| author | wenzelm | 
| Sat, 22 Oct 2016 12:34:58 +0200 | |
| changeset 64342 | 53fb4a19fb98 | 
| parent 63636 | 6f38b7abb648 | 
| child 67406 | 23307fd33906 | 
| permissions | -rw-r--r-- | 
| 61640 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 62130 | 3 | section \<open>2-3-4 Tree Implementation of Sets\<close> | 
| 61640 | 4 | |
| 5 | theory Tree234_Set | |
| 6 | imports | |
| 7 | Tree234 | |
| 8 | Cmp | |
| 9 | "../Data_Structures/Set_by_Ordered" | |
| 10 | begin | |
| 11 | ||
| 12 | subsection \<open>Set operations on 2-3-4 trees\<close> | |
| 13 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 14 | fun isin :: "'a::linorder tree234 \<Rightarrow> 'a \<Rightarrow> bool" where | 
| 61640 | 15 | "isin Leaf x = False" | | 
| 16 | "isin (Node2 l a r) x = | |
| 17 | (case cmp x a of LT \<Rightarrow> isin l x | EQ \<Rightarrow> True | GT \<Rightarrow> isin r x)" | | |
| 18 | "isin (Node3 l a m b r) x = | |
| 19 | (case cmp x a of LT \<Rightarrow> isin l x | EQ \<Rightarrow> True | GT \<Rightarrow> (case cmp x b of | |
| 20 | LT \<Rightarrow> isin m x | EQ \<Rightarrow> True | GT \<Rightarrow> isin r x))" | | |
| 61703 | 21 | "isin (Node4 t1 a t2 b t3 c t4) x = | 
| 22 | (case cmp x b of | |
| 23 | LT \<Rightarrow> | |
| 24 | (case cmp x a of | |
| 61640 | 25 | LT \<Rightarrow> isin t1 x | | 
| 26 | EQ \<Rightarrow> True | | |
| 27 | GT \<Rightarrow> isin t2 x) | | |
| 61703 | 28 | EQ \<Rightarrow> True | | 
| 29 | GT \<Rightarrow> | |
| 30 | (case cmp x c of | |
| 61640 | 31 | LT \<Rightarrow> isin t3 x | | 
| 32 | EQ \<Rightarrow> True | | |
| 33 | GT \<Rightarrow> isin t4 x))" | |
| 34 | ||
| 35 | datatype 'a up\<^sub>i = T\<^sub>i "'a tree234" | Up\<^sub>i "'a tree234" 'a "'a tree234" | |
| 36 | ||
| 37 | fun tree\<^sub>i :: "'a up\<^sub>i \<Rightarrow> 'a tree234" where | |
| 38 | "tree\<^sub>i (T\<^sub>i t) = t" | | |
| 61709 | 39 | "tree\<^sub>i (Up\<^sub>i l a r) = Node2 l a r" | 
| 61640 | 40 | |
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 41 | fun ins :: "'a::linorder \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>i" where | 
| 61640 | 42 | "ins x Leaf = Up\<^sub>i Leaf x Leaf" | | 
| 43 | "ins x (Node2 l a r) = | |
| 44 | (case cmp x a of | |
| 45 | LT \<Rightarrow> (case ins x l of | |
| 46 | T\<^sub>i l' => T\<^sub>i (Node2 l' a r) | |
| 47 | | Up\<^sub>i l1 b l2 => T\<^sub>i (Node3 l1 b l2 a r)) | | |
| 48 | EQ \<Rightarrow> T\<^sub>i (Node2 l x r) | | |
| 49 | GT \<Rightarrow> (case ins x r of | |
| 50 | T\<^sub>i r' => T\<^sub>i (Node2 l a r') | |
| 51 | | Up\<^sub>i r1 b r2 => T\<^sub>i (Node3 l a r1 b r2)))" | | |
| 52 | "ins x (Node3 l a m b r) = | |
| 53 | (case cmp x a of | |
| 54 | LT \<Rightarrow> (case ins x l of | |
| 55 | T\<^sub>i l' => T\<^sub>i (Node3 l' a m b r) | |
| 56 | | Up\<^sub>i l1 c l2 => Up\<^sub>i (Node2 l1 c l2) a (Node2 m b r)) | | |
| 57 | EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) | | |
| 58 | GT \<Rightarrow> (case cmp x b of | |
| 59 | GT \<Rightarrow> (case ins x r of | |
| 60 | T\<^sub>i r' => T\<^sub>i (Node3 l a m b r') | |
| 61 | | Up\<^sub>i r1 c r2 => Up\<^sub>i (Node2 l a m) b (Node2 r1 c r2)) | | |
| 62 | EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) | | |
| 63 | LT \<Rightarrow> (case ins x m of | |
| 64 | T\<^sub>i m' => T\<^sub>i (Node3 l a m' b r) | |
| 65 | | Up\<^sub>i m1 c m2 => Up\<^sub>i (Node2 l a m1) c (Node2 m2 b r))))" | | |
| 61703 | 66 | "ins x (Node4 t1 a t2 b t3 c t4) = | 
| 67 | (case cmp x b of | |
| 68 | LT \<Rightarrow> | |
| 69 | (case cmp x a of | |
| 70 | LT \<Rightarrow> | |
| 71 | (case ins x t1 of | |
| 72 | T\<^sub>i t => T\<^sub>i (Node4 t a t2 b t3 c t4) | | |
| 73 | Up\<^sub>i l y r => Up\<^sub>i (Node2 l y r) a (Node3 t2 b t3 c t4)) | | |
| 74 | EQ \<Rightarrow> T\<^sub>i (Node4 t1 a t2 b t3 c t4) | | |
| 75 | GT \<Rightarrow> | |
| 76 | (case ins x t2 of | |
| 77 | T\<^sub>i t => T\<^sub>i (Node4 t1 a t b t3 c t4) | | |
| 78 | Up\<^sub>i l y r => Up\<^sub>i (Node2 t1 a l) y (Node3 r b t3 c t4))) | | |
| 79 | EQ \<Rightarrow> T\<^sub>i (Node4 t1 a t2 b t3 c t4) | | |
| 80 | GT \<Rightarrow> | |
| 81 | (case cmp x c of | |
| 82 | LT \<Rightarrow> | |
| 83 | (case ins x t3 of | |
| 84 | T\<^sub>i t => T\<^sub>i (Node4 t1 a t2 b t c t4) | | |
| 85 | Up\<^sub>i l y r => Up\<^sub>i (Node2 t1 a t2) b (Node3 l y r c t4)) | | |
| 86 | EQ \<Rightarrow> T\<^sub>i (Node4 t1 a t2 b t3 c t4) | | |
| 87 | GT \<Rightarrow> | |
| 88 | (case ins x t4 of | |
| 89 | T\<^sub>i t => T\<^sub>i (Node4 t1 a t2 b t3 c t) | | |
| 90 | Up\<^sub>i l y r => Up\<^sub>i (Node2 t1 a t2) b (Node3 t3 c l y r))))" | |
| 61640 | 91 | |
| 92 | hide_const insert | |
| 93 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 94 | definition insert :: "'a::linorder \<Rightarrow> 'a tree234 \<Rightarrow> 'a tree234" where | 
| 61640 | 95 | "insert x t = tree\<^sub>i(ins x t)" | 
| 96 | ||
| 97 | datatype 'a up\<^sub>d = T\<^sub>d "'a tree234" | Up\<^sub>d "'a tree234" | |
| 98 | ||
| 99 | fun tree\<^sub>d :: "'a up\<^sub>d \<Rightarrow> 'a tree234" where | |
| 61709 | 100 | "tree\<^sub>d (T\<^sub>d t) = t" | | 
| 101 | "tree\<^sub>d (Up\<^sub>d t) = t" | |
| 61640 | 102 | |
| 103 | fun node21 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where | |
| 104 | "node21 (T\<^sub>d l) a r = T\<^sub>d(Node2 l a r)" | | |
| 105 | "node21 (Up\<^sub>d l) a (Node2 lr b rr) = Up\<^sub>d(Node3 l a lr b rr)" | | |
| 106 | "node21 (Up\<^sub>d l) a (Node3 lr b mr c rr) = T\<^sub>d(Node2 (Node2 l a lr) b (Node2 mr c rr))" | | |
| 107 | "node21 (Up\<^sub>d t1) a (Node4 t2 b t3 c t4 d t5) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node3 t3 c t4 d t5))" | |
| 108 | ||
| 109 | fun node22 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where | |
| 110 | "node22 l a (T\<^sub>d r) = T\<^sub>d(Node2 l a r)" | | |
| 111 | "node22 (Node2 ll b rl) a (Up\<^sub>d r) = Up\<^sub>d(Node3 ll b rl a r)" | | |
| 112 | "node22 (Node3 ll b ml c rl) a (Up\<^sub>d r) = T\<^sub>d(Node2 (Node2 ll b ml) c (Node2 rl a r))" | | |
| 113 | "node22 (Node4 t1 a t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node3 t3 c t4 d t5))" | |
| 114 | ||
| 115 | fun node31 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where | |
| 116 | "node31 (T\<^sub>d t1) a t2 b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" | | |
| 117 | "node31 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 = T\<^sub>d(Node2 (Node3 t1 a t2 b t3) c t4)" | | |
| 118 | "node31 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node2 t3 c t4) d t5)" | | |
| 119 | "node31 (Up\<^sub>d t1) a (Node4 t2 b t3 c t4 d t5) e t6 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node3 t3 c t4 d t5) e t6)" | |
| 120 | ||
| 121 | fun node32 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where | |
| 122 | "node32 t1 a (T\<^sub>d t2) b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" | | |
| 123 | "node32 t1 a (Up\<^sub>d t2) b (Node2 t3 c t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" | | |
| 124 | "node32 t1 a (Up\<^sub>d t2) b (Node3 t3 c t4 d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))" | | |
| 125 | "node32 t1 a (Up\<^sub>d t2) b (Node4 t3 c t4 d t5 e t6) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node3 t4 d t5 e t6))" | |
| 126 | ||
| 127 | fun node33 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where | |
| 128 | "node33 l a m b (T\<^sub>d r) = T\<^sub>d(Node3 l a m b r)" | | |
| 129 | "node33 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" | | |
| 130 | "node33 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))" | | |
| 131 | "node33 t1 a (Node4 t2 b t3 c t4 d t5) e (Up\<^sub>d t6) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node3 t4 d t5 e t6))" | |
| 132 | ||
| 133 | fun node41 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where | |
| 134 | "node41 (T\<^sub>d t1) a t2 b t3 c t4 = T\<^sub>d(Node4 t1 a t2 b t3 c t4)" | | |
| 135 | "node41 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 d t5 = T\<^sub>d(Node3 (Node3 t1 a t2 b t3) c t4 d t5)" | | |
| 136 | "node41 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 e t6 = T\<^sub>d(Node4 (Node2 t1 a t2) b (Node2 t3 c t4) d t5 e t6)" | | |
| 137 | "node41 (Up\<^sub>d t1) a (Node4 t2 b t3 c t4 d t5) e t6 f t7 = T\<^sub>d(Node4 (Node2 t1 a t2) b (Node3 t3 c t4 d t5) e t6 f t7)" | |
| 138 | ||
| 139 | fun node42 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where | |
| 140 | "node42 t1 a (T\<^sub>d t2) b t3 c t4 = T\<^sub>d(Node4 t1 a t2 b t3 c t4)" | | |
| 141 | "node42 (Node2 t1 a t2) b (Up\<^sub>d t3) c t4 d t5 = T\<^sub>d(Node3 (Node3 t1 a t2 b t3) c t4 d t5)" | | |
| 142 | "node42 (Node3 t1 a t2 b t3) c (Up\<^sub>d t4) d t5 e t6 = T\<^sub>d(Node4 (Node2 t1 a t2) b (Node2 t3 c t4) d t5 e t6)" | | |
| 143 | "node42 (Node4 t1 a t2 b t3 c t4) d (Up\<^sub>d t5) e t6 f t7 = T\<^sub>d(Node4 (Node2 t1 a t2) b (Node3 t3 c t4 d t5) e t6 f t7)" | |
| 144 | ||
| 145 | fun node43 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where | |
| 146 | "node43 t1 a t2 b (T\<^sub>d t3) c t4 = T\<^sub>d(Node4 t1 a t2 b t3 c t4)" | | |
| 147 | "node43 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) d t5 = T\<^sub>d(Node3 t1 a (Node3 t2 b t3 c t4) d t5)" | | |
| 148 | "node43 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) e t6 = T\<^sub>d(Node4 t1 a (Node2 t2 b t3) c (Node2 t4 d t5) e t6)" | | |
| 149 | "node43 t1 a (Node4 t2 b t3 c t4 d t5) e (Up\<^sub>d t6) f t7 = T\<^sub>d(Node4 t1 a (Node2 t2 b t3) c (Node3 t4 d t5 e t6) f t7)" | |
| 150 | ||
| 151 | fun node44 :: "'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a tree234 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where | |
| 152 | "node44 t1 a t2 b t3 c (T\<^sub>d t4) = T\<^sub>d(Node4 t1 a t2 b t3 c t4)" | | |
| 153 | "node44 t1 a t2 b (Node2 t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a t2 b (Node3 t3 c t4 d t5))" | | |
| 154 | "node44 t1 a t2 b (Node3 t3 c t4 d t5) e (Up\<^sub>d t6) = T\<^sub>d(Node4 t1 a t2 b (Node2 t3 c t4) d (Node2 t5 e t6))" | | |
| 155 | "node44 t1 a t2 b (Node4 t3 c t4 d t5 e t6) f (Up\<^sub>d t7) = T\<^sub>d(Node4 t1 a t2 b (Node2 t3 c t4) d (Node3 t5 e t6 f t7))" | |
| 156 | ||
| 157 | fun del_min :: "'a tree234 \<Rightarrow> 'a * 'a up\<^sub>d" where | |
| 158 | "del_min (Node2 Leaf a Leaf) = (a, Up\<^sub>d Leaf)" | | |
| 159 | "del_min (Node3 Leaf a Leaf b Leaf) = (a, T\<^sub>d(Node2 Leaf b Leaf))" | | |
| 160 | "del_min (Node4 Leaf a Leaf b Leaf c Leaf) = (a, T\<^sub>d(Node3 Leaf b Leaf c Leaf))" | | |
| 161 | "del_min (Node2 l a r) = (let (x,l') = del_min l in (x, node21 l' a r))" | | |
| 162 | "del_min (Node3 l a m b r) = (let (x,l') = del_min l in (x, node31 l' a m b r))" | | |
| 163 | "del_min (Node4 l a m b n c r) = (let (x,l') = del_min l in (x, node41 l' a m b n c r))" | |
| 164 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 165 | fun del :: "'a::linorder \<Rightarrow> 'a tree234 \<Rightarrow> 'a up\<^sub>d" where | 
| 61640 | 166 | "del k Leaf = T\<^sub>d Leaf" | | 
| 167 | "del k (Node2 Leaf p Leaf) = (if k=p then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf p Leaf))" | | |
| 168 | "del k (Node3 Leaf p Leaf q Leaf) = T\<^sub>d(if k=p then Node2 Leaf q Leaf | |
| 169 | else if k=q then Node2 Leaf p Leaf else Node3 Leaf p Leaf q Leaf)" | | |
| 170 | "del k (Node4 Leaf a Leaf b Leaf c Leaf) = | |
| 171 | T\<^sub>d(if k=a then Node3 Leaf b Leaf c Leaf else | |
| 172 | if k=b then Node3 Leaf a Leaf c Leaf else | |
| 173 | if k=c then Node3 Leaf a Leaf b Leaf | |
| 174 | else Node4 Leaf a Leaf b Leaf c Leaf)" | | |
| 175 | "del k (Node2 l a r) = (case cmp k a of | |
| 176 | LT \<Rightarrow> node21 (del k l) a r | | |
| 177 | GT \<Rightarrow> node22 l a (del k r) | | |
| 178 | EQ \<Rightarrow> let (a',t) = del_min r in node22 l a' t)" | | |
| 179 | "del k (Node3 l a m b r) = (case cmp k a of | |
| 180 | LT \<Rightarrow> node31 (del k l) a m b r | | |
| 181 | EQ \<Rightarrow> let (a',m') = del_min m in node32 l a' m' b r | | |
| 182 | GT \<Rightarrow> (case cmp k b of | |
| 183 | LT \<Rightarrow> node32 l a (del k m) b r | | |
| 184 | EQ \<Rightarrow> let (b',r') = del_min r in node33 l a m b' r' | | |
| 185 | GT \<Rightarrow> node33 l a m b (del k r)))" | | |
| 186 | "del k (Node4 l a m b n c r) = (case cmp k b of | |
| 187 | LT \<Rightarrow> (case cmp k a of | |
| 188 | LT \<Rightarrow> node41 (del k l) a m b n c r | | |
| 189 | EQ \<Rightarrow> let (a',m') = del_min m in node42 l a' m' b n c r | | |
| 190 | GT \<Rightarrow> node42 l a (del k m) b n c r) | | |
| 191 | EQ \<Rightarrow> let (b',n') = del_min n in node43 l a m b' n' c r | | |
| 192 | GT \<Rightarrow> (case cmp k c of | |
| 193 | LT \<Rightarrow> node43 l a m b (del k n) c r | | |
| 194 | EQ \<Rightarrow> let (c',r') = del_min r in node44 l a m b n c' r' | | |
| 195 | GT \<Rightarrow> node44 l a m b n c (del k r)))" | |
| 196 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 197 | definition delete :: "'a::linorder \<Rightarrow> 'a tree234 \<Rightarrow> 'a tree234" where | 
| 61640 | 198 | "delete x t = tree\<^sub>d(del x t)" | 
| 199 | ||
| 200 | ||
| 201 | subsection "Functional correctness" | |
| 202 | ||
| 203 | subsubsection \<open>Functional correctness of isin:\<close> | |
| 204 | ||
| 205 | lemma "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))" | |
| 206 | by (induction t) (auto simp: elems_simps1 ball_Un) | |
| 207 | ||
| 208 | lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))" | |
| 63636 | 209 | by (induction t) (auto simp: elems_simps2 split!: if_splits) | 
| 61640 | 210 | |
| 211 | ||
| 212 | subsubsection \<open>Functional correctness of insert:\<close> | |
| 213 | ||
| 214 | lemma inorder_ins: | |
| 215 | "sorted(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(ins x t)) = ins_list x (inorder t)" | |
| 63636 | 216 | by(induction t) (auto, auto simp: ins_list_simps split!: if_splits up\<^sub>i.splits) | 
| 61640 | 217 | |
| 218 | lemma inorder_insert: | |
| 219 | "sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)" | |
| 220 | by(simp add: insert_def inorder_ins) | |
| 221 | ||
| 222 | ||
| 223 | subsubsection \<open>Functional correctness of delete\<close> | |
| 224 | ||
| 225 | lemma inorder_node21: "height r > 0 \<Longrightarrow> | |
| 226 | inorder (tree\<^sub>d (node21 l' a r)) = inorder (tree\<^sub>d l') @ a # inorder r" | |
| 227 | by(induct l' a r rule: node21.induct) auto | |
| 228 | ||
| 229 | lemma inorder_node22: "height l > 0 \<Longrightarrow> | |
| 230 | inorder (tree\<^sub>d (node22 l a r')) = inorder l @ a # inorder (tree\<^sub>d r')" | |
| 231 | by(induct l a r' rule: node22.induct) auto | |
| 232 | ||
| 233 | lemma inorder_node31: "height m > 0 \<Longrightarrow> | |
| 234 | inorder (tree\<^sub>d (node31 l' a m b r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder r" | |
| 235 | by(induct l' a m b r rule: node31.induct) auto | |
| 236 | ||
| 237 | lemma inorder_node32: "height r > 0 \<Longrightarrow> | |
| 238 | inorder (tree\<^sub>d (node32 l a m' b r)) = inorder l @ a # inorder (tree\<^sub>d m') @ b # inorder r" | |
| 239 | by(induct l a m' b r rule: node32.induct) auto | |
| 240 | ||
| 241 | lemma inorder_node33: "height m > 0 \<Longrightarrow> | |
| 242 | inorder (tree\<^sub>d (node33 l a m b r')) = inorder l @ a # inorder m @ b # inorder (tree\<^sub>d r')" | |
| 243 | by(induct l a m b r' rule: node33.induct) auto | |
| 244 | ||
| 245 | lemma inorder_node41: "height m > 0 \<Longrightarrow> | |
| 246 | inorder (tree\<^sub>d (node41 l' a m b n c r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder n @ c # inorder r" | |
| 247 | by(induct l' a m b n c r rule: node41.induct) auto | |
| 248 | ||
| 249 | lemma inorder_node42: "height l > 0 \<Longrightarrow> | |
| 250 | inorder (tree\<^sub>d (node42 l a m b n c r)) = inorder l @ a # inorder (tree\<^sub>d m) @ b # inorder n @ c # inorder r" | |
| 251 | by(induct l a m b n c r rule: node42.induct) auto | |
| 252 | ||
| 253 | lemma inorder_node43: "height m > 0 \<Longrightarrow> | |
| 254 | inorder (tree\<^sub>d (node43 l a m b n c r)) = inorder l @ a # inorder m @ b # inorder(tree\<^sub>d n) @ c # inorder r" | |
| 255 | by(induct l a m b n c r rule: node43.induct) auto | |
| 256 | ||
| 257 | lemma inorder_node44: "height n > 0 \<Longrightarrow> | |
| 258 | inorder (tree\<^sub>d (node44 l a m b n c r)) = inorder l @ a # inorder m @ b # inorder n @ c # inorder (tree\<^sub>d r)" | |
| 259 | by(induct l a m b n c r rule: node44.induct) auto | |
| 260 | ||
| 261 | lemmas inorder_nodes = inorder_node21 inorder_node22 | |
| 262 | inorder_node31 inorder_node32 inorder_node33 | |
| 263 | inorder_node41 inorder_node42 inorder_node43 inorder_node44 | |
| 264 | ||
| 265 | lemma del_minD: | |
| 266 | "del_min t = (x,t') \<Longrightarrow> bal t \<Longrightarrow> height t > 0 \<Longrightarrow> | |
| 267 | x # inorder(tree\<^sub>d t') = inorder t" | |
| 268 | by(induction t arbitrary: t' rule: del_min.induct) | |
| 269 | (auto simp: inorder_nodes split: prod.splits) | |
| 270 | ||
| 271 | lemma inorder_del: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow> | |
| 272 | inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)" | |
| 273 | by(induction t rule: del.induct) | |
| 63636 | 274 | (auto simp: inorder_nodes del_list_simps del_minD split!: if_split prod.splits) | 
| 275 | (* 30 secs (2016) *) | |
| 61640 | 276 | |
| 277 | lemma inorder_delete: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow> | |
| 278 | inorder(delete x t) = del_list x (inorder t)" | |
| 279 | by(simp add: delete_def inorder_del) | |
| 280 | ||
| 281 | ||
| 282 | subsection \<open>Balancedness\<close> | |
| 283 | ||
| 284 | subsubsection "Proofs for insert" | |
| 285 | ||
| 286 | text{* First a standard proof that @{const ins} preserves @{const bal}. *}
 | |
| 287 | ||
| 288 | instantiation up\<^sub>i :: (type)height | |
| 289 | begin | |
| 290 | ||
| 291 | fun height_up\<^sub>i :: "'a up\<^sub>i \<Rightarrow> nat" where | |
| 292 | "height (T\<^sub>i t) = height t" | | |
| 293 | "height (Up\<^sub>i l a r) = height l" | |
| 294 | ||
| 295 | instance .. | |
| 296 | ||
| 297 | end | |
| 298 | ||
| 299 | lemma bal_ins: "bal t \<Longrightarrow> bal (tree\<^sub>i(ins a t)) \<and> height(ins a t) = height t" | |
| 63636 | 300 | by (induct t) (auto split!: if_split up\<^sub>i.split) | 
| 61640 | 301 | |
| 302 | ||
| 303 | text{* Now an alternative proof (by Brian Huffman) that runs faster because
 | |
| 304 | two properties (balance and height) are combined in one predicate. *} | |
| 305 | ||
| 306 | inductive full :: "nat \<Rightarrow> 'a tree234 \<Rightarrow> bool" where | |
| 307 | "full 0 Leaf" | | |
| 308 | "\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node2 l p r)" | | |
| 309 | "\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node3 l p m q r)" | | |
| 310 | "\<lbrakk>full n l; full n m; full n m'; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node4 l p m q m' q' r)" | |
| 311 | ||
| 312 | inductive_cases full_elims: | |
| 313 | "full n Leaf" | |
| 314 | "full n (Node2 l p r)" | |
| 315 | "full n (Node3 l p m q r)" | |
| 316 | "full n (Node4 l p m q m' q' r)" | |
| 317 | ||
| 318 | inductive_cases full_0_elim: "full 0 t" | |
| 319 | inductive_cases full_Suc_elim: "full (Suc n) t" | |
| 320 | ||
| 321 | lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Leaf" | |
| 322 | by (auto elim: full_0_elim intro: full.intros) | |
| 323 | ||
| 324 | lemma full_Leaf_iff [simp]: "full n Leaf \<longleftrightarrow> n = 0" | |
| 325 | by (auto elim: full_elims intro: full.intros) | |
| 326 | ||
| 327 | lemma full_Suc_Node2_iff [simp]: | |
| 328 | "full (Suc n) (Node2 l p r) \<longleftrightarrow> full n l \<and> full n r" | |
| 329 | by (auto elim: full_elims intro: full.intros) | |
| 330 | ||
| 331 | lemma full_Suc_Node3_iff [simp]: | |
| 332 | "full (Suc n) (Node3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r" | |
| 333 | by (auto elim: full_elims intro: full.intros) | |
| 334 | ||
| 335 | lemma full_Suc_Node4_iff [simp]: | |
| 336 | "full (Suc n) (Node4 l p m q m' q' r) \<longleftrightarrow> full n l \<and> full n m \<and> full n m' \<and> full n r" | |
| 337 | by (auto elim: full_elims intro: full.intros) | |
| 338 | ||
| 339 | lemma full_imp_height: "full n t \<Longrightarrow> height t = n" | |
| 340 | by (induct set: full, simp_all) | |
| 341 | ||
| 342 | lemma full_imp_bal: "full n t \<Longrightarrow> bal t" | |
| 343 | by (induct set: full, auto dest: full_imp_height) | |
| 344 | ||
| 345 | lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t" | |
| 346 | by (induct t, simp_all) | |
| 347 | ||
| 348 | lemma bal_iff_full: "bal t \<longleftrightarrow> (\<exists>n. full n t)" | |
| 349 | by (auto elim!: bal_imp_full full_imp_bal) | |
| 350 | ||
| 351 | text {* The @{const "insert"} function either preserves the height of the
 | |
| 352 | tree, or increases it by one. The constructor returned by the @{term
 | |
| 353 | "insert"} function determines which: A return value of the form @{term
 | |
| 354 | "T\<^sub>i t"} indicates that the height will be the same. A value of the | |
| 355 | form @{term "Up\<^sub>i l p r"} indicates an increase in height. *}
 | |
| 356 | ||
| 357 | primrec full\<^sub>i :: "nat \<Rightarrow> 'a up\<^sub>i \<Rightarrow> bool" where | |
| 358 | "full\<^sub>i n (T\<^sub>i t) \<longleftrightarrow> full n t" | | |
| 359 | "full\<^sub>i n (Up\<^sub>i l p r) \<longleftrightarrow> full n l \<and> full n r" | |
| 360 | ||
| 361 | lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (ins a t)" | |
| 362 | by (induct rule: full.induct) (auto, auto split: up\<^sub>i.split) | |
| 363 | ||
| 364 | text {* The @{const insert} operation preserves balance. *}
 | |
| 365 | ||
| 366 | lemma bal_insert: "bal t \<Longrightarrow> bal (insert a t)" | |
| 367 | unfolding bal_iff_full insert_def | |
| 368 | apply (erule exE) | |
| 369 | apply (drule full\<^sub>i_ins [of _ _ a]) | |
| 370 | apply (cases "ins a t") | |
| 371 | apply (auto intro: full.intros) | |
| 372 | done | |
| 373 | ||
| 374 | ||
| 375 | subsubsection "Proofs for delete" | |
| 376 | ||
| 377 | instantiation up\<^sub>d :: (type)height | |
| 378 | begin | |
| 379 | ||
| 380 | fun height_up\<^sub>d :: "'a up\<^sub>d \<Rightarrow> nat" where | |
| 381 | "height (T\<^sub>d t) = height t" | | |
| 382 | "height (Up\<^sub>d t) = height t + 1" | |
| 383 | ||
| 384 | instance .. | |
| 385 | ||
| 386 | end | |
| 387 | ||
| 388 | lemma bal_tree\<^sub>d_node21: | |
| 389 | "\<lbrakk>bal r; bal (tree\<^sub>d l); height r = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node21 l a r))" | |
| 390 | by(induct l a r rule: node21.induct) auto | |
| 391 | ||
| 392 | lemma bal_tree\<^sub>d_node22: | |
| 393 | "\<lbrakk>bal(tree\<^sub>d r); bal l; height r = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node22 l a r))" | |
| 394 | by(induct l a r rule: node22.induct) auto | |
| 395 | ||
| 396 | lemma bal_tree\<^sub>d_node31: | |
| 397 | "\<lbrakk> bal (tree\<^sub>d l); bal m; bal r; height l = height r; height m = height r \<rbrakk> | |
| 398 | \<Longrightarrow> bal (tree\<^sub>d (node31 l a m b r))" | |
| 399 | by(induct l a m b r rule: node31.induct) auto | |
| 400 | ||
| 401 | lemma bal_tree\<^sub>d_node32: | |
| 402 | "\<lbrakk> bal l; bal (tree\<^sub>d m); bal r; height l = height r; height m = height r \<rbrakk> | |
| 403 | \<Longrightarrow> bal (tree\<^sub>d (node32 l a m b r))" | |
| 404 | by(induct l a m b r rule: node32.induct) auto | |
| 405 | ||
| 406 | lemma bal_tree\<^sub>d_node33: | |
| 407 | "\<lbrakk> bal l; bal m; bal(tree\<^sub>d r); height l = height r; height m = height r \<rbrakk> | |
| 408 | \<Longrightarrow> bal (tree\<^sub>d (node33 l a m b r))" | |
| 409 | by(induct l a m b r rule: node33.induct) auto | |
| 410 | ||
| 411 | lemma bal_tree\<^sub>d_node41: | |
| 412 | "\<lbrakk> bal (tree\<^sub>d l); bal m; bal n; bal r; height l = height r; height m = height r; height n = height r \<rbrakk> | |
| 413 | \<Longrightarrow> bal (tree\<^sub>d (node41 l a m b n c r))" | |
| 414 | by(induct l a m b n c r rule: node41.induct) auto | |
| 415 | ||
| 416 | lemma bal_tree\<^sub>d_node42: | |
| 417 | "\<lbrakk> bal l; bal (tree\<^sub>d m); bal n; bal r; height l = height r; height m = height r; height n = height r \<rbrakk> | |
| 418 | \<Longrightarrow> bal (tree\<^sub>d (node42 l a m b n c r))" | |
| 419 | by(induct l a m b n c r rule: node42.induct) auto | |
| 420 | ||
| 421 | lemma bal_tree\<^sub>d_node43: | |
| 422 | "\<lbrakk> bal l; bal m; bal (tree\<^sub>d n); bal r; height l = height r; height m = height r; height n = height r \<rbrakk> | |
| 423 | \<Longrightarrow> bal (tree\<^sub>d (node43 l a m b n c r))" | |
| 424 | by(induct l a m b n c r rule: node43.induct) auto | |
| 425 | ||
| 426 | lemma bal_tree\<^sub>d_node44: | |
| 427 | "\<lbrakk> bal l; bal m; bal n; bal (tree\<^sub>d r); height l = height r; height m = height r; height n = height r \<rbrakk> | |
| 428 | \<Longrightarrow> bal (tree\<^sub>d (node44 l a m b n c r))" | |
| 429 | by(induct l a m b n c r rule: node44.induct) auto | |
| 430 | ||
| 431 | lemmas bals = bal_tree\<^sub>d_node21 bal_tree\<^sub>d_node22 | |
| 432 | bal_tree\<^sub>d_node31 bal_tree\<^sub>d_node32 bal_tree\<^sub>d_node33 | |
| 433 | bal_tree\<^sub>d_node41 bal_tree\<^sub>d_node42 bal_tree\<^sub>d_node43 bal_tree\<^sub>d_node44 | |
| 434 | ||
| 435 | lemma height_node21: | |
| 436 | "height r > 0 \<Longrightarrow> height(node21 l a r) = max (height l) (height r) + 1" | |
| 437 | by(induct l a r rule: node21.induct)(simp_all add: max.assoc) | |
| 438 | ||
| 439 | lemma height_node22: | |
| 440 | "height l > 0 \<Longrightarrow> height(node22 l a r) = max (height l) (height r) + 1" | |
| 441 | by(induct l a r rule: node22.induct)(simp_all add: max.assoc) | |
| 442 | ||
| 443 | lemma height_node31: | |
| 444 | "height m > 0 \<Longrightarrow> height(node31 l a m b r) = | |
| 445 | max (height l) (max (height m) (height r)) + 1" | |
| 446 | by(induct l a m b r rule: node31.induct)(simp_all add: max_def) | |
| 447 | ||
| 448 | lemma height_node32: | |
| 449 | "height r > 0 \<Longrightarrow> height(node32 l a m b r) = | |
| 450 | max (height l) (max (height m) (height r)) + 1" | |
| 451 | by(induct l a m b r rule: node32.induct)(simp_all add: max_def) | |
| 452 | ||
| 453 | lemma height_node33: | |
| 454 | "height m > 0 \<Longrightarrow> height(node33 l a m b r) = | |
| 455 | max (height l) (max (height m) (height r)) + 1" | |
| 456 | by(induct l a m b r rule: node33.induct)(simp_all add: max_def) | |
| 457 | ||
| 458 | lemma height_node41: | |
| 459 | "height m > 0 \<Longrightarrow> height(node41 l a m b n c r) = | |
| 460 | max (height l) (max (height m) (max (height n) (height r))) + 1" | |
| 461 | by(induct l a m b n c r rule: node41.induct)(simp_all add: max_def) | |
| 462 | ||
| 463 | lemma height_node42: | |
| 464 | "height l > 0 \<Longrightarrow> height(node42 l a m b n c r) = | |
| 465 | max (height l) (max (height m) (max (height n) (height r))) + 1" | |
| 466 | by(induct l a m b n c r rule: node42.induct)(simp_all add: max_def) | |
| 467 | ||
| 468 | lemma height_node43: | |
| 469 | "height m > 0 \<Longrightarrow> height(node43 l a m b n c r) = | |
| 470 | max (height l) (max (height m) (max (height n) (height r))) + 1" | |
| 471 | by(induct l a m b n c r rule: node43.induct)(simp_all add: max_def) | |
| 472 | ||
| 473 | lemma height_node44: | |
| 474 | "height n > 0 \<Longrightarrow> height(node44 l a m b n c r) = | |
| 475 | max (height l) (max (height m) (max (height n) (height r))) + 1" | |
| 476 | by(induct l a m b n c r rule: node44.induct)(simp_all add: max_def) | |
| 477 | ||
| 478 | lemmas heights = height_node21 height_node22 | |
| 479 | height_node31 height_node32 height_node33 | |
| 480 | height_node41 height_node42 height_node43 height_node44 | |
| 481 | ||
| 482 | lemma height_del_min: | |
| 483 | "del_min t = (x, t') \<Longrightarrow> height t > 0 \<Longrightarrow> bal t \<Longrightarrow> height t' = height t" | |
| 484 | by(induct t arbitrary: x t' rule: del_min.induct) | |
| 485 | (auto simp: heights split: prod.splits) | |
| 486 | ||
| 487 | lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t" | |
| 488 | by(induction x t rule: del.induct) | |
| 63636 | 489 | (auto simp add: heights height_del_min split!: if_split prod.split) | 
| 61640 | 490 | |
| 491 | lemma bal_del_min: | |
| 492 | "\<lbrakk> del_min t = (x, t'); bal t; height t > 0 \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d t')" | |
| 493 | by(induct t arbitrary: x t' rule: del_min.induct) | |
| 494 | (auto simp: heights height_del_min bals split: prod.splits) | |
| 495 | ||
| 496 | lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))" | |
| 497 | by(induction x t rule: del.induct) | |
| 63636 | 498 | (auto simp: bals bal_del_min height_del height_del_min split!: if_split prod.split) | 
| 61640 | 499 | |
| 500 | corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)" | |
| 501 | by(simp add: delete_def bal_tree\<^sub>d_del) | |
| 502 | ||
| 503 | subsection \<open>Overall Correctness\<close> | |
| 504 | ||
| 505 | interpretation Set_by_Ordered | |
| 506 | where empty = Leaf and isin = isin and insert = insert and delete = delete | |
| 507 | and inorder = inorder and inv = bal | |
| 508 | proof (standard, goal_cases) | |
| 509 | case 2 thus ?case by(simp add: isin_set) | |
| 510 | next | |
| 511 | case 3 thus ?case by(simp add: inorder_insert) | |
| 512 | next | |
| 513 | case 4 thus ?case by(simp add: inorder_delete) | |
| 514 | next | |
| 515 | case 6 thus ?case by(simp add: bal_insert) | |
| 516 | next | |
| 517 | case 7 thus ?case by(simp add: bal_delete) | |
| 518 | qed simp+ | |
| 519 | ||
| 520 | end |