| author | wenzelm | 
| Sat, 22 Oct 2016 12:34:58 +0200 | |
| changeset 64342 | 53fb4a19fb98 | 
| parent 63636 | 6f38b7abb648 | 
| child 67965 | aaa31cd0caef | 
| permissions | -rw-r--r-- | 
| 61640 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 62130 | 3 | section \<open>2-3-4 Tree Implementation of Maps\<close> | 
| 61640 | 4 | |
| 5 | theory Tree234_Map | |
| 6 | imports | |
| 7 | Tree234_Set | |
| 8 | "../Data_Structures/Map_by_Ordered" | |
| 9 | begin | |
| 10 | ||
| 11 | subsection \<open>Map operations on 2-3-4 trees\<close> | |
| 12 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 13 | fun lookup :: "('a::linorder * 'b) tree234 \<Rightarrow> 'a \<Rightarrow> 'b option" where
 | 
| 61640 | 14 | "lookup Leaf x = None" | | 
| 15 | "lookup (Node2 l (a,b) r) x = (case cmp x a of | |
| 16 | LT \<Rightarrow> lookup l x | | |
| 17 | GT \<Rightarrow> lookup r x | | |
| 18 | EQ \<Rightarrow> Some b)" | | |
| 19 | "lookup (Node3 l (a1,b1) m (a2,b2) r) x = (case cmp x a1 of | |
| 20 | LT \<Rightarrow> lookup l x | | |
| 21 | EQ \<Rightarrow> Some b1 | | |
| 22 | GT \<Rightarrow> (case cmp x a2 of | |
| 23 | LT \<Rightarrow> lookup m x | | |
| 24 | EQ \<Rightarrow> Some b2 | | |
| 25 | GT \<Rightarrow> lookup r x))" | | |
| 26 | "lookup (Node4 t1 (a1,b1) t2 (a2,b2) t3 (a3,b3) t4) x = (case cmp x a2 of | |
| 27 | LT \<Rightarrow> (case cmp x a1 of | |
| 28 | LT \<Rightarrow> lookup t1 x | EQ \<Rightarrow> Some b1 | GT \<Rightarrow> lookup t2 x) | | |
| 29 | EQ \<Rightarrow> Some b2 | | |
| 30 | GT \<Rightarrow> (case cmp x a3 of | |
| 31 | LT \<Rightarrow> lookup t3 x | EQ \<Rightarrow> Some b3 | GT \<Rightarrow> lookup t4 x))" | |
| 32 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 33 | fun upd :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>i" where
 | 
| 61640 | 34 | "upd x y Leaf = Up\<^sub>i Leaf (x,y) Leaf" | | 
| 35 | "upd x y (Node2 l ab r) = (case cmp x (fst ab) of | |
| 36 | LT \<Rightarrow> (case upd x y l of | |
| 37 | T\<^sub>i l' => T\<^sub>i (Node2 l' ab r) | |
| 38 | | Up\<^sub>i l1 ab' l2 => T\<^sub>i (Node3 l1 ab' l2 ab r)) | | |
| 39 | EQ \<Rightarrow> T\<^sub>i (Node2 l (x,y) r) | | |
| 40 | GT \<Rightarrow> (case upd x y r of | |
| 41 | T\<^sub>i r' => T\<^sub>i (Node2 l ab r') | |
| 42 | | Up\<^sub>i r1 ab' r2 => T\<^sub>i (Node3 l ab r1 ab' r2)))" | | |
| 43 | "upd x y (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of | |
| 44 | LT \<Rightarrow> (case upd x y l of | |
| 45 | T\<^sub>i l' => T\<^sub>i (Node3 l' ab1 m ab2 r) | |
| 46 | | Up\<^sub>i l1 ab' l2 => Up\<^sub>i (Node2 l1 ab' l2) ab1 (Node2 m ab2 r)) | | |
| 47 | EQ \<Rightarrow> T\<^sub>i (Node3 l (x,y) m ab2 r) | | |
| 48 | GT \<Rightarrow> (case cmp x (fst ab2) of | |
| 49 | LT \<Rightarrow> (case upd x y m of | |
| 50 | T\<^sub>i m' => T\<^sub>i (Node3 l ab1 m' ab2 r) | |
| 51 | | Up\<^sub>i m1 ab' m2 => Up\<^sub>i (Node2 l ab1 m1) ab' (Node2 m2 ab2 r)) | | |
| 52 | EQ \<Rightarrow> T\<^sub>i (Node3 l ab1 m (x,y) r) | | |
| 53 | GT \<Rightarrow> (case upd x y r of | |
| 54 | T\<^sub>i r' => T\<^sub>i (Node3 l ab1 m ab2 r') | |
| 55 | | Up\<^sub>i r1 ab' r2 => Up\<^sub>i (Node2 l ab1 m) ab2 (Node2 r1 ab' r2))))" | | |
| 56 | "upd x y (Node4 t1 ab1 t2 ab2 t3 ab3 t4) = (case cmp x (fst ab2) of | |
| 57 | LT \<Rightarrow> (case cmp x (fst ab1) of | |
| 58 | LT \<Rightarrow> (case upd x y t1 of | |
| 59 | T\<^sub>i t1' => T\<^sub>i (Node4 t1' ab1 t2 ab2 t3 ab3 t4) | |
| 60 | | Up\<^sub>i t11 q t12 => Up\<^sub>i (Node2 t11 q t12) ab1 (Node3 t2 ab2 t3 ab3 t4)) | | |
| 61 | EQ \<Rightarrow> T\<^sub>i (Node4 t1 (x,y) t2 ab2 t3 ab3 t4) | | |
| 62 | GT \<Rightarrow> (case upd x y t2 of | |
| 63 | T\<^sub>i t2' => T\<^sub>i (Node4 t1 ab1 t2' ab2 t3 ab3 t4) | |
| 64 | | Up\<^sub>i t21 q t22 => Up\<^sub>i (Node2 t1 ab1 t21) q (Node3 t22 ab2 t3 ab3 t4))) | | |
| 65 | EQ \<Rightarrow> T\<^sub>i (Node4 t1 ab1 t2 (x,y) t3 ab3 t4) | | |
| 66 | GT \<Rightarrow> (case cmp x (fst ab3) of | |
| 67 | LT \<Rightarrow> (case upd x y t3 of | |
| 68 | T\<^sub>i t3' \<Rightarrow> T\<^sub>i (Node4 t1 ab1 t2 ab2 t3' ab3 t4) | |
| 69 | | Up\<^sub>i t31 q t32 => Up\<^sub>i (Node2 t1 ab1 t2) ab2(*q*) (Node3 t31 q t32 ab3 t4)) | | |
| 70 | EQ \<Rightarrow> T\<^sub>i (Node4 t1 ab1 t2 ab2 t3 (x,y) t4) | | |
| 71 | GT \<Rightarrow> (case upd x y t4 of | |
| 72 | T\<^sub>i t4' => T\<^sub>i (Node4 t1 ab1 t2 ab2 t3 ab3 t4') | |
| 73 | | Up\<^sub>i t41 q t42 => Up\<^sub>i (Node2 t1 ab1 t2) ab2 (Node3 t3 ab3 t41 q t42))))" | |
| 74 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 75 | definition update :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
 | 
| 61640 | 76 | "update x y t = tree\<^sub>i(upd x y t)" | 
| 77 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 78 | fun del :: "'a::linorder \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) up\<^sub>d" where
 | 
| 61640 | 79 | "del x Leaf = T\<^sub>d Leaf" | | 
| 80 | "del x (Node2 Leaf ab1 Leaf) = (if x=fst ab1 then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf ab1 Leaf))" | | |
| 81 | "del x (Node3 Leaf ab1 Leaf ab2 Leaf) = T\<^sub>d(if x=fst ab1 then Node2 Leaf ab2 Leaf | |
| 82 | else if x=fst ab2 then Node2 Leaf ab1 Leaf else Node3 Leaf ab1 Leaf ab2 Leaf)" | | |
| 83 | "del x (Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf) = | |
| 84 | T\<^sub>d(if x = fst ab1 then Node3 Leaf ab2 Leaf ab3 Leaf else | |
| 85 | if x = fst ab2 then Node3 Leaf ab1 Leaf ab3 Leaf else | |
| 86 | if x = fst ab3 then Node3 Leaf ab1 Leaf ab2 Leaf | |
| 87 | else Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf)" | | |
| 88 | "del x (Node2 l ab1 r) = (case cmp x (fst ab1) of | |
| 89 | LT \<Rightarrow> node21 (del x l) ab1 r | | |
| 90 | GT \<Rightarrow> node22 l ab1 (del x r) | | |
| 91 | EQ \<Rightarrow> let (ab1',t) = del_min r in node22 l ab1' t)" | | |
| 92 | "del x (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of | |
| 93 | LT \<Rightarrow> node31 (del x l) ab1 m ab2 r | | |
| 94 | EQ \<Rightarrow> let (ab1',m') = del_min m in node32 l ab1' m' ab2 r | | |
| 95 | GT \<Rightarrow> (case cmp x (fst ab2) of | |
| 96 | LT \<Rightarrow> node32 l ab1 (del x m) ab2 r | | |
| 97 | EQ \<Rightarrow> let (ab2',r') = del_min r in node33 l ab1 m ab2' r' | | |
| 98 | GT \<Rightarrow> node33 l ab1 m ab2 (del x r)))" | | |
| 99 | "del x (Node4 t1 ab1 t2 ab2 t3 ab3 t4) = (case cmp x (fst ab2) of | |
| 100 | LT \<Rightarrow> (case cmp x (fst ab1) of | |
| 101 | LT \<Rightarrow> node41 (del x t1) ab1 t2 ab2 t3 ab3 t4 | | |
| 102 | EQ \<Rightarrow> let (ab',t2') = del_min t2 in node42 t1 ab' t2' ab2 t3 ab3 t4 | | |
| 103 | GT \<Rightarrow> node42 t1 ab1 (del x t2) ab2 t3 ab3 t4) | | |
| 104 | EQ \<Rightarrow> let (ab',t3') = del_min t3 in node43 t1 ab1 t2 ab' t3' ab3 t4 | | |
| 105 | GT \<Rightarrow> (case cmp x (fst ab3) of | |
| 106 | LT \<Rightarrow> node43 t1 ab1 t2 ab2 (del x t3) ab3 t4 | | |
| 107 | EQ \<Rightarrow> let (ab',t4') = del_min t4 in node44 t1 ab1 t2 ab2 t3 ab' t4' | | |
| 108 | GT \<Rightarrow> node44 t1 ab1 t2 ab2 t3 ab3 (del x t4)))" | |
| 109 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 110 | definition delete :: "'a::linorder \<Rightarrow> ('a*'b) tree234 \<Rightarrow> ('a*'b) tree234" where
 | 
| 61640 | 111 | "delete x t = tree\<^sub>d(del x t)" | 
| 112 | ||
| 113 | ||
| 114 | subsection "Functional correctness" | |
| 115 | ||
| 61790 | 116 | lemma lookup_map_of: | 
| 117 | "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x" | |
| 61640 | 118 | by (induction t) (auto simp: map_of_simps split: option.split) | 
| 119 | ||
| 120 | ||
| 121 | lemma inorder_upd: | |
| 122 | "sorted1(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(upd a b t)) = upd_list a b (inorder t)" | |
| 123 | by(induction t) | |
| 124 | (auto simp: upd_list_simps, auto simp: upd_list_simps split: up\<^sub>i.splits) | |
| 125 | ||
| 126 | lemma inorder_update: | |
| 127 | "sorted1(inorder t) \<Longrightarrow> inorder(update a b t) = upd_list a b (inorder t)" | |
| 128 | by(simp add: update_def inorder_upd) | |
| 129 | ||
| 130 | lemma inorder_del: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow> | |
| 131 | inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)" | |
| 132 | by(induction t rule: del.induct) | |
| 63636 | 133 | (auto simp: del_list_simps inorder_nodes del_minD split!: if_splits prod.splits) | 
| 134 | (* 30 secs (2016) *) | |
| 61640 | 135 | |
| 136 | lemma inorder_delete: "\<lbrakk> bal t ; sorted1(inorder t) \<rbrakk> \<Longrightarrow> | |
| 137 | inorder(delete x t) = del_list x (inorder t)" | |
| 138 | by(simp add: delete_def inorder_del) | |
| 139 | ||
| 140 | ||
| 141 | subsection \<open>Balancedness\<close> | |
| 142 | ||
| 143 | lemma bal_upd: "bal t \<Longrightarrow> bal (tree\<^sub>i(upd x y t)) \<and> height(upd x y t) = height t" | |
| 63636 | 144 | by (induct t) (auto, auto split!: if_split up\<^sub>i.split) (* 20 secs (2015) *) | 
| 61640 | 145 | |
| 146 | lemma bal_update: "bal t \<Longrightarrow> bal (update x y t)" | |
| 147 | by (simp add: update_def bal_upd) | |
| 148 | ||
| 149 | lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t" | |
| 150 | by(induction x t rule: del.induct) | |
| 63636 | 151 | (auto simp add: heights height_del_min split!: if_split prod.split) | 
| 61640 | 152 | |
| 153 | lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))" | |
| 154 | by(induction x t rule: del.induct) | |
| 63636 | 155 | (auto simp: bals bal_del_min height_del height_del_min split!: if_split prod.split) | 
| 61640 | 156 | |
| 157 | corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)" | |
| 158 | by(simp add: delete_def bal_tree\<^sub>d_del) | |
| 159 | ||
| 160 | ||
| 161 | subsection \<open>Overall Correctness\<close> | |
| 162 | ||
| 61790 | 163 | interpretation Map_by_Ordered | 
| 61640 | 164 | where empty = Leaf and lookup = lookup and update = update and delete = delete | 
| 61686 | 165 | and inorder = inorder and inv = bal | 
| 61640 | 166 | proof (standard, goal_cases) | 
| 61790 | 167 | case 2 thus ?case by(simp add: lookup_map_of) | 
| 61640 | 168 | next | 
| 169 | case 3 thus ?case by(simp add: inorder_update) | |
| 170 | next | |
| 171 | case 4 thus ?case by(simp add: inorder_delete) | |
| 172 | next | |
| 173 | case 6 thus ?case by(simp add: bal_update) | |
| 174 | next | |
| 175 | case 7 thus ?case by(simp add: bal_delete) | |
| 176 | qed simp+ | |
| 177 | ||
| 178 | end |