| author | wenzelm | 
| Sat, 22 Oct 2016 12:34:58 +0200 | |
| changeset 64342 | 53fb4a19fb98 | 
| parent 63636 | 6f38b7abb648 | 
| child 67038 | db3e2240f830 | 
| permissions | -rw-r--r-- | 
| 61640 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 62130 | 3 | section \<open>2-3 Tree Implementation of Sets\<close> | 
| 61640 | 4 | |
| 5 | theory Tree23_Set | |
| 6 | imports | |
| 7 | Tree23 | |
| 8 | Cmp | |
| 9 | Set_by_Ordered | |
| 10 | begin | |
| 11 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 12 | fun isin :: "'a::linorder tree23 \<Rightarrow> 'a \<Rightarrow> bool" where | 
| 61640 | 13 | "isin Leaf x = False" | | 
| 14 | "isin (Node2 l a r) x = | |
| 61678 | 15 | (case cmp x a of | 
| 16 | LT \<Rightarrow> isin l x | | |
| 17 | EQ \<Rightarrow> True | | |
| 18 | GT \<Rightarrow> isin r x)" | | |
| 61640 | 19 | "isin (Node3 l a m b r) x = | 
| 61678 | 20 | (case cmp x a of | 
| 21 | LT \<Rightarrow> isin l x | | |
| 22 | EQ \<Rightarrow> True | | |
| 23 | GT \<Rightarrow> | |
| 24 | (case cmp x b of | |
| 25 | LT \<Rightarrow> isin m x | | |
| 26 | EQ \<Rightarrow> True | | |
| 27 | GT \<Rightarrow> isin r x))" | |
| 61640 | 28 | |
| 29 | datatype 'a up\<^sub>i = T\<^sub>i "'a tree23" | Up\<^sub>i "'a tree23" 'a "'a tree23" | |
| 30 | ||
| 31 | fun tree\<^sub>i :: "'a up\<^sub>i \<Rightarrow> 'a tree23" where | |
| 32 | "tree\<^sub>i (T\<^sub>i t) = t" | | |
| 61709 | 33 | "tree\<^sub>i (Up\<^sub>i l a r) = Node2 l a r" | 
| 61640 | 34 | |
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 35 | fun ins :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>i" where | 
| 61640 | 36 | "ins x Leaf = Up\<^sub>i Leaf x Leaf" | | 
| 37 | "ins x (Node2 l a r) = | |
| 38 | (case cmp x a of | |
| 61678 | 39 | LT \<Rightarrow> | 
| 40 | (case ins x l of | |
| 41 | T\<^sub>i l' => T\<^sub>i (Node2 l' a r) | | |
| 42 | Up\<^sub>i l1 b l2 => T\<^sub>i (Node3 l1 b l2 a r)) | | |
| 61640 | 43 | EQ \<Rightarrow> T\<^sub>i (Node2 l x r) | | 
| 61678 | 44 | GT \<Rightarrow> | 
| 45 | (case ins x r of | |
| 46 | T\<^sub>i r' => T\<^sub>i (Node2 l a r') | | |
| 47 | Up\<^sub>i r1 b r2 => T\<^sub>i (Node3 l a r1 b r2)))" | | |
| 61640 | 48 | "ins x (Node3 l a m b r) = | 
| 49 | (case cmp x a of | |
| 61678 | 50 | LT \<Rightarrow> | 
| 51 | (case ins x l of | |
| 52 | T\<^sub>i l' => T\<^sub>i (Node3 l' a m b r) | | |
| 53 | Up\<^sub>i l1 c l2 => Up\<^sub>i (Node2 l1 c l2) a (Node2 m b r)) | | |
| 61640 | 54 | EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) | | 
| 61678 | 55 | GT \<Rightarrow> | 
| 56 | (case cmp x b of | |
| 57 | GT \<Rightarrow> | |
| 58 | (case ins x r of | |
| 59 | T\<^sub>i r' => T\<^sub>i (Node3 l a m b r') | | |
| 60 | Up\<^sub>i r1 c r2 => Up\<^sub>i (Node2 l a m) b (Node2 r1 c r2)) | | |
| 61 | EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) | | |
| 62 | LT \<Rightarrow> | |
| 63 | (case ins x m of | |
| 64 | T\<^sub>i m' => T\<^sub>i (Node3 l a m' b r) | | |
| 65 | Up\<^sub>i m1 c m2 => Up\<^sub>i (Node2 l a m1) c (Node2 m2 b r))))" | |
| 61640 | 66 | |
| 67 | hide_const insert | |
| 68 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 69 | definition insert :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where | 
| 61640 | 70 | "insert x t = tree\<^sub>i(ins x t)" | 
| 71 | ||
| 72 | datatype 'a up\<^sub>d = T\<^sub>d "'a tree23" | Up\<^sub>d "'a tree23" | |
| 73 | ||
| 74 | fun tree\<^sub>d :: "'a up\<^sub>d \<Rightarrow> 'a tree23" where | |
| 61709 | 75 | "tree\<^sub>d (T\<^sub>d t) = t" | | 
| 76 | "tree\<^sub>d (Up\<^sub>d t) = t" | |
| 61640 | 77 | |
| 78 | (* Variation: return None to signal no-change *) | |
| 79 | ||
| 80 | fun node21 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where | |
| 81 | "node21 (T\<^sub>d t1) a t2 = T\<^sub>d(Node2 t1 a t2)" | | |
| 82 | "node21 (Up\<^sub>d t1) a (Node2 t2 b t3) = Up\<^sub>d(Node3 t1 a t2 b t3)" | | |
| 83 | "node21 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node2 t3 c t4))" | |
| 84 | ||
| 85 | fun node22 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where | |
| 86 | "node22 t1 a (T\<^sub>d t2) = T\<^sub>d(Node2 t1 a t2)" | | |
| 87 | "node22 (Node2 t1 b t2) a (Up\<^sub>d t3) = Up\<^sub>d(Node3 t1 b t2 a t3)" | | |
| 88 | "node22 (Node3 t1 b t2 c t3) a (Up\<^sub>d t4) = T\<^sub>d(Node2 (Node2 t1 b t2) c (Node2 t3 a t4))" | |
| 89 | ||
| 90 | fun node31 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where | |
| 91 | "node31 (T\<^sub>d t1) a t2 b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" | | |
| 92 | "node31 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 = T\<^sub>d(Node2 (Node3 t1 a t2 b t3) c t4)" | | |
| 93 | "node31 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node2 t3 c t4) d t5)" | |
| 94 | ||
| 95 | fun node32 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where | |
| 96 | "node32 t1 a (T\<^sub>d t2) b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" | | |
| 97 | "node32 t1 a (Up\<^sub>d t2) b (Node2 t3 c t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" | | |
| 98 | "node32 t1 a (Up\<^sub>d t2) b (Node3 t3 c t4 d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))" | |
| 99 | ||
| 100 | fun node33 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where | |
| 101 | "node33 l a m b (T\<^sub>d r) = T\<^sub>d(Node3 l a m b r)" | | |
| 102 | "node33 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" | | |
| 103 | "node33 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))" | |
| 104 | ||
| 105 | fun del_min :: "'a tree23 \<Rightarrow> 'a * 'a up\<^sub>d" where | |
| 106 | "del_min (Node2 Leaf a Leaf) = (a, Up\<^sub>d Leaf)" | | |
| 107 | "del_min (Node3 Leaf a Leaf b Leaf) = (a, T\<^sub>d(Node2 Leaf b Leaf))" | | |
| 108 | "del_min (Node2 l a r) = (let (x,l') = del_min l in (x, node21 l' a r))" | | |
| 109 | "del_min (Node3 l a m b r) = (let (x,l') = del_min l in (x, node31 l' a m b r))" | |
| 110 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 111 | fun del :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where | 
| 61640 | 112 | "del x Leaf = T\<^sub>d Leaf" | | 
| 61678 | 113 | "del x (Node2 Leaf a Leaf) = | 
| 114 | (if x = a then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf a Leaf))" | | |
| 115 | "del x (Node3 Leaf a Leaf b Leaf) = | |
| 116 | T\<^sub>d(if x = a then Node2 Leaf b Leaf else | |
| 117 | if x = b then Node2 Leaf a Leaf | |
| 118 | else Node3 Leaf a Leaf b Leaf)" | | |
| 119 | "del x (Node2 l a r) = | |
| 120 | (case cmp x a of | |
| 121 | LT \<Rightarrow> node21 (del x l) a r | | |
| 122 | GT \<Rightarrow> node22 l a (del x r) | | |
| 123 | EQ \<Rightarrow> let (a',t) = del_min r in node22 l a' t)" | | |
| 124 | "del x (Node3 l a m b r) = | |
| 125 | (case cmp x a of | |
| 126 | LT \<Rightarrow> node31 (del x l) a m b r | | |
| 127 | EQ \<Rightarrow> let (a',m') = del_min m in node32 l a' m' b r | | |
| 128 | GT \<Rightarrow> | |
| 129 | (case cmp x b of | |
| 61640 | 130 | LT \<Rightarrow> node32 l a (del x m) b r | | 
| 131 | EQ \<Rightarrow> let (b',r') = del_min r in node33 l a m b' r' | | |
| 132 | GT \<Rightarrow> node33 l a m b (del x r)))" | |
| 133 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
62130diff
changeset | 134 | definition delete :: "'a::linorder \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where | 
| 61640 | 135 | "delete x t = tree\<^sub>d(del x t)" | 
| 136 | ||
| 137 | ||
| 138 | subsection "Functional Correctness" | |
| 139 | ||
| 140 | subsubsection "Proofs for isin" | |
| 141 | ||
| 142 | lemma "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))" | |
| 143 | by (induction t) (auto simp: elems_simps1 ball_Un) | |
| 144 | ||
| 145 | lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))" | |
| 146 | by (induction t) (auto simp: elems_simps2) | |
| 147 | ||
| 148 | ||
| 149 | subsubsection "Proofs for insert" | |
| 150 | ||
| 151 | lemma inorder_ins: | |
| 152 | "sorted(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(ins x t)) = ins_list x (inorder t)" | |
| 153 | by(induction t) (auto simp: ins_list_simps split: up\<^sub>i.splits) | |
| 154 | ||
| 155 | lemma inorder_insert: | |
| 156 | "sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)" | |
| 157 | by(simp add: insert_def inorder_ins) | |
| 158 | ||
| 159 | ||
| 160 | subsubsection "Proofs for delete" | |
| 161 | ||
| 162 | lemma inorder_node21: "height r > 0 \<Longrightarrow> | |
| 163 | inorder (tree\<^sub>d (node21 l' a r)) = inorder (tree\<^sub>d l') @ a # inorder r" | |
| 164 | by(induct l' a r rule: node21.induct) auto | |
| 165 | ||
| 166 | lemma inorder_node22: "height l > 0 \<Longrightarrow> | |
| 167 | inorder (tree\<^sub>d (node22 l a r')) = inorder l @ a # inorder (tree\<^sub>d r')" | |
| 168 | by(induct l a r' rule: node22.induct) auto | |
| 169 | ||
| 170 | lemma inorder_node31: "height m > 0 \<Longrightarrow> | |
| 171 | inorder (tree\<^sub>d (node31 l' a m b r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder r" | |
| 172 | by(induct l' a m b r rule: node31.induct) auto | |
| 173 | ||
| 174 | lemma inorder_node32: "height r > 0 \<Longrightarrow> | |
| 175 | inorder (tree\<^sub>d (node32 l a m' b r)) = inorder l @ a # inorder (tree\<^sub>d m') @ b # inorder r" | |
| 176 | by(induct l a m' b r rule: node32.induct) auto | |
| 177 | ||
| 178 | lemma inorder_node33: "height m > 0 \<Longrightarrow> | |
| 179 | inorder (tree\<^sub>d (node33 l a m b r')) = inorder l @ a # inorder m @ b # inorder (tree\<^sub>d r')" | |
| 180 | by(induct l a m b r' rule: node33.induct) auto | |
| 181 | ||
| 182 | lemmas inorder_nodes = inorder_node21 inorder_node22 | |
| 183 | inorder_node31 inorder_node32 inorder_node33 | |
| 184 | ||
| 185 | lemma del_minD: | |
| 186 | "del_min t = (x,t') \<Longrightarrow> bal t \<Longrightarrow> height t > 0 \<Longrightarrow> | |
| 187 | x # inorder(tree\<^sub>d t') = inorder t" | |
| 188 | by(induction t arbitrary: t' rule: del_min.induct) | |
| 189 | (auto simp: inorder_nodes split: prod.splits) | |
| 190 | ||
| 191 | lemma inorder_del: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow> | |
| 192 | inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)" | |
| 193 | by(induction t rule: del.induct) | |
| 63636 | 194 | (auto simp: del_list_simps inorder_nodes del_minD split!: if_split prod.splits) | 
| 61640 | 195 | |
| 196 | lemma inorder_delete: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow> | |
| 197 | inorder(delete x t) = del_list x (inorder t)" | |
| 198 | by(simp add: delete_def inorder_del) | |
| 199 | ||
| 200 | ||
| 201 | subsection \<open>Balancedness\<close> | |
| 202 | ||
| 203 | ||
| 204 | subsubsection "Proofs for insert" | |
| 205 | ||
| 206 | text{* First a standard proof that @{const ins} preserves @{const bal}. *}
 | |
| 207 | ||
| 208 | instantiation up\<^sub>i :: (type)height | |
| 209 | begin | |
| 210 | ||
| 211 | fun height_up\<^sub>i :: "'a up\<^sub>i \<Rightarrow> nat" where | |
| 212 | "height (T\<^sub>i t) = height t" | | |
| 213 | "height (Up\<^sub>i l a r) = height l" | |
| 214 | ||
| 215 | instance .. | |
| 216 | ||
| 217 | end | |
| 218 | ||
| 219 | lemma bal_ins: "bal t \<Longrightarrow> bal (tree\<^sub>i(ins a t)) \<and> height(ins a t) = height t" | |
| 63636 | 220 | by (induct t) (auto split!: if_split up\<^sub>i.split) (* 15 secs in 2015 *) | 
| 61640 | 221 | |
| 222 | text{* Now an alternative proof (by Brian Huffman) that runs faster because
 | |
| 223 | two properties (balance and height) are combined in one predicate. *} | |
| 224 | ||
| 225 | inductive full :: "nat \<Rightarrow> 'a tree23 \<Rightarrow> bool" where | |
| 226 | "full 0 Leaf" | | |
| 227 | "\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node2 l p r)" | | |
| 228 | "\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node3 l p m q r)" | |
| 229 | ||
| 230 | inductive_cases full_elims: | |
| 231 | "full n Leaf" | |
| 232 | "full n (Node2 l p r)" | |
| 233 | "full n (Node3 l p m q r)" | |
| 234 | ||
| 235 | inductive_cases full_0_elim: "full 0 t" | |
| 236 | inductive_cases full_Suc_elim: "full (Suc n) t" | |
| 237 | ||
| 238 | lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Leaf" | |
| 239 | by (auto elim: full_0_elim intro: full.intros) | |
| 240 | ||
| 241 | lemma full_Leaf_iff [simp]: "full n Leaf \<longleftrightarrow> n = 0" | |
| 242 | by (auto elim: full_elims intro: full.intros) | |
| 243 | ||
| 244 | lemma full_Suc_Node2_iff [simp]: | |
| 245 | "full (Suc n) (Node2 l p r) \<longleftrightarrow> full n l \<and> full n r" | |
| 246 | by (auto elim: full_elims intro: full.intros) | |
| 247 | ||
| 248 | lemma full_Suc_Node3_iff [simp]: | |
| 249 | "full (Suc n) (Node3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r" | |
| 250 | by (auto elim: full_elims intro: full.intros) | |
| 251 | ||
| 252 | lemma full_imp_height: "full n t \<Longrightarrow> height t = n" | |
| 253 | by (induct set: full, simp_all) | |
| 254 | ||
| 255 | lemma full_imp_bal: "full n t \<Longrightarrow> bal t" | |
| 256 | by (induct set: full, auto dest: full_imp_height) | |
| 257 | ||
| 258 | lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t" | |
| 259 | by (induct t, simp_all) | |
| 260 | ||
| 261 | lemma bal_iff_full: "bal t \<longleftrightarrow> (\<exists>n. full n t)" | |
| 262 | by (auto elim!: bal_imp_full full_imp_bal) | |
| 263 | ||
| 264 | text {* The @{const "insert"} function either preserves the height of the
 | |
| 265 | tree, or increases it by one. The constructor returned by the @{term
 | |
| 266 | "insert"} function determines which: A return value of the form @{term
 | |
| 267 | "T\<^sub>i t"} indicates that the height will be the same. A value of the | |
| 268 | form @{term "Up\<^sub>i l p r"} indicates an increase in height. *}
 | |
| 269 | ||
| 270 | fun full\<^sub>i :: "nat \<Rightarrow> 'a up\<^sub>i \<Rightarrow> bool" where | |
| 271 | "full\<^sub>i n (T\<^sub>i t) \<longleftrightarrow> full n t" | | |
| 272 | "full\<^sub>i n (Up\<^sub>i l p r) \<longleftrightarrow> full n l \<and> full n r" | |
| 273 | ||
| 274 | lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (ins a t)" | |
| 275 | by (induct rule: full.induct) (auto split: up\<^sub>i.split) | |
| 276 | ||
| 277 | text {* The @{const insert} operation preserves balance. *}
 | |
| 278 | ||
| 279 | lemma bal_insert: "bal t \<Longrightarrow> bal (insert a t)" | |
| 280 | unfolding bal_iff_full insert_def | |
| 281 | apply (erule exE) | |
| 282 | apply (drule full\<^sub>i_ins [of _ _ a]) | |
| 283 | apply (cases "ins a t") | |
| 284 | apply (auto intro: full.intros) | |
| 285 | done | |
| 286 | ||
| 287 | ||
| 288 | subsection "Proofs for delete" | |
| 289 | ||
| 290 | instantiation up\<^sub>d :: (type)height | |
| 291 | begin | |
| 292 | ||
| 293 | fun height_up\<^sub>d :: "'a up\<^sub>d \<Rightarrow> nat" where | |
| 294 | "height (T\<^sub>d t) = height t" | | |
| 295 | "height (Up\<^sub>d t) = height t + 1" | |
| 296 | ||
| 297 | instance .. | |
| 298 | ||
| 299 | end | |
| 300 | ||
| 301 | lemma bal_tree\<^sub>d_node21: | |
| 302 | "\<lbrakk>bal r; bal (tree\<^sub>d l'); height r = height l' \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node21 l' a r))" | |
| 303 | by(induct l' a r rule: node21.induct) auto | |
| 304 | ||
| 305 | lemma bal_tree\<^sub>d_node22: | |
| 306 | "\<lbrakk>bal(tree\<^sub>d r'); bal l; height r' = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node22 l a r'))" | |
| 307 | by(induct l a r' rule: node22.induct) auto | |
| 308 | ||
| 309 | lemma bal_tree\<^sub>d_node31: | |
| 310 | "\<lbrakk> bal (tree\<^sub>d l'); bal m; bal r; height l' = height r; height m = height r \<rbrakk> | |
| 311 | \<Longrightarrow> bal (tree\<^sub>d (node31 l' a m b r))" | |
| 312 | by(induct l' a m b r rule: node31.induct) auto | |
| 313 | ||
| 314 | lemma bal_tree\<^sub>d_node32: | |
| 315 | "\<lbrakk> bal l; bal (tree\<^sub>d m'); bal r; height l = height r; height m' = height r \<rbrakk> | |
| 316 | \<Longrightarrow> bal (tree\<^sub>d (node32 l a m' b r))" | |
| 317 | by(induct l a m' b r rule: node32.induct) auto | |
| 318 | ||
| 319 | lemma bal_tree\<^sub>d_node33: | |
| 320 | "\<lbrakk> bal l; bal m; bal(tree\<^sub>d r'); height l = height r'; height m = height r' \<rbrakk> | |
| 321 | \<Longrightarrow> bal (tree\<^sub>d (node33 l a m b r'))" | |
| 322 | by(induct l a m b r' rule: node33.induct) auto | |
| 323 | ||
| 324 | lemmas bals = bal_tree\<^sub>d_node21 bal_tree\<^sub>d_node22 | |
| 325 | bal_tree\<^sub>d_node31 bal_tree\<^sub>d_node32 bal_tree\<^sub>d_node33 | |
| 326 | ||
| 327 | lemma height'_node21: | |
| 328 | "height r > 0 \<Longrightarrow> height(node21 l' a r) = max (height l') (height r) + 1" | |
| 329 | by(induct l' a r rule: node21.induct)(simp_all) | |
| 330 | ||
| 331 | lemma height'_node22: | |
| 332 | "height l > 0 \<Longrightarrow> height(node22 l a r') = max (height l) (height r') + 1" | |
| 333 | by(induct l a r' rule: node22.induct)(simp_all) | |
| 334 | ||
| 335 | lemma height'_node31: | |
| 336 | "height m > 0 \<Longrightarrow> height(node31 l a m b r) = | |
| 337 | max (height l) (max (height m) (height r)) + 1" | |
| 338 | by(induct l a m b r rule: node31.induct)(simp_all add: max_def) | |
| 339 | ||
| 340 | lemma height'_node32: | |
| 341 | "height r > 0 \<Longrightarrow> height(node32 l a m b r) = | |
| 342 | max (height l) (max (height m) (height r)) + 1" | |
| 343 | by(induct l a m b r rule: node32.induct)(simp_all add: max_def) | |
| 344 | ||
| 345 | lemma height'_node33: | |
| 346 | "height m > 0 \<Longrightarrow> height(node33 l a m b r) = | |
| 347 | max (height l) (max (height m) (height r)) + 1" | |
| 348 | by(induct l a m b r rule: node33.induct)(simp_all add: max_def) | |
| 349 | ||
| 350 | lemmas heights = height'_node21 height'_node22 | |
| 351 | height'_node31 height'_node32 height'_node33 | |
| 352 | ||
| 353 | lemma height_del_min: | |
| 354 | "del_min t = (x, t') \<Longrightarrow> height t > 0 \<Longrightarrow> bal t \<Longrightarrow> height t' = height t" | |
| 355 | by(induct t arbitrary: x t' rule: del_min.induct) | |
| 356 | (auto simp: heights split: prod.splits) | |
| 357 | ||
| 358 | lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t" | |
| 359 | by(induction x t rule: del.induct) | |
| 360 | (auto simp: heights max_def height_del_min split: prod.splits) | |
| 361 | ||
| 362 | lemma bal_del_min: | |
| 363 | "\<lbrakk> del_min t = (x, t'); bal t; height t > 0 \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d t')" | |
| 364 | by(induct t arbitrary: x t' rule: del_min.induct) | |
| 365 | (auto simp: heights height_del_min bals split: prod.splits) | |
| 366 | ||
| 367 | lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))" | |
| 368 | by(induction x t rule: del.induct) | |
| 369 | (auto simp: bals bal_del_min height_del height_del_min split: prod.splits) | |
| 370 | ||
| 371 | corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)" | |
| 372 | by(simp add: delete_def bal_tree\<^sub>d_del) | |
| 373 | ||
| 374 | ||
| 375 | subsection \<open>Overall Correctness\<close> | |
| 376 | ||
| 377 | interpretation Set_by_Ordered | |
| 378 | where empty = Leaf and isin = isin and insert = insert and delete = delete | |
| 379 | and inorder = inorder and inv = bal | |
| 380 | proof (standard, goal_cases) | |
| 381 | case 2 thus ?case by(simp add: isin_set) | |
| 382 | next | |
| 383 | case 3 thus ?case by(simp add: inorder_insert) | |
| 384 | next | |
| 385 | case 4 thus ?case by(simp add: inorder_delete) | |
| 386 | next | |
| 387 | case 6 thus ?case by(simp add: bal_insert) | |
| 388 | next | |
| 389 | case 7 thus ?case by(simp add: bal_delete) | |
| 390 | qed simp+ | |
| 391 | ||
| 392 | end |