     -- {*Extensionality is built into the meta-logic, and this rule expresses
 | |
| 167 | a related property. It is an eta-expanded version of the traditional | |
| 168 | rule, and similar to the ABS rule of HOL*} | |
| 6289 | 169 | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 170 | the_eq_trivial: "(THE x. x = a) = (a::'a)" | 
| 923 | 171 | |
| 15380 | 172 | impI: "(P ==> Q) ==> P-->Q" | 
| 173 | mp: "[| P-->Q; P |] ==> Q" | |
| 174 | ||
| 175 | ||
| 923 | 176 | defs | 
| 7357 | 177 | True_def: "True == ((%x::bool. x) = (%x. x))" | 
| 178 | All_def: "All(P) == (P = (%x. True))" | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11438diff
changeset | 179 | Ex_def: "Ex(P) == !Q. (!x. P x --> Q) --> Q" | 
| 7357 | 180 | False_def: "False == (!P. P)" | 
| 181 | not_def: "~ P == P-->False" | |
| 182 | and_def: "P & Q == !R. (P-->Q-->R) --> R" | |
| 183 | or_def: "P | Q == !R. (P-->R) --> (Q-->R) --> R" | |
| 184 | Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)" | |
| 923 | 185 | |
| 7357 | 186 | axioms | 
| 187 | iff: "(P-->Q) --> (Q-->P) --> (P=Q)" | |
| 188 | True_or_False: "(P=True) | (P=False)" | |
| 923 | 189 | |
| 190 | defs | |
| 24219 | 191 | Let_def: "Let s f == f(s)" | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: 
11438diff
changeset | 192 | if_def: "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)" | 
| 5069 | 193 | |
| 14223 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 194 | finalconsts | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 195 | "op =" | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 196 | "op -->" | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 197 | The | 
| 
0ee05eef881b
Added support for making constants final, that is, ensuring that no
 skalberg parents: 
14208diff
changeset | 198 | arbitrary | 
| 22481 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 199 | |
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 200 | axiomatization | 
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 201 | undefined :: 'a | 
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 202 | |
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22481diff
changeset | 203 | axiomatization where | 
| 22481 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 204 | undefined_fun: "undefined x = undefined" | 
| 3320 | 205 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 206 | |
| 22481 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 207 | subsubsection {* Generic classes and algebraic operations *}
 | 
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 208 | |
| 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 209 | class default = type + | 
| 24901 
d3cbf79769b9
added first version of user-space type system for class target
 haftmann parents: 
24844diff
changeset | 210 | fixes default :: 'a | 
| 4868 | 211 | |
| 22473 | 212 | class zero = type + | 
| 25062 | 213 |   fixes zero :: 'a  ("0")
 | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 214 | |
| 22473 | 215 | class one = type + | 
| 25062 | 216 |   fixes one  :: 'a  ("1")
 | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 217 | |
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 218 | hide (open) const zero one | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 219 | |
| 22473 | 220 | class plus = type + | 
| 25062 | 221 | fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) | 
| 11750 | 222 | |
| 22473 | 223 | class minus = type + | 
| 25762 | 224 | fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) | 
| 225 | ||
| 226 | class uminus = type + | |
| 25062 | 227 |   fixes uminus :: "'a \<Rightarrow> 'a"  ("- _" [81] 80)
 | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 228 | |
| 22473 | 229 | class times = type + | 
| 25062 | 230 | fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 231 | |
| 22473 | 232 | class inverse = type + | 
| 20590 
bf92900995f8
introduced syntactic classes; moved some setup to Pure/codegen, Pure/nbe or OperationalEquality.thy
 haftmann parents: 
20453diff
changeset | 233 | fixes inverse :: "'a \<Rightarrow> 'a" | 
| 25062 | 234 | and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "'/" 70) | 
| 21524 | 235 | |
| 23878 | 236 | class abs = type + | 
| 237 | fixes abs :: "'a \<Rightarrow> 'a" | |
| 25388 | 238 | begin | 
| 23878 | 239 | |
| 21524 | 240 | notation (xsymbols) | 
| 241 |   abs  ("\<bar>_\<bar>")
 | |
| 25388 | 242 | |
| 21524 | 243 | notation (HTML output) | 
| 244 |   abs  ("\<bar>_\<bar>")
 | |
| 11750 | 245 | |
| 25388 | 246 | end | 
| 247 | ||
| 25062 | 248 | class sgn = type + | 
| 249 | fixes sgn :: "'a \<Rightarrow> 'a" | |
| 250 | ||
| 23878 | 251 | class ord = type + | 
| 24748 | 252 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 253 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 23878 | 254 | begin | 
| 255 | ||
| 256 | notation | |
| 257 |   less_eq  ("op <=") and
 | |
| 258 |   less_eq  ("(_/ <= _)" [51, 51] 50) and
 | |
| 259 |   less  ("op <") and
 | |
| 260 |   less  ("(_/ < _)"  [51, 51] 50)
 | |
| 261 | ||
| 262 | notation (xsymbols) | |
| 263 |   less_eq  ("op \<le>") and
 | |
| 264 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | |
| 265 | ||
| 266 | notation (HTML output) | |
| 267 |   less_eq  ("op \<le>") and
 | |
| 268 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | |
| 269 | ||
| 25388 | 270 | abbreviation (input) | 
| 271 | greater_eq (infix ">=" 50) where | |
| 272 | "x >= y \<equiv> y <= x" | |
| 273 | ||
| 24842 | 274 | notation (input) | 
| 23878 | 275 | greater_eq (infix "\<ge>" 50) | 
| 276 | ||
| 25388 | 277 | abbreviation (input) | 
| 278 | greater (infix ">" 50) where | |
| 279 | "x > y \<equiv> y < x" | |
| 280 | ||
| 281 | definition | |
| 282 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | |
| 283 | "Least P == (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> less_eq x y))" | |
| 284 | ||
| 285 | end | |
| 286 | ||
| 13456 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 287 | syntax | 
| 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 288 |   "_index1"  :: index    ("\<^sub>1")
 | 
| 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 289 | translations | 
| 14690 | 290 | (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>" | 
| 13456 
42601eb7553f
special syntax for index "1" (plain numeral hidden by "1" symbol in HOL);
 wenzelm parents: 
13438diff
changeset | 291 | |
| 11750 | 292 | typed_print_translation {*
 | 
| 20713 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 293 | let | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 294 | fun tr' c = (c, fn show_sorts => fn T => fn ts => | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 295 | if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match | 
| 
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
 haftmann parents: 
20698diff
changeset | 296 | else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T); | 
| 22993 | 297 | in map tr' [@{const_syntax HOL.one}, @{const_syntax HOL.zero}] end;
 | 
| 11750 | 298 | *} -- {* show types that are presumably too general *}
 | 
| 299 | ||
| 300 | ||
| 20944 | 301 | subsection {* Fundamental rules *}
 | 
| 302 | ||
| 20973 | 303 | subsubsection {* Equality *}
 | 
| 20944 | 304 | |
| 305 | text {* Thanks to Stephan Merz *}
 | |
| 306 | lemma subst: | |
| 307 | assumes eq: "s = t" and p: "P s" | |
| 308 | shows "P t" | |
| 309 | proof - | |
| 310 | from eq have meta: "s \<equiv> t" | |
| 311 | by (rule eq_reflection) | |
| 312 | from p show ?thesis | |
| 313 | by (unfold meta) | |
| 314 | qed | |
| 15411 | 315 | |
| 18457 | 316 | lemma sym: "s = t ==> t = s" | 
| 317 | by (erule subst) (rule refl) | |
| 15411 | 318 | |
| 18457 | 319 | lemma ssubst: "t = s ==> P s ==> P t" | 
| 320 | by (drule sym) (erule subst) | |
| 15411 | 321 | |
| 322 | lemma trans: "[| r=s; s=t |] ==> r=t" | |
| 18457 | 323 | by (erule subst) | 
| 15411 | 324 | |
| 20944 | 325 | lemma meta_eq_to_obj_eq: | 
| 326 | assumes meq: "A == B" | |
| 327 | shows "A = B" | |
| 328 | by (unfold meq) (rule refl) | |
| 15411 | 329 | |
| 21502 | 330 | text {* Useful with @{text erule} for proving equalities from known equalities. *}
 | 
| 20944 | 331 | (* a = b | 
| 15411 | 332 | | | | 
| 333 | c = d *) | |
| 334 | lemma box_equals: "[| a=b; a=c; b=d |] ==> c=d" | |
| 335 | apply (rule trans) | |
| 336 | apply (rule trans) | |
| 337 | apply (rule sym) | |
| 338 | apply assumption+ | |
| 339 | done | |
| 340 | ||
| 15524 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 341 | text {* For calculational reasoning: *}
 | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 342 | |
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 343 | lemma forw_subst: "a = b ==> P b ==> P a" | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 344 | by (rule ssubst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 345 | |
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 346 | lemma back_subst: "P a ==> a = b ==> P b" | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 347 | by (rule subst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 348 | |
| 15411 | 349 | |
| 20944 | 350 | subsubsection {*Congruence rules for application*}
 | 
| 15411 | 351 | |
| 352 | (*similar to AP_THM in Gordon's HOL*) | |
| 353 | lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)" | |
| 354 | apply (erule subst) | |
| 355 | apply (rule refl) | |
| 356 | done | |
| 357 | ||
| 358 | (*similar to AP_TERM in Gordon's HOL and FOL's subst_context*) | |
| 359 | lemma arg_cong: "x=y ==> f(x)=f(y)" | |
| 360 | apply (erule subst) | |
| 361 | apply (rule refl) | |
| 362 | done | |
| 363 | ||
| 15655 | 364 | lemma arg_cong2: "\<lbrakk> a = b; c = d \<rbrakk> \<Longrightarrow> f a c = f b d" | 
| 365 | apply (erule ssubst)+ | |
| 366 | apply (rule refl) | |
| 367 | done | |
| 368 | ||
| 15411 | 369 | lemma cong: "[| f = g; (x::'a) = y |] ==> f(x) = g(y)" | 
| 370 | apply (erule subst)+ | |
| 371 | apply (rule refl) | |
| 372 | done | |
| 373 | ||
| 374 | ||
| 20944 | 375 | subsubsection {*Equality of booleans -- iff*}
 | 
| 15411 | 376 | |
| 21504 | 377 | lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q" | 
| 378 | by (iprover intro: iff [THEN mp, THEN mp] impI assms) | |
| 15411 | 379 | |
| 380 | lemma iffD2: "[| P=Q; Q |] ==> P" | |
| 18457 | 381 | by (erule ssubst) | 
| 15411 | 382 | |
| 383 | lemma rev_iffD2: "[| Q; P=Q |] ==> P" | |
| 18457 | 384 | by (erule iffD2) | 
| 15411 | 385 | |
| 21504 | 386 | lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P" | 
| 387 | by (drule sym) (rule iffD2) | |
| 388 | ||
| 389 | lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P" | |
| 390 | by (drule sym) (rule rev_iffD2) | |
| 15411 | 391 | |
| 392 | lemma iffE: | |
| 393 | assumes major: "P=Q" | |
| 21504 | 394 | and minor: "[| P --> Q; Q --> P |] ==> R" | 
| 18457 | 395 | shows R | 
| 396 | by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1]) | |
| 15411 | 397 | |
| 398 | ||
| 20944 | 399 | subsubsection {*True*}
 | 
| 15411 | 400 | |
| 401 | lemma TrueI: "True" | |
| 21504 | 402 | unfolding True_def by (rule refl) | 
| 15411 | 403 | |
| 21504 | 404 | lemma eqTrueI: "P ==> P = True" | 
| 18457 | 405 | by (iprover intro: iffI TrueI) | 
| 15411 | 406 | |
| 21504 | 407 | lemma eqTrueE: "P = True ==> P" | 
| 408 | by (erule iffD2) (rule TrueI) | |
| 15411 | 409 | |
| 410 | ||
| 20944 | 411 | subsubsection {*Universal quantifier*}
 | 
| 15411 | 412 | |
| 21504 | 413 | lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)" | 
| 414 | unfolding All_def by (iprover intro: ext eqTrueI assms) | |
| 15411 | 415 | |
| 416 | lemma spec: "ALL x::'a. P(x) ==> P(x)" | |
| 417 | apply (unfold All_def) | |
| 418 | apply (rule eqTrueE) | |
| 419 | apply (erule fun_cong) | |
| 420 | done | |
| 421 | ||
| 422 | lemma allE: | |
| 423 | assumes major: "ALL x. P(x)" | |
| 21504 | 424 | and minor: "P(x) ==> R" | 
| 425 | shows R | |
| 426 | by (iprover intro: minor major [THEN spec]) | |
| 15411 | 427 | |
| 428 | lemma all_dupE: | |
| 429 | assumes major: "ALL x. P(x)" | |
| 21504 | 430 | and minor: "[| P(x); ALL x. P(x) |] ==> R" | 
| 431 | shows R | |
| 432 | by (iprover intro: minor major major [THEN spec]) | |
| 15411 | 433 | |
| 434 | ||
| 21504 | 435 | subsubsection {* False *}
 | 
| 436 | ||
| 437 | text {*
 | |
| 438 |   Depends upon @{text spec}; it is impossible to do propositional
 | |
| 439 | logic before quantifiers! | |
| 440 | *} | |
| 15411 | 441 | |
| 442 | lemma FalseE: "False ==> P" | |
| 21504 | 443 | apply (unfold False_def) | 
| 444 | apply (erule spec) | |
| 445 | done | |
| 15411 | 446 | |
| 21504 | 447 | lemma False_neq_True: "False = True ==> P" | 
| 448 | by (erule eqTrueE [THEN FalseE]) | |
| 15411 | 449 | |
| 450 | ||
| 21504 | 451 | subsubsection {* Negation *}
 | 
| 15411 | 452 | |
| 453 | lemma notI: | |
| 21504 | 454 | assumes "P ==> False" | 
| 15411 | 455 | shows "~P" | 
| 21504 | 456 | apply (unfold not_def) | 
| 457 | apply (iprover intro: impI assms) | |
| 458 | done | |
| 15411 | 459 | |
| 460 | lemma False_not_True: "False ~= True" | |
| 21504 | 461 | apply (rule notI) | 
| 462 | apply (erule False_neq_True) | |
| 463 | done | |
| 15411 | 464 | |
| 465 | lemma True_not_False: "True ~= False" | |
| 21504 | 466 | apply (rule notI) | 
| 467 | apply (drule sym) | |
| 468 | apply (erule False_neq_True) | |
| 469 | done | |
| 15411 | 470 | |
| 471 | lemma notE: "[| ~P; P |] ==> R" | |
| 21504 | 472 | apply (unfold not_def) | 
| 473 | apply (erule mp [THEN FalseE]) | |
| 474 | apply assumption | |
| 475 | done | |
| 15411 | 476 | |
| 21504 | 477 | lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P" | 
| 478 | by (erule notE [THEN notI]) (erule meta_mp) | |
| 15411 | 479 | |
| 480 | ||
| 20944 | 481 | subsubsection {*Implication*}
 | 
| 15411 | 482 | |
| 483 | lemma impE: | |
| 484 | assumes "P-->Q" "P" "Q ==> R" | |
| 485 | shows "R" | |
| 23553 | 486 | by (iprover intro: assms mp) | 
| 15411 | 487 | |
| 488 | (* Reduces Q to P-->Q, allowing substitution in P. *) | |
| 489 | lemma rev_mp: "[| P; P --> Q |] ==> Q" | |
| 17589 | 490 | by (iprover intro: mp) | 
| 15411 | 491 | |
| 492 | lemma contrapos_nn: | |
| 493 | assumes major: "~Q" | |
| 494 | and minor: "P==>Q" | |
| 495 | shows "~P" | |
| 17589 | 496 | by (iprover intro: notI minor major [THEN notE]) | 
| 15411 | 497 | |
| 498 | (*not used at all, but we already have the other 3 combinations *) | |
| 499 | lemma contrapos_pn: | |
| 500 | assumes major: "Q" | |
| 501 | and minor: "P ==> ~Q" | |
| 502 | shows "~P" | |
| 17589 | 503 | by (iprover intro: notI minor major notE) | 
| 15411 | 504 | |
| 505 | lemma not_sym: "t ~= s ==> s ~= t" | |
| 21250 | 506 | by (erule contrapos_nn) (erule sym) | 
| 507 | ||
| 508 | lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y" | |
| 509 | by (erule subst, erule ssubst, assumption) | |
| 15411 | 510 | |
| 511 | (*still used in HOLCF*) | |
| 512 | lemma rev_contrapos: | |
| 513 | assumes pq: "P ==> Q" | |
| 514 | and nq: "~Q" | |
| 515 | shows "~P" | |
| 516 | apply (rule nq [THEN contrapos_nn]) | |
| 517 | apply (erule pq) | |
| 518 | done | |
| 519 | ||
| 20944 | 520 | subsubsection {*Existential quantifier*}
 | 
| 15411 | 521 | |
| 522 | lemma exI: "P x ==> EX x::'a. P x" | |
| 523 | apply (unfold Ex_def) | |
| 17589 | 524 | apply (iprover intro: allI allE impI mp) | 
| 15411 | 525 | done | 
| 526 | ||
| 527 | lemma exE: | |
| 528 | assumes major: "EX x::'a. P(x)" | |
| 529 | and minor: "!!x. P(x) ==> Q" | |
| 530 | shows "Q" | |
| 531 | apply (rule major [unfolded Ex_def, THEN spec, THEN mp]) | |
| 17589 | 532 | apply (iprover intro: impI [THEN allI] minor) | 
| 15411 | 533 | done | 
| 534 | ||
| 535 | ||
| 20944 | 536 | subsubsection {*Conjunction*}
 | 
| 15411 | 537 | |
| 538 | lemma conjI: "[| P; Q |] ==> P&Q" | |
| 539 | apply (unfold and_def) | |
| 17589 | 540 | apply (iprover intro: impI [THEN allI] mp) | 
| 15411 | 541 | done | 
| 542 | ||
| 543 | lemma conjunct1: "[| P & Q |] ==> P" | |
| 544 | apply (unfold and_def) | |
| 17589 | 545 | apply (iprover intro: impI dest: spec mp) | 
| 15411 | 546 | done | 
| 547 | ||
| 548 | lemma conjunct2: "[| P & Q |] ==> Q" | |
| 549 | apply (unfold and_def) | |
| 17589 | 550 | apply (iprover intro: impI dest: spec mp) | 
| 15411 | 551 | done | 
| 552 | ||
| 553 | lemma conjE: | |
| 554 | assumes major: "P&Q" | |
| 555 | and minor: "[| P; Q |] ==> R" | |
| 556 | shows "R" | |
| 557 | apply (rule minor) | |
| 558 | apply (rule major [THEN conjunct1]) | |
| 559 | apply (rule major [THEN conjunct2]) | |
| 560 | done | |
| 561 | ||
| 562 | lemma context_conjI: | |
| 23553 | 563 | assumes "P" "P ==> Q" shows "P & Q" | 
| 564 | by (iprover intro: conjI assms) | |
| 15411 | 565 | |
| 566 | ||
| 20944 | 567 | subsubsection {*Disjunction*}
 | 
| 15411 | 568 | |
| 569 | lemma disjI1: "P ==> P|Q" | |
| 570 | apply (unfold or_def) | |
| 17589 | 571 | apply (iprover intro: allI impI mp) | 
| 15411 | 572 | done | 
| 573 | ||
| 574 | lemma disjI2: "Q ==> P|Q" | |
| 575 | apply (unfold or_def) | |
| 17589 | 576 | apply (iprover intro: allI impI mp) | 
| 15411 | 577 | done | 
| 578 | ||
| 579 | lemma disjE: | |
| 580 | assumes major: "P|Q" | |
| 581 | and minorP: "P ==> R" | |
| 582 | and minorQ: "Q ==> R" | |
| 583 | shows "R" | |
| 17589 | 584 | by (iprover intro: minorP minorQ impI | 
| 15411 | 585 | major [unfolded or_def, THEN spec, THEN mp, THEN mp]) | 
| 586 | ||
| 587 | ||
| 20944 | 588 | subsubsection {*Classical logic*}
 | 
| 15411 | 589 | |
| 590 | lemma classical: | |
| 591 | assumes prem: "~P ==> P" | |
| 592 | shows "P" | |
| 593 | apply (rule True_or_False [THEN disjE, THEN eqTrueE]) | |
| 594 | apply assumption | |
| 595 | apply (rule notI [THEN prem, THEN eqTrueI]) | |
| 596 | apply (erule subst) | |
| 597 | apply assumption | |
| 598 | done | |
| 599 | ||
| 600 | lemmas ccontr = FalseE [THEN classical, standard] | |
| 601 | ||
| 602 | (*notE with premises exchanged; it discharges ~R so that it can be used to | |
| 603 | make elimination rules*) | |
| 604 | lemma rev_notE: | |
| 605 | assumes premp: "P" | |
| 606 | and premnot: "~R ==> ~P" | |
| 607 | shows "R" | |
| 608 | apply (rule ccontr) | |
| 609 | apply (erule notE [OF premnot premp]) | |
| 610 | done | |
| 611 | ||
| 612 | (*Double negation law*) | |
| 613 | lemma notnotD: "~~P ==> P" | |
| 614 | apply (rule classical) | |
| 615 | apply (erule notE) | |
| 616 | apply assumption | |
| 617 | done | |
| 618 | ||
| 619 | lemma contrapos_pp: | |
| 620 | assumes p1: "Q" | |
| 621 | and p2: "~P ==> ~Q" | |
| 622 | shows "P" | |
| 17589 | 623 | by (iprover intro: classical p1 p2 notE) | 
| 15411 | 624 | |
| 625 | ||
| 20944 | 626 | subsubsection {*Unique existence*}
 | 
| 15411 | 627 | |
| 628 | lemma ex1I: | |
| 23553 | 629 | assumes "P a" "!!x. P(x) ==> x=a" | 
| 15411 | 630 | shows "EX! x. P(x)" | 
| 23553 | 631 | by (unfold Ex1_def, iprover intro: assms exI conjI allI impI) | 
| 15411 | 632 | |
| 633 | text{*Sometimes easier to use: the premises have no shared variables.  Safe!*}
 | |
| 634 | lemma ex_ex1I: | |
| 635 | assumes ex_prem: "EX x. P(x)" | |
| 636 | and eq: "!!x y. [| P(x); P(y) |] ==> x=y" | |
| 637 | shows "EX! x. P(x)" | |
| 17589 | 638 | by (iprover intro: ex_prem [THEN exE] ex1I eq) | 
| 15411 | 639 | |
| 640 | lemma ex1E: | |
| 641 | assumes major: "EX! x. P(x)" | |
| 642 | and minor: "!!x. [| P(x); ALL y. P(y) --> y=x |] ==> R" | |
| 643 | shows "R" | |
| 644 | apply (rule major [unfolded Ex1_def, THEN exE]) | |
| 645 | apply (erule conjE) | |
| 17589 | 646 | apply (iprover intro: minor) | 
| 15411 | 647 | done | 
| 648 | ||
| 649 | lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x" | |
| 650 | apply (erule ex1E) | |
| 651 | apply (rule exI) | |
| 652 | apply assumption | |
| 653 | done | |
| 654 | ||
| 655 | ||
| 20944 | 656 | subsubsection {*THE: definite description operator*}
 | 
| 15411 | 657 | |
| 658 | lemma the_equality: | |
| 659 | assumes prema: "P a" | |
| 660 | and premx: "!!x. P x ==> x=a" | |
| 661 | shows "(THE x. P x) = a" | |
| 662 | apply (rule trans [OF _ the_eq_trivial]) | |
| 663 | apply (rule_tac f = "The" in arg_cong) | |
| 664 | apply (rule ext) | |
| 665 | apply (rule iffI) | |
| 666 | apply (erule premx) | |
| 667 | apply (erule ssubst, rule prema) | |
| 668 | done | |
| 669 | ||
| 670 | lemma theI: | |
| 671 | assumes "P a" and "!!x. P x ==> x=a" | |
| 672 | shows "P (THE x. P x)" | |
| 23553 | 673 | by (iprover intro: assms the_equality [THEN ssubst]) | 
| 15411 | 674 | |
| 675 | lemma theI': "EX! x. P x ==> P (THE x. P x)" | |
| 676 | apply (erule ex1E) | |
| 677 | apply (erule theI) | |
| 678 | apply (erule allE) | |
| 679 | apply (erule mp) | |
| 680 | apply assumption | |
| 681 | done | |
| 682 | ||
| 683 | (*Easier to apply than theI: only one occurrence of P*) | |
| 684 | lemma theI2: | |
| 685 | assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x" | |
| 686 | shows "Q (THE x. P x)" | |
| 23553 | 687 | by (iprover intro: assms theI) | 
| 15411 | 688 | |
| 24553 | 689 | lemma the1I2: assumes "EX! x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)" | 
| 690 | by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] | |
| 691 | elim:allE impE) | |
| 692 | ||
| 18697 | 693 | lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a" | 
| 15411 | 694 | apply (rule the_equality) | 
| 695 | apply assumption | |
| 696 | apply (erule ex1E) | |
| 697 | apply (erule all_dupE) | |
| 698 | apply (drule mp) | |
| 699 | apply assumption | |
| 700 | apply (erule ssubst) | |
| 701 | apply (erule allE) | |
| 702 | apply (erule mp) | |
| 703 | apply assumption | |
| 704 | done | |
| 705 | ||
| 706 | lemma the_sym_eq_trivial: "(THE y. x=y) = x" | |
| 707 | apply (rule the_equality) | |
| 708 | apply (rule refl) | |
| 709 | apply (erule sym) | |
| 710 | done | |
| 711 | ||
| 712 | ||
| 20944 | 713 | subsubsection {*Classical intro rules for disjunction and existential quantifiers*}
 | 
| 15411 | 714 | |
| 715 | lemma disjCI: | |
| 716 | assumes "~Q ==> P" shows "P|Q" | |
| 717 | apply (rule classical) | |
| 23553 | 718 | apply (iprover intro: assms disjI1 disjI2 notI elim: notE) | 
| 15411 | 719 | done | 
| 720 | ||
| 721 | lemma excluded_middle: "~P | P" | |
| 17589 | 722 | by (iprover intro: disjCI) | 
| 15411 | 723 | |
| 20944 | 724 | text {*
 | 
| 725 | case distinction as a natural deduction rule. | |
| 726 |   Note that @{term "~P"} is the second case, not the first
 | |
| 727 | *} | |
| 15411 | 728 | lemma case_split_thm: | 
| 729 | assumes prem1: "P ==> Q" | |
| 730 | and prem2: "~P ==> Q" | |
| 731 | shows "Q" | |
| 732 | apply (rule excluded_middle [THEN disjE]) | |
| 733 | apply (erule prem2) | |
| 734 | apply (erule prem1) | |
| 735 | done | |
| 20944 | 736 | lemmas case_split = case_split_thm [case_names True False] | 
| 15411 | 737 | |
| 738 | (*Classical implies (-->) elimination. *) | |
| 739 | lemma impCE: | |
| 740 | assumes major: "P-->Q" | |
| 741 | and minor: "~P ==> R" "Q ==> R" | |
| 742 | shows "R" | |
| 743 | apply (rule excluded_middle [of P, THEN disjE]) | |
| 17589 | 744 | apply (iprover intro: minor major [THEN mp])+ | 
| 15411 | 745 | done | 
| 746 | ||
| 747 | (*This version of --> elimination works on Q before P. It works best for | |
| 748 | those cases in which P holds "almost everywhere". Can't install as | |
| 749 | default: would break old proofs.*) | |
| 750 | lemma impCE': | |
| 751 | assumes major: "P-->Q" | |
| 752 | and minor: "Q ==> R" "~P ==> R" | |
| 753 | shows "R" | |
| 754 | apply (rule excluded_middle [of P, THEN disjE]) | |
| 17589 | 755 | apply (iprover intro: minor major [THEN mp])+ | 
| 15411 | 756 | done | 
| 757 | ||
| 758 | (*Classical <-> elimination. *) | |
| 759 | lemma iffCE: | |
| 760 | assumes major: "P=Q" | |
| 761 | and minor: "[| P; Q |] ==> R" "[| ~P; ~Q |] ==> R" | |
| 762 | shows "R" | |
| 763 | apply (rule major [THEN iffE]) | |
| 17589 | 764 | apply (iprover intro: minor elim: impCE notE) | 
| 15411 | 765 | done | 
| 766 | ||
| 767 | lemma exCI: | |
| 768 | assumes "ALL x. ~P(x) ==> P(a)" | |
| 769 | shows "EX x. P(x)" | |
| 770 | apply (rule ccontr) | |
| 23553 | 771 | apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"]) | 
| 15411 | 772 | done | 
| 773 | ||
| 774 | ||
| 12386 | 775 | subsubsection {* Intuitionistic Reasoning *}
 | 
| 776 | ||
| 777 | lemma impE': | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 778 | assumes 1: "P --> Q" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 779 | and 2: "Q ==> R" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 780 | and 3: "P --> Q ==> P" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 781 | shows R | 
| 12386 | 782 | proof - | 
| 783 | from 3 and 1 have P . | |
| 784 | with 1 have Q by (rule impE) | |
| 785 | with 2 show R . | |
| 786 | qed | |
| 787 | ||
| 788 | lemma allE': | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 789 | assumes 1: "ALL x. P x" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 790 | and 2: "P x ==> ALL x. P x ==> Q" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 791 | shows Q | 
| 12386 | 792 | proof - | 
| 793 | from 1 have "P x" by (rule spec) | |
| 794 | from this and 1 show Q by (rule 2) | |
| 795 | qed | |
| 796 | ||
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 797 | lemma notE': | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 798 | assumes 1: "~ P" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 799 | and 2: "~ P ==> P" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 800 | shows R | 
| 12386 | 801 | proof - | 
| 802 | from 2 and 1 have P . | |
| 803 | with 1 show R by (rule notE) | |
| 804 | qed | |
| 805 | ||
| 22444 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 806 | lemma TrueE: "True ==> P ==> P" . | 
| 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 807 | lemma notFalseE: "~ False ==> P ==> P" . | 
| 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 808 | |
| 22467 
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
 dixon parents: 
22445diff
changeset | 809 | lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE | 
| 15801 | 810 | and [Pure.intro!] = iffI conjI impI TrueI notI allI refl | 
| 811 | and [Pure.elim 2] = allE notE' impE' | |
| 812 | and [Pure.intro] = exI disjI2 disjI1 | |
| 12386 | 813 | |
| 814 | lemmas [trans] = trans | |
| 815 | and [sym] = sym not_sym | |
| 15801 | 816 | and [Pure.elim?] = iffD1 iffD2 impE | 
| 11750 | 817 | |
| 23553 | 818 | use "hologic.ML" | 
| 819 | ||
| 11438 
3d9222b80989
declare trans [trans]  (*overridden in theory Calculation*);
 wenzelm parents: 
11432diff
changeset | 820 | |
| 11750 | 821 | subsubsection {* Atomizing meta-level connectives *}
 | 
| 822 | ||
| 823 | lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)" | |
| 12003 | 824 | proof | 
| 9488 | 825 | assume "!!x. P x" | 
| 23389 | 826 | then show "ALL x. P x" .. | 
| 9488 | 827 | next | 
| 828 | assume "ALL x. P x" | |
| 23553 | 829 | then show "!!x. P x" by (rule allE) | 
| 9488 | 830 | qed | 
| 831 | ||
| 11750 | 832 | lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)" | 
| 12003 | 833 | proof | 
| 9488 | 834 | assume r: "A ==> B" | 
| 10383 | 835 | show "A --> B" by (rule impI) (rule r) | 
| 9488 | 836 | next | 
| 837 | assume "A --> B" and A | |
| 23553 | 838 | then show B by (rule mp) | 
| 9488 | 839 | qed | 
| 840 | ||
| 14749 | 841 | lemma atomize_not: "(A ==> False) == Trueprop (~A)" | 
| 842 | proof | |
| 843 | assume r: "A ==> False" | |
| 844 | show "~A" by (rule notI) (rule r) | |
| 845 | next | |
| 846 | assume "~A" and A | |
| 23553 | 847 | then show False by (rule notE) | 
| 14749 | 848 | qed | 
| 849 | ||
| 11750 | 850 | lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)" | 
| 12003 | 851 | proof | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 852 | assume "x == y" | 
| 23553 | 853 | show "x = y" by (unfold `x == y`) (rule refl) | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 854 | next | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 855 | assume "x = y" | 
| 23553 | 856 | then show "x == y" by (rule eq_reflection) | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 857 | qed | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 858 | |
| 12023 | 859 | lemma atomize_conj [atomize]: | 
| 19121 | 860 | includes meta_conjunction_syntax | 
| 861 | shows "(A && B) == Trueprop (A & B)" | |
| 12003 | 862 | proof | 
| 19121 | 863 | assume conj: "A && B" | 
| 864 | show "A & B" | |
| 865 | proof (rule conjI) | |
| 866 | from conj show A by (rule conjunctionD1) | |
| 867 | from conj show B by (rule conjunctionD2) | |
| 868 | qed | |
| 11953 | 869 | next | 
| 19121 | 870 | assume conj: "A & B" | 
| 871 | show "A && B" | |
| 872 | proof - | |
| 873 | from conj show A .. | |
| 874 | from conj show B .. | |
| 11953 | 875 | qed | 
| 876 | qed | |
| 877 | ||
| 12386 | 878 | lemmas [symmetric, rulify] = atomize_all atomize_imp | 
| 18832 | 879 | and [symmetric, defn] = atomize_all atomize_imp atomize_eq | 
| 12386 | 880 | |
| 11750 | 881 | |
| 20944 | 882 | subsection {* Package setup *}
 | 
| 883 | ||
| 11750 | 884 | subsubsection {* Classical Reasoner setup *}
 | 
| 9529 | 885 | |
| 20944 | 886 | lemma thin_refl: | 
| 887 | "\<And>X. \<lbrakk> x=x; PROP W \<rbrakk> \<Longrightarrow> PROP W" . | |
| 888 | ||
| 21151 | 889 | ML {*
 | 
| 890 | structure Hypsubst = HypsubstFun( | |
| 891 | struct | |
| 892 | structure Simplifier = Simplifier | |
| 21218 | 893 | val dest_eq = HOLogic.dest_eq | 
| 21151 | 894 | val dest_Trueprop = HOLogic.dest_Trueprop | 
| 895 | val dest_imp = HOLogic.dest_imp | |
| 22129 | 896 |   val eq_reflection = @{thm HOL.eq_reflection}
 | 
| 22218 | 897 |   val rev_eq_reflection = @{thm HOL.meta_eq_to_obj_eq}
 | 
| 22129 | 898 |   val imp_intr = @{thm HOL.impI}
 | 
| 899 |   val rev_mp = @{thm HOL.rev_mp}
 | |
| 900 |   val subst = @{thm HOL.subst}
 | |
| 901 |   val sym = @{thm HOL.sym}
 | |
| 902 |   val thin_refl = @{thm thin_refl};
 | |
| 21151 | 903 | end); | 
| 21671 | 904 | open Hypsubst; | 
| 21151 | 905 | |
| 906 | structure Classical = ClassicalFun( | |
| 907 | struct | |
| 22129 | 908 |   val mp = @{thm HOL.mp}
 | 
| 909 |   val not_elim = @{thm HOL.notE}
 | |
| 910 |   val classical = @{thm HOL.classical}
 | |
| 21151 | 911 | val sizef = Drule.size_of_thm | 
| 912 | val hyp_subst_tacs = [Hypsubst.hyp_subst_tac] | |
| 913 | end); | |
| 914 | ||
| 915 | structure BasicClassical: BASIC_CLASSICAL = Classical; | |
| 21671 | 916 | open BasicClassical; | 
| 22129 | 917 | |
| 918 | ML_Context.value_antiq "claset" | |
| 919 |   (Scan.succeed ("claset", "Classical.local_claset_of (ML_Context.the_local_context ())"));
 | |
| 24035 | 920 | |
| 921 | structure ResAtpset = NamedThmsFun(val name = "atp" val description = "ATP rules"); | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 922 | |
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 923 | structure ResBlacklist = NamedThmsFun(val name = "noatp" val description = "Theorems blacklisted for ATP"); | 
| 21151 | 924 | *} | 
| 925 | ||
| 25388 | 926 | text {*ResBlacklist holds theorems blacklisted to sledgehammer. 
 | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 927 | These theorems typically produce clauses that are prolific (match too many equality or | 
| 25388 | 928 | membership literals) and relate to seldom-used facts. Some duplicate other rules.*} | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 929 | |
| 21009 | 930 | setup {*
 | 
| 931 | let | |
| 932 | (*prevent substitution on bool*) | |
| 933 | fun hyp_subst_tac' i thm = if i <= Thm.nprems_of thm andalso | |
| 934 |     Term.exists_Const (fn ("op =", Type (_, [T, _])) => T <> Type ("bool", []) | _ => false)
 | |
| 935 | (nth (Thm.prems_of thm) (i - 1)) then Hypsubst.hyp_subst_tac i thm else no_tac thm; | |
| 936 | in | |
| 21151 | 937 | Hypsubst.hypsubst_setup | 
| 938 | #> ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac) | |
| 939 | #> Classical.setup | |
| 940 | #> ResAtpset.setup | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 941 | #> ResBlacklist.setup | 
| 21009 | 942 | end | 
| 943 | *} | |
| 944 | ||
| 945 | declare iffI [intro!] | |
| 946 | and notI [intro!] | |
| 947 | and impI [intro!] | |
| 948 | and disjCI [intro!] | |
| 949 | and conjI [intro!] | |
| 950 | and TrueI [intro!] | |
| 951 | and refl [intro!] | |
| 952 | ||
| 953 | declare iffCE [elim!] | |
| 954 | and FalseE [elim!] | |
| 955 | and impCE [elim!] | |
| 956 | and disjE [elim!] | |
| 957 | and conjE [elim!] | |
| 958 | and conjE [elim!] | |
| 959 | ||
| 960 | declare ex_ex1I [intro!] | |
| 961 | and allI [intro!] | |
| 962 | and the_equality [intro] | |
| 963 | and exI [intro] | |
| 964 | ||
| 965 | declare exE [elim!] | |
| 966 | allE [elim] | |
| 967 | ||
| 22377 | 968 | ML {* val HOL_cs = @{claset} *}
 | 
| 19162 | 969 | |
| 20223 | 970 | lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P" | 
| 971 | apply (erule swap) | |
| 972 | apply (erule (1) meta_mp) | |
| 973 | done | |
| 10383 | 974 | |
| 18689 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 975 | declare ex_ex1I [rule del, intro! 2] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 976 | and ex1I [intro] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 977 | |
| 12386 | 978 | lemmas [intro?] = ext | 
| 979 | and [elim?] = ex1_implies_ex | |
| 11977 | 980 | |
| 20944 | 981 | (*Better then ex1E for classical reasoner: needs no quantifier duplication!*) | 
| 20973 | 982 | lemma alt_ex1E [elim!]: | 
| 20944 | 983 | assumes major: "\<exists>!x. P x" | 
| 984 | and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R" | |
| 985 | shows R | |
| 986 | apply (rule ex1E [OF major]) | |
| 987 | apply (rule prem) | |
| 22129 | 988 | apply (tactic {* ares_tac @{thms allI} 1 *})+
 | 
| 989 | apply (tactic {* etac (Classical.dup_elim @{thm allE}) 1 *})
 | |
| 990 | apply iprover | |
| 991 | done | |
| 20944 | 992 | |
| 21151 | 993 | ML {*
 | 
| 25388 | 994 | structure Blast = BlastFun | 
| 995 | ( | |
| 21151 | 996 | type claset = Classical.claset | 
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22481diff
changeset | 997 |   val equality_name = @{const_name "op ="}
 | 
| 22993 | 998 |   val not_name = @{const_name Not}
 | 
| 22129 | 999 |   val notE = @{thm HOL.notE}
 | 
| 1000 |   val ccontr = @{thm HOL.ccontr}
 | |
| 21151 | 1001 | val contr_tac = Classical.contr_tac | 
| 1002 | val dup_intr = Classical.dup_intr | |
| 1003 | val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac | |
| 21671 | 1004 | val claset = Classical.claset | 
| 21151 | 1005 | val rep_cs = Classical.rep_cs | 
| 1006 | val cla_modifiers = Classical.cla_modifiers | |
| 1007 | val cla_meth' = Classical.cla_meth' | |
| 25388 | 1008 | ); | 
| 21671 | 1009 | val Blast_tac = Blast.Blast_tac; | 
| 1010 | val blast_tac = Blast.blast_tac; | |
| 20944 | 1011 | *} | 
| 1012 | ||
| 21151 | 1013 | setup Blast.setup | 
| 1014 | ||
| 20944 | 1015 | |
| 1016 | subsubsection {* Simplifier *}
 | |
| 12281 | 1017 | |
| 1018 | lemma eta_contract_eq: "(%s. f s) = f" .. | |
| 1019 | ||
| 1020 | lemma simp_thms: | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1021 | shows not_not: "(~ ~ P) = P" | 
| 15354 | 1022 | and Not_eq_iff: "((~P) = (~Q)) = (P = Q)" | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1023 | and | 
| 12436 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1024 | "(P ~= Q) = (P = (~Q))" | 
| 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1025 | "(P | ~P) = True" "(~P | P) = True" | 
| 12281 | 1026 | "(x = x) = True" | 
| 20944 | 1027 | and not_True_eq_False: "(\<not> True) = False" | 
| 1028 | and not_False_eq_True: "(\<not> False) = True" | |
| 1029 | and | |
| 12436 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1030 | "(~P) ~= P" "P ~= (~P)" | 
| 20944 | 1031 | "(True=P) = P" | 
| 1032 | and eq_True: "(P = True) = P" | |
| 1033 | and "(False=P) = (~P)" | |
| 1034 | and eq_False: "(P = False) = (\<not> P)" | |
| 1035 | and | |
| 12281 | 1036 | "(True --> P) = P" "(False --> P) = True" | 
| 1037 | "(P --> True) = True" "(P --> P) = True" | |
| 1038 | "(P --> False) = (~P)" "(P --> ~P) = (~P)" | |
| 1039 | "(P & True) = P" "(True & P) = P" | |
| 1040 | "(P & False) = False" "(False & P) = False" | |
| 1041 | "(P & P) = P" "(P & (P & Q)) = (P & Q)" | |
| 1042 | "(P & ~P) = False" "(~P & P) = False" | |
| 1043 | "(P | True) = True" "(True | P) = True" | |
| 1044 | "(P | False) = P" "(False | P) = P" | |
| 12436 
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
 berghofe parents: 
12386diff
changeset | 1045 | "(P | P) = P" "(P | (P | Q)) = (P | Q)" and | 
| 12281 | 1046 | "(ALL x. P) = P" "(EX x. P) = P" "EX x. x=t" "EX x. t=x" | 
| 1047 |     -- {* needed for the one-point-rule quantifier simplification procs *}
 | |
| 1048 |     -- {* essential for termination!! *} and
 | |
| 1049 | "!!P. (EX x. x=t & P(x)) = P(t)" | |
| 1050 | "!!P. (EX x. t=x & P(x)) = P(t)" | |
| 1051 | "!!P. (ALL x. x=t --> P(x)) = P(t)" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1052 | "!!P. (ALL x. t=x --> P(x)) = P(t)" | 
| 17589 | 1053 | by (blast, blast, blast, blast, blast, iprover+) | 
| 13421 | 1054 | |
| 14201 | 1055 | lemma disj_absorb: "(A | A) = A" | 
| 1056 | by blast | |
| 1057 | ||
| 1058 | lemma disj_left_absorb: "(A | (A | B)) = (A | B)" | |
| 1059 | by blast | |
| 1060 | ||
| 1061 | lemma conj_absorb: "(A & A) = A" | |
| 1062 | by blast | |
| 1063 | ||
| 1064 | lemma conj_left_absorb: "(A & (A & B)) = (A & B)" | |
| 1065 | by blast | |
| 1066 | ||
| 12281 | 1067 | lemma eq_ac: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1068 | shows eq_commute: "(a=b) = (b=a)" | 
| 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1069 | and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))" | 
| 17589 | 1070 | and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (iprover, blast+) | 
| 1071 | lemma neq_commute: "(a~=b) = (b~=a)" by iprover | |
| 12281 | 1072 | |
| 1073 | lemma conj_comms: | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1074 | shows conj_commute: "(P&Q) = (Q&P)" | 
| 17589 | 1075 | and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+ | 
| 1076 | lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover | |
| 12281 | 1077 | |
| 19174 | 1078 | lemmas conj_ac = conj_commute conj_left_commute conj_assoc | 
| 1079 | ||
| 12281 | 1080 | lemma disj_comms: | 
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 1081 | shows disj_commute: "(P|Q) = (Q|P)" | 
| 17589 | 1082 | and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+ | 
| 1083 | lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover | |
| 12281 | 1084 | |
| 19174 | 1085 | lemmas disj_ac = disj_commute disj_left_commute disj_assoc | 
| 1086 | ||
| 17589 | 1087 | lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover | 
| 1088 | lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover | |
| 12281 | 1089 | |
| 17589 | 1090 | lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover | 
| 1091 | lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover | |
| 12281 | 1092 | |
| 17589 | 1093 | lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover | 
| 1094 | lemma imp_conjL: "((P&Q) -->R) = (P --> (Q --> R))" by iprover | |
| 1095 | lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover | |
| 12281 | 1096 | |
| 1097 | text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
 | |
| 1098 | lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast | |
| 1099 | lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast | |
| 1100 | ||
| 1101 | lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast | |
| 1102 | lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast | |
| 1103 | ||
| 21151 | 1104 | lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))" | 
| 1105 | by iprover | |
| 1106 | ||
| 17589 | 1107 | lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover | 
| 12281 | 1108 | lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast | 
| 1109 | lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast | |
| 1110 | lemma not_iff: "(P~=Q) = (P = (~Q))" by blast | |
| 1111 | lemma disj_not1: "(~P | Q) = (P --> Q)" by blast | |
| 1112 | lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
 | |
| 1113 | by blast | |
| 1114 | lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast | |
| 1115 | ||
| 17589 | 1116 | lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover | 
| 12281 | 1117 | |
| 1118 | ||
| 1119 | lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q" | |
| 1120 |   -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
 | |
| 1121 |   -- {* cases boil down to the same thing. *}
 | |
| 1122 | by blast | |
| 1123 | ||
| 1124 | lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast | |
| 1125 | lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast | |
| 17589 | 1126 | lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover | 
| 1127 | lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover | |
| 23403 | 1128 | lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast | 
| 12281 | 1129 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1130 | declare All_def [noatp] | 
| 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1131 | |
| 17589 | 1132 | lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover | 
| 1133 | lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover | |
| 12281 | 1134 | |
| 1135 | text {*
 | |
| 1136 |   \medskip The @{text "&"} congruence rule: not included by default!
 | |
| 1137 | May slow rewrite proofs down by as much as 50\% *} | |
| 1138 | ||
| 1139 | lemma conj_cong: | |
| 1140 | "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))" | |
| 17589 | 1141 | by iprover | 
| 12281 | 1142 | |
| 1143 | lemma rev_conj_cong: | |
| 1144 | "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))" | |
| 17589 | 1145 | by iprover | 
| 12281 | 1146 | |
| 1147 | text {* The @{text "|"} congruence rule: not included by default! *}
 | |
| 1148 | ||
| 1149 | lemma disj_cong: | |
| 1150 | "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))" | |
| 1151 | by blast | |
| 1152 | ||
| 1153 | ||
| 1154 | text {* \medskip if-then-else rules *}
 | |
| 1155 | ||
| 1156 | lemma if_True: "(if True then x else y) = x" | |
| 1157 | by (unfold if_def) blast | |
| 1158 | ||
| 1159 | lemma if_False: "(if False then x else y) = y" | |
| 1160 | by (unfold if_def) blast | |
| 1161 | ||
| 1162 | lemma if_P: "P ==> (if P then x else y) = x" | |
| 1163 | by (unfold if_def) blast | |
| 1164 | ||
| 1165 | lemma if_not_P: "~P ==> (if P then x else y) = y" | |
| 1166 | by (unfold if_def) blast | |
| 1167 | ||
| 1168 | lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))" | |
| 1169 | apply (rule case_split [of Q]) | |
| 15481 | 1170 | apply (simplesubst if_P) | 
| 1171 | prefer 3 apply (simplesubst if_not_P, blast+) | |
| 12281 | 1172 | done | 
| 1173 | ||
| 1174 | lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))" | |
| 15481 | 1175 | by (simplesubst split_if, blast) | 
| 12281 | 1176 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1177 | lemmas if_splits [noatp] = split_if split_if_asm | 
| 12281 | 1178 | |
| 1179 | lemma if_cancel: "(if c then x else x) = x" | |
| 15481 | 1180 | by (simplesubst split_if, blast) | 
| 12281 | 1181 | |
| 1182 | lemma if_eq_cancel: "(if x = y then y else x) = x" | |
| 15481 | 1183 | by (simplesubst split_if, blast) | 
| 12281 | 1184 | |
| 1185 | lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))" | |
| 19796 | 1186 |   -- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *}
 | 
| 12281 | 1187 | by (rule split_if) | 
| 1188 | ||
| 1189 | lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))" | |
| 19796 | 1190 |   -- {* And this form is useful for expanding @{text "if"}s on the LEFT. *}
 | 
| 15481 | 1191 | apply (simplesubst split_if, blast) | 
| 12281 | 1192 | done | 
| 1193 | ||
| 17589 | 1194 | lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover | 
| 1195 | lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover | |
| 12281 | 1196 | |
| 15423 | 1197 | text {* \medskip let rules for simproc *}
 | 
| 1198 | ||
| 1199 | lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g" | |
| 1200 | by (unfold Let_def) | |
| 1201 | ||
| 1202 | lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g" | |
| 1203 | by (unfold Let_def) | |
| 1204 | ||
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1205 | text {*
 | 
| 16999 | 1206 | The following copy of the implication operator is useful for | 
| 1207 | fine-tuning congruence rules. It instructs the simplifier to simplify | |
| 1208 | its premise. | |
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1209 | *} | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1210 | |
| 17197 | 1211 | constdefs | 
| 1212 | simp_implies :: "[prop, prop] => prop" (infixr "=simp=>" 1) | |
| 25966 | 1213 | [code func del]: "simp_implies \<equiv> op ==>" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1214 | |
| 18457 | 1215 | lemma simp_impliesI: | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1216 | assumes PQ: "(PROP P \<Longrightarrow> PROP Q)" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1217 | shows "PROP P =simp=> PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1218 | apply (unfold simp_implies_def) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1219 | apply (rule PQ) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1220 | apply assumption | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1221 | done | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1222 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1223 | lemma simp_impliesE: | 
| 25388 | 1224 | assumes PQ: "PROP P =simp=> PROP Q" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1225 | and P: "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1226 | and QR: "PROP Q \<Longrightarrow> PROP R" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1227 | shows "PROP R" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1228 | apply (rule QR) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1229 | apply (rule PQ [unfolded simp_implies_def]) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1230 | apply (rule P) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1231 | done | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1232 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1233 | lemma simp_implies_cong: | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1234 | assumes PP' :"PROP P == PROP P'" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1235 | and P'QQ': "PROP P' ==> (PROP Q == PROP Q')" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1236 | shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1237 | proof (unfold simp_implies_def, rule equal_intr_rule) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1238 | assume PQ: "PROP P \<Longrightarrow> PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1239 | and P': "PROP P'" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1240 | from PP' [symmetric] and P' have "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1241 | by (rule equal_elim_rule1) | 
| 23553 | 1242 | then have "PROP Q" by (rule PQ) | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1243 | with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1244 | next | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1245 | assume P'Q': "PROP P' \<Longrightarrow> PROP Q'" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1246 | and P: "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1247 | from PP' and P have P': "PROP P'" by (rule equal_elim_rule1) | 
| 23553 | 1248 | then have "PROP Q'" by (rule P'Q') | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1249 | with P'QQ' [OF P', symmetric] show "PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1250 | by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1251 | qed | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1252 | |
| 20944 | 1253 | lemma uncurry: | 
| 1254 | assumes "P \<longrightarrow> Q \<longrightarrow> R" | |
| 1255 | shows "P \<and> Q \<longrightarrow> R" | |
| 23553 | 1256 | using assms by blast | 
| 20944 | 1257 | |
| 1258 | lemma iff_allI: | |
| 1259 | assumes "\<And>x. P x = Q x" | |
| 1260 | shows "(\<forall>x. P x) = (\<forall>x. Q x)" | |
| 23553 | 1261 | using assms by blast | 
| 20944 | 1262 | |
| 1263 | lemma iff_exI: | |
| 1264 | assumes "\<And>x. P x = Q x" | |
| 1265 | shows "(\<exists>x. P x) = (\<exists>x. Q x)" | |
| 23553 | 1266 | using assms by blast | 
| 20944 | 1267 | |
| 1268 | lemma all_comm: | |
| 1269 | "(\<forall>x y. P x y) = (\<forall>y x. P x y)" | |
| 1270 | by blast | |
| 1271 | ||
| 1272 | lemma ex_comm: | |
| 1273 | "(\<exists>x y. P x y) = (\<exists>y x. P x y)" | |
| 1274 | by blast | |
| 1275 | ||
| 9869 | 1276 | use "simpdata.ML" | 
| 21671 | 1277 | ML {* open Simpdata *}
 | 
| 1278 | ||
| 21151 | 1279 | setup {*
 | 
| 1280 | Simplifier.method_setup Splitter.split_modifiers | |
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1281 | #> (fn thy => (change_simpset_of thy (fn _ => Simpdata.simpset_simprocs); thy)) | 
| 21151 | 1282 | #> Splitter.setup | 
| 1283 | #> Clasimp.setup | |
| 1284 | #> EqSubst.setup | |
| 1285 | *} | |
| 1286 | ||
| 24035 | 1287 | text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *}
 | 
| 1288 | ||
| 1289 | simproc_setup neq ("x = y") = {* fn _ =>
 | |
| 1290 | let | |
| 1291 |   val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
 | |
| 1292 | fun is_neq eq lhs rhs thm = | |
| 1293 | (case Thm.prop_of thm of | |
| 1294 | _ $ (Not $ (eq' $ l' $ r')) => | |
| 1295 | Not = HOLogic.Not andalso eq' = eq andalso | |
| 1296 | r' aconv lhs andalso l' aconv rhs | |
| 1297 | | _ => false); | |
| 1298 | fun proc ss ct = | |
| 1299 | (case Thm.term_of ct of | |
| 1300 | eq $ lhs $ rhs => | |
| 1301 | (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of_ss ss) of | |
| 1302 | SOME thm => SOME (thm RS neq_to_EQ_False) | |
| 1303 | | NONE => NONE) | |
| 1304 | | _ => NONE); | |
| 1305 | in proc end; | |
| 1306 | *} | |
| 1307 | ||
| 1308 | simproc_setup let_simp ("Let x f") = {*
 | |
| 1309 | let | |
| 1310 | val (f_Let_unfold, x_Let_unfold) = | |
| 1311 |     let val [(_$(f$x)$_)] = prems_of @{thm Let_unfold}
 | |
| 1312 |     in (cterm_of @{theory} f, cterm_of @{theory} x) end
 | |
| 1313 | val (f_Let_folded, x_Let_folded) = | |
| 1314 |     let val [(_$(f$x)$_)] = prems_of @{thm Let_folded}
 | |
| 1315 |     in (cterm_of @{theory} f, cterm_of @{theory} x) end;
 | |
| 1316 | val g_Let_folded = | |
| 1317 |     let val [(_$_$(g$_))] = prems_of @{thm Let_folded} in cterm_of @{theory} g end;
 | |
| 1318 | ||
| 1319 | fun proc _ ss ct = | |
| 1320 | let | |
| 1321 | val ctxt = Simplifier.the_context ss; | |
| 1322 | val thy = ProofContext.theory_of ctxt; | |
| 1323 | val t = Thm.term_of ct; | |
| 1324 | val ([t'], ctxt') = Variable.import_terms false [t] ctxt; | |
| 1325 | in Option.map (hd o Variable.export ctxt' ctxt o single) | |
| 1326 |       (case t' of Const ("Let",_) $ x $ f => (* x and f are already in normal form *)
 | |
| 1327 | if is_Free x orelse is_Bound x orelse is_Const x | |
| 1328 |         then SOME @{thm Let_def}
 | |
| 1329 | else | |
| 1330 | let | |
| 1331 | val n = case f of (Abs (x,_,_)) => x | _ => "x"; | |
| 1332 | val cx = cterm_of thy x; | |
| 1333 |             val {T=xT,...} = rep_cterm cx;
 | |
| 1334 | val cf = cterm_of thy f; | |
| 1335 | val fx_g = Simplifier.rewrite ss (Thm.capply cf cx); | |
| 1336 | val (_$_$g) = prop_of fx_g; | |
| 1337 | val g' = abstract_over (x,g); | |
| 1338 | in (if (g aconv g') | |
| 1339 | then | |
| 1340 | let | |
| 1341 | val rl = | |
| 1342 |                       cterm_instantiate [(f_Let_unfold,cf),(x_Let_unfold,cx)] @{thm Let_unfold};
 | |
| 1343 | in SOME (rl OF [fx_g]) end | |
| 1344 | else if Term.betapply (f,x) aconv g then NONE (*avoid identity conversion*) | |
| 1345 | else let | |
| 1346 | val abs_g'= Abs (n,xT,g'); | |
| 1347 | val g'x = abs_g'$x; | |
| 1348 | val g_g'x = symmetric (beta_conversion false (cterm_of thy g'x)); | |
| 1349 | val rl = cterm_instantiate | |
| 1350 | [(f_Let_folded,cterm_of thy f),(x_Let_folded,cx), | |
| 1351 | (g_Let_folded,cterm_of thy abs_g')] | |
| 1352 |                                @{thm Let_folded};
 | |
| 1353 | in SOME (rl OF [transitive fx_g g_g'x]) | |
| 1354 | end) | |
| 1355 | end | |
| 1356 | | _ => NONE) | |
| 1357 | end | |
| 1358 | in proc end *} | |
| 1359 | ||
| 1360 | ||
| 21151 | 1361 | lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P" | 
| 1362 | proof | |
| 23389 | 1363 | assume "True \<Longrightarrow> PROP P" | 
| 1364 | from this [OF TrueI] show "PROP P" . | |
| 21151 | 1365 | next | 
| 1366 | assume "PROP P" | |
| 23389 | 1367 | then show "PROP P" . | 
| 21151 | 1368 | qed | 
| 1369 | ||
| 1370 | lemma ex_simps: | |
| 1371 | "!!P Q. (EX x. P x & Q) = ((EX x. P x) & Q)" | |
| 1372 | "!!P Q. (EX x. P & Q x) = (P & (EX x. Q x))" | |
| 1373 | "!!P Q. (EX x. P x | Q) = ((EX x. P x) | Q)" | |
| 1374 | "!!P Q. (EX x. P | Q x) = (P | (EX x. Q x))" | |
| 1375 | "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)" | |
| 1376 | "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))" | |
| 1377 |   -- {* Miniscoping: pushing in existential quantifiers. *}
 | |
| 1378 | by (iprover | blast)+ | |
| 1379 | ||
| 1380 | lemma all_simps: | |
| 1381 | "!!P Q. (ALL x. P x & Q) = ((ALL x. P x) & Q)" | |
| 1382 | "!!P Q. (ALL x. P & Q x) = (P & (ALL x. Q x))" | |
| 1383 | "!!P Q. (ALL x. P x | Q) = ((ALL x. P x) | Q)" | |
| 1384 | "!!P Q. (ALL x. P | Q x) = (P | (ALL x. Q x))" | |
| 1385 | "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)" | |
| 1386 | "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))" | |
| 1387 |   -- {* Miniscoping: pushing in universal quantifiers. *}
 | |
| 1388 | by (iprover | blast)+ | |
| 15481 | 1389 | |
| 21671 | 1390 | lemmas [simp] = | 
| 1391 | triv_forall_equality (*prunes params*) | |
| 1392 | True_implies_equals (*prune asms `True'*) | |
| 1393 | if_True | |
| 1394 | if_False | |
| 1395 | if_cancel | |
| 1396 | if_eq_cancel | |
| 1397 | imp_disjL | |
| 20973 | 1398 | (*In general it seems wrong to add distributive laws by default: they | 
| 1399 | might cause exponential blow-up. But imp_disjL has been in for a while | |
| 1400 | and cannot be removed without affecting existing proofs. Moreover, | |
| 1401 | rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the | |
| 1402 | grounds that it allows simplification of R in the two cases.*) | |
| 21671 | 1403 | conj_assoc | 
| 1404 | disj_assoc | |
| 1405 | de_Morgan_conj | |
| 1406 | de_Morgan_disj | |
| 1407 | imp_disj1 | |
| 1408 | imp_disj2 | |
| 1409 | not_imp | |
| 1410 | disj_not1 | |
| 1411 | not_all | |
| 1412 | not_ex | |
| 1413 | cases_simp | |
| 1414 | the_eq_trivial | |
| 1415 | the_sym_eq_trivial | |
| 1416 | ex_simps | |
| 1417 | all_simps | |
| 1418 | simp_thms | |
| 1419 | ||
| 1420 | lemmas [cong] = imp_cong simp_implies_cong | |
| 1421 | lemmas [split] = split_if | |
| 20973 | 1422 | |
| 22377 | 1423 | ML {* val HOL_ss = @{simpset} *}
 | 
| 20973 | 1424 | |
| 20944 | 1425 | text {* Simplifies x assuming c and y assuming ~c *}
 | 
| 1426 | lemma if_cong: | |
| 1427 | assumes "b = c" | |
| 1428 | and "c \<Longrightarrow> x = u" | |
| 1429 | and "\<not> c \<Longrightarrow> y = v" | |
| 1430 | shows "(if b then x else y) = (if c then u else v)" | |
| 23553 | 1431 | unfolding if_def using assms by simp | 
| 20944 | 1432 | |
| 1433 | text {* Prevents simplification of x and y:
 | |
| 1434 | faster and allows the execution of functional programs. *} | |
| 1435 | lemma if_weak_cong [cong]: | |
| 1436 | assumes "b = c" | |
| 1437 | shows "(if b then x else y) = (if c then x else y)" | |
| 23553 | 1438 | using assms by (rule arg_cong) | 
| 20944 | 1439 | |
| 1440 | text {* Prevents simplification of t: much faster *}
 | |
| 1441 | lemma let_weak_cong: | |
| 1442 | assumes "a = b" | |
| 1443 | shows "(let x = a in t x) = (let x = b in t x)" | |
| 23553 | 1444 | using assms by (rule arg_cong) | 
| 20944 | 1445 | |
| 1446 | text {* To tidy up the result of a simproc.  Only the RHS will be simplified. *}
 | |
| 1447 | lemma eq_cong2: | |
| 1448 | assumes "u = u'" | |
| 1449 | shows "(t \<equiv> u) \<equiv> (t \<equiv> u')" | |
| 23553 | 1450 | using assms by simp | 
| 20944 | 1451 | |
| 1452 | lemma if_distrib: | |
| 1453 | "f (if c then x else y) = (if c then f x else f y)" | |
| 1454 | by simp | |
| 1455 | ||
| 1456 | text {* This lemma restricts the effect of the rewrite rule u=v to the left-hand
 | |
| 21502 | 1457 |   side of an equality.  Used in @{text "{Integ,Real}/simproc.ML"} *}
 | 
| 20944 | 1458 | lemma restrict_to_left: | 
| 1459 | assumes "x = y" | |
| 1460 | shows "(x = z) = (y = z)" | |
| 23553 | 1461 | using assms by simp | 
| 20944 | 1462 | |
| 17459 | 1463 | |
| 20944 | 1464 | subsubsection {* Generic cases and induction *}
 | 
| 17459 | 1465 | |
| 20944 | 1466 | text {* Rule projections: *}
 | 
| 18887 | 1467 | |
| 20944 | 1468 | ML {*
 | 
| 1469 | structure ProjectRule = ProjectRuleFun | |
| 25388 | 1470 | ( | 
| 22129 | 1471 |   val conjunct1 = @{thm conjunct1};
 | 
| 1472 |   val conjunct2 = @{thm conjunct2};
 | |
| 1473 |   val mp = @{thm mp};
 | |
| 25388 | 1474 | ) | 
| 17459 | 1475 | *} | 
| 1476 | ||
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1477 | constdefs | 
| 18457 | 1478 | induct_forall where "induct_forall P == \<forall>x. P x" | 
| 1479 | induct_implies where "induct_implies A B == A \<longrightarrow> B" | |
| 1480 | induct_equal where "induct_equal x y == x = y" | |
| 1481 | induct_conj where "induct_conj A B == A \<and> B" | |
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1482 | |
| 11989 | 1483 | lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))" | 
| 18457 | 1484 | by (unfold atomize_all induct_forall_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1485 | |
| 11989 | 1486 | lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)" | 
| 18457 | 1487 | by (unfold atomize_imp induct_implies_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1488 | |
| 11989 | 1489 | lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)" | 
| 18457 | 1490 | by (unfold atomize_eq induct_equal_def) | 
| 1491 | ||
| 1492 | lemma induct_conj_eq: | |
| 1493 | includes meta_conjunction_syntax | |
| 1494 | shows "(A && B) == Trueprop (induct_conj A B)" | |
| 1495 | by (unfold atomize_conj induct_conj_def) | |
| 1496 | ||
| 1497 | lemmas induct_atomize = induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq | |
| 1498 | lemmas induct_rulify [symmetric, standard] = induct_atomize | |
| 1499 | lemmas induct_rulify_fallback = | |
| 1500 | induct_forall_def induct_implies_def induct_equal_def induct_conj_def | |
| 1501 | ||
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1502 | |
| 11989 | 1503 | lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) = | 
| 1504 | induct_conj (induct_forall A) (induct_forall B)" | |
| 17589 | 1505 | by (unfold induct_forall_def induct_conj_def) iprover | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1506 | |
| 11989 | 1507 | lemma induct_implies_conj: "induct_implies C (induct_conj A B) = | 
| 1508 | induct_conj (induct_implies C A) (induct_implies C B)" | |
| 17589 | 1509 | by (unfold induct_implies_def induct_conj_def) iprover | 
| 11989 | 1510 | |
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1511 | lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)" | 
| 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1512 | proof | 
| 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1513 | assume r: "induct_conj A B ==> PROP C" and A B | 
| 18457 | 1514 | show "PROP C" by (rule r) (simp add: induct_conj_def `A` `B`) | 
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1515 | next | 
| 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1516 | assume r: "A ==> B ==> PROP C" and "induct_conj A B" | 
| 18457 | 1517 | show "PROP C" by (rule r) (simp_all add: `induct_conj A B` [unfolded induct_conj_def]) | 
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1518 | qed | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1519 | |
| 11989 | 1520 | lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1521 | |
| 11989 | 1522 | hide const induct_forall induct_implies induct_equal induct_conj | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1523 | |
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1524 | text {* Method setup. *}
 | 
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1525 | |
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1526 | ML {*
 | 
| 24830 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
 wenzelm parents: 
24748diff
changeset | 1527 | structure Induct = InductFun | 
| 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
 wenzelm parents: 
24748diff
changeset | 1528 | ( | 
| 22129 | 1529 |     val cases_default = @{thm case_split}
 | 
| 1530 |     val atomize = @{thms induct_atomize}
 | |
| 1531 |     val rulify = @{thms induct_rulify}
 | |
| 1532 |     val rulify_fallback = @{thms induct_rulify_fallback}
 | |
| 24830 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
 wenzelm parents: 
24748diff
changeset | 1533 | ); | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1534 | *} | 
| 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1535 | |
| 24830 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
 wenzelm parents: 
24748diff
changeset | 1536 | setup Induct.setup | 
| 18457 | 1537 | |
| 20944 | 1538 | |
| 1539 | subsection {* Other simple lemmas and lemma duplicates *}
 | |
| 1540 | ||
| 24166 | 1541 | lemma Let_0 [simp]: "Let 0 f = f 0" | 
| 1542 | unfolding Let_def .. | |
| 1543 | ||
| 1544 | lemma Let_1 [simp]: "Let 1 f = f 1" | |
| 1545 | unfolding Let_def .. | |
| 1546 | ||
| 20944 | 1547 | lemma ex1_eq [iff]: "EX! x. x = t" "EX! x. t = x" | 
| 1548 | by blast+ | |
| 1549 | ||
| 1550 | lemma choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))" | |
| 1551 | apply (rule iffI) | |
| 1552 | apply (rule_tac a = "%x. THE y. P x y" in ex1I) | |
| 1553 | apply (fast dest!: theI') | |
| 1554 | apply (fast intro: ext the1_equality [symmetric]) | |
| 1555 | apply (erule ex1E) | |
| 1556 | apply (rule allI) | |
| 1557 | apply (rule ex1I) | |
| 1558 | apply (erule spec) | |
| 1559 | apply (erule_tac x = "%z. if z = x then y else f z" in allE) | |
| 1560 | apply (erule impE) | |
| 1561 | apply (rule allI) | |
| 1562 | apply (rule_tac P = "xa = x" in case_split_thm) | |
| 1563 | apply (drule_tac [3] x = x in fun_cong, simp_all) | |
| 1564 | done | |
| 1565 | ||
| 1566 | lemma mk_left_commute: | |
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1567 | fixes f (infix "\<otimes>" 60) | 
| 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1568 | assumes a: "\<And>x y z. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" and | 
| 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1569 | c: "\<And>x y. x \<otimes> y = y \<otimes> x" | 
| 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21524diff
changeset | 1570 | shows "x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)" | 
| 20944 | 1571 | by (rule trans [OF trans [OF c a] arg_cong [OF c, of "f y"]]) | 
| 1572 | ||
| 22218 | 1573 | lemmas eq_sym_conv = eq_commute | 
| 1574 | ||
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1575 | lemma nnf_simps: | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1576 | "(\<not>(P \<and> Q)) = (\<not> P \<or> \<not> Q)" "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not>Q)" "(P \<longrightarrow> Q) = (\<not>P \<or> Q)" | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1577 | "(P = Q) = ((P \<and> Q) \<or> (\<not>P \<and> \<not> Q))" "(\<not>(P = Q)) = ((P \<and> \<not> Q) \<or> (\<not>P \<and> Q))" | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1578 | "(\<not> \<not>(P)) = P" | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1579 | by blast+ | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1580 | |
| 21671 | 1581 | |
| 1582 | subsection {* Basic ML bindings *}
 | |
| 1583 | ||
| 1584 | ML {*
 | |
| 22129 | 1585 | val FalseE = @{thm FalseE}
 | 
| 1586 | val Let_def = @{thm Let_def}
 | |
| 1587 | val TrueI = @{thm TrueI}
 | |
| 1588 | val allE = @{thm allE}
 | |
| 1589 | val allI = @{thm allI}
 | |
| 1590 | val all_dupE = @{thm all_dupE}
 | |
| 1591 | val arg_cong = @{thm arg_cong}
 | |
| 1592 | val box_equals = @{thm box_equals}
 | |
| 1593 | val ccontr = @{thm ccontr}
 | |
| 1594 | val classical = @{thm classical}
 | |
| 1595 | val conjE = @{thm conjE}
 | |
| 1596 | val conjI = @{thm conjI}
 | |
| 1597 | val conjunct1 = @{thm conjunct1}
 | |
| 1598 | val conjunct2 = @{thm conjunct2}
 | |
| 1599 | val disjCI = @{thm disjCI}
 | |
| 1600 | val disjE = @{thm disjE}
 | |
| 1601 | val disjI1 = @{thm disjI1}
 | |
| 1602 | val disjI2 = @{thm disjI2}
 | |
| 1603 | val eq_reflection = @{thm eq_reflection}
 | |
| 1604 | val ex1E = @{thm ex1E}
 | |
| 1605 | val ex1I = @{thm ex1I}
 | |
| 1606 | val ex1_implies_ex = @{thm ex1_implies_ex}
 | |
| 1607 | val exE = @{thm exE}
 | |
| 1608 | val exI = @{thm exI}
 | |
| 1609 | val excluded_middle = @{thm excluded_middle}
 | |
| 1610 | val ext = @{thm ext}
 | |
| 1611 | val fun_cong = @{thm fun_cong}
 | |
| 1612 | val iffD1 = @{thm iffD1}
 | |
| 1613 | val iffD2 = @{thm iffD2}
 | |
| 1614 | val iffI = @{thm iffI}
 | |
| 1615 | val impE = @{thm impE}
 | |
| 1616 | val impI = @{thm impI}
 | |
| 1617 | val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
 | |
| 1618 | val mp = @{thm mp}
 | |
| 1619 | val notE = @{thm notE}
 | |
| 1620 | val notI = @{thm notI}
 | |
| 1621 | val not_all = @{thm not_all}
 | |
| 1622 | val not_ex = @{thm not_ex}
 | |
| 1623 | val not_iff = @{thm not_iff}
 | |
| 1624 | val not_not = @{thm not_not}
 | |
| 1625 | val not_sym = @{thm not_sym}
 | |
| 1626 | val refl = @{thm refl}
 | |
| 1627 | val rev_mp = @{thm rev_mp}
 | |
| 1628 | val spec = @{thm spec}
 | |
| 1629 | val ssubst = @{thm ssubst}
 | |
| 1630 | val subst = @{thm subst}
 | |
| 1631 | val sym = @{thm sym}
 | |
| 1632 | val trans = @{thm trans}
 | |
| 21671 | 1633 | *} | 
| 1634 | ||
| 1635 | ||
| 24280 | 1636 | subsection {* Code generator basic setup -- see further @{text Code_Setup.thy} *}
 | 
| 23247 | 1637 | |
| 24462 | 1638 | setup "CodeName.setup #> CodeTarget.setup #> Nbe.setup" | 
| 23247 | 1639 | |
| 1640 | class eq (attach "op =") = type | |
| 1641 | ||
| 1642 | lemma [code func]: | |
| 24280 | 1643 | shows "False \<and> x \<longleftrightarrow> False" | 
| 1644 | and "True \<and> x \<longleftrightarrow> x" | |
| 1645 | and "x \<and> False \<longleftrightarrow> False" | |
| 1646 | and "x \<and> True \<longleftrightarrow> x" by simp_all | |
| 23247 | 1647 | |
| 1648 | lemma [code func]: | |
| 24280 | 1649 | shows "False \<or> x \<longleftrightarrow> x" | 
| 1650 | and "True \<or> x \<longleftrightarrow> True" | |
| 1651 | and "x \<or> False \<longleftrightarrow> x" | |
| 1652 | and "x \<or> True \<longleftrightarrow> True" by simp_all | |
| 23247 | 1653 | |
| 1654 | lemma [code func]: | |
| 24280 | 1655 | shows "\<not> True \<longleftrightarrow> False" | 
| 1656 | and "\<not> False \<longleftrightarrow> True" by (rule HOL.simp_thms)+ | |
| 23247 | 1657 | |
| 1658 | code_datatype Trueprop "prop" | |
| 1659 | ||
| 25534 
d0b74fdd6067
simplified infrastructure for code generator operational equality
 haftmann parents: 
25494diff
changeset | 1660 | code_datatype "TYPE('a\<Colon>{})"
 | 
| 23247 | 1661 | |
| 24844 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1662 | lemma Let_case_cert: | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1663 | assumes "CASE \<equiv> (\<lambda>x. Let x f)" | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1664 | shows "CASE x \<equiv> f x" | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1665 | using assms by simp_all | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1666 | |
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1667 | lemma If_case_cert: | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1668 | includes meta_conjunction_syntax | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1669 | assumes "CASE \<equiv> (\<lambda>b. If b f g)" | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1670 | shows "(CASE True \<equiv> f) && (CASE False \<equiv> g)" | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1671 | using assms by simp_all | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1672 | |
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1673 | setup {*
 | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1674 |   Code.add_case @{thm Let_case_cert}
 | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1675 |   #> Code.add_case @{thm If_case_cert}
 | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1676 |   #> Code.add_undefined @{const_name undefined}
 | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1677 | *} | 
| 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1678 | |
| 23247 | 1679 | |
| 22839 | 1680 | subsection {* Legacy tactics and ML bindings *}
 | 
| 21671 | 1681 | |
| 1682 | ML {*
 | |
| 1683 | fun strip_tac i = REPEAT (resolve_tac [impI, allI] i); | |
| 1684 | ||
| 1685 | (* combination of (spec RS spec RS ...(j times) ... spec RS mp) *) | |
| 1686 | local | |
| 1687 |   fun wrong_prem (Const ("All", _) $ (Abs (_, _, t))) = wrong_prem t
 | |
| 1688 | | wrong_prem (Bound _) = true | |
| 1689 | | wrong_prem _ = false; | |
| 1690 | val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of); | |
| 1691 | in | |
| 1692 | fun smp i = funpow i (fn m => filter_right ([spec] RL m)) ([mp]); | |
| 1693 | fun smp_tac j = EVERY'[dresolve_tac (smp j), atac]; | |
| 1694 | end; | |
| 22839 | 1695 | |
| 1696 | val all_conj_distrib = thm "all_conj_distrib"; | |
| 1697 | val all_simps = thms "all_simps"; | |
| 1698 | val atomize_not = thm "atomize_not"; | |
| 24830 
a7b3ab44d993
moved Pure/Isar/induct_attrib.ML and Provers/induct_method.ML to Tools/induct.ML;
 wenzelm parents: 
24748diff
changeset | 1699 | val case_split = thm "case_split"; | 
| 22839 | 1700 | val case_split_thm = thm "case_split_thm" | 
| 1701 | val cases_simp = thm "cases_simp"; | |
| 1702 | val choice_eq = thm "choice_eq" | |
| 1703 | val cong = thm "cong" | |
| 1704 | val conj_comms = thms "conj_comms"; | |
| 1705 | val conj_cong = thm "conj_cong"; | |
| 1706 | val de_Morgan_conj = thm "de_Morgan_conj"; | |
| 1707 | val de_Morgan_disj = thm "de_Morgan_disj"; | |
| 1708 | val disj_assoc = thm "disj_assoc"; | |
| 1709 | val disj_comms = thms "disj_comms"; | |
| 1710 | val disj_cong = thm "disj_cong"; | |
| 1711 | val eq_ac = thms "eq_ac"; | |
| 1712 | val eq_cong2 = thm "eq_cong2" | |
| 1713 | val Eq_FalseI = thm "Eq_FalseI"; | |
| 1714 | val Eq_TrueI = thm "Eq_TrueI"; | |
| 1715 | val Ex1_def = thm "Ex1_def" | |
| 1716 | val ex_disj_distrib = thm "ex_disj_distrib"; | |
| 1717 | val ex_simps = thms "ex_simps"; | |
| 1718 | val if_cancel = thm "if_cancel"; | |
| 1719 | val if_eq_cancel = thm "if_eq_cancel"; | |
| 1720 | val if_False = thm "if_False"; | |
| 1721 | val iff_conv_conj_imp = thm "iff_conv_conj_imp"; | |
| 1722 | val iff = thm "iff" | |
| 1723 | val if_splits = thms "if_splits"; | |
| 1724 | val if_True = thm "if_True"; | |
| 1725 | val if_weak_cong = thm "if_weak_cong" | |
| 1726 | val imp_all = thm "imp_all"; | |
| 1727 | val imp_cong = thm "imp_cong"; | |
| 1728 | val imp_conjL = thm "imp_conjL"; | |
| 1729 | val imp_conjR = thm "imp_conjR"; | |
| 1730 | val imp_conv_disj = thm "imp_conv_disj"; | |
| 1731 | val simp_implies_def = thm "simp_implies_def"; | |
| 1732 | val simp_thms = thms "simp_thms"; | |
| 1733 | val split_if = thm "split_if"; | |
| 1734 | val the1_equality = thm "the1_equality" | |
| 1735 | val theI = thm "theI" | |
| 1736 | val theI' = thm "theI'" | |
| 1737 | val True_implies_equals = thm "True_implies_equals"; | |
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1738 | val nnf_conv = Simplifier.rewrite (HOL_basic_ss addsimps simp_thms @ @{thms "nnf_simps"})
 | 
| 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1739 | |
| 21671 | 1740 | *} | 
| 1741 | ||
| 14357 | 1742 | end |