| author | huffman | 
| Thu, 21 Oct 2010 12:03:49 -0700 | |
| changeset 40083 | 54159b52f339 | 
| parent 32960 | 69916a850301 | 
| child 46823 | 57bf0cecb366 | 
| permissions | -rw-r--r-- | 
| 13505 | 1  | 
(* Title: ZF/Constructible/Normal.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
*)  | 
|
4  | 
||
| 13223 | 5  | 
header {*Closed Unbounded Classes and Normal Functions*}
 | 
6  | 
||
| 16417 | 7  | 
theory Normal imports Main begin  | 
| 13223 | 8  | 
|
9  | 
text{*
 | 
|
10  | 
One source is the book  | 
|
11  | 
||
12  | 
Frank R. Drake.  | 
|
13  | 
\emph{Set Theory: An Introduction to Large Cardinals}.
 | 
|
14  | 
North-Holland, 1974.  | 
|
15  | 
*}  | 
|
16  | 
||
17  | 
||
18  | 
subsection {*Closed and Unbounded (c.u.) Classes of Ordinals*}
 | 
|
19  | 
||
| 21233 | 20  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
21  | 
Closed :: "(i=>o) => o" where  | 
| 13223 | 22  | 
"Closed(P) == \<forall>I. I \<noteq> 0 --> (\<forall>i\<in>I. Ord(i) \<and> P(i)) --> P(\<Union>(I))"  | 
23  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
24  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
25  | 
Unbounded :: "(i=>o) => o" where  | 
| 13223 | 26  | 
"Unbounded(P) == \<forall>i. Ord(i) --> (\<exists>j. i<j \<and> P(j))"  | 
27  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
28  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
29  | 
Closed_Unbounded :: "(i=>o) => o" where  | 
| 13223 | 30  | 
"Closed_Unbounded(P) == Closed(P) \<and> Unbounded(P)"  | 
31  | 
||
32  | 
||
33  | 
subsubsection{*Simple facts about c.u. classes*}
 | 
|
34  | 
||
35  | 
lemma ClosedI:  | 
|
36  | 
"[| !!I. [| I \<noteq> 0; \<forall>i\<in>I. Ord(i) \<and> P(i) |] ==> P(\<Union>(I)) |]  | 
|
37  | 
==> Closed(P)"  | 
|
38  | 
by (simp add: Closed_def)  | 
|
39  | 
||
40  | 
lemma ClosedD:  | 
|
41  | 
"[| Closed(P); I \<noteq> 0; !!i. i\<in>I ==> Ord(i); !!i. i\<in>I ==> P(i) |]  | 
|
42  | 
==> P(\<Union>(I))"  | 
|
43  | 
by (simp add: Closed_def)  | 
|
44  | 
||
45  | 
lemma UnboundedD:  | 
|
46  | 
"[| Unbounded(P); Ord(i) |] ==> \<exists>j. i<j \<and> P(j)"  | 
|
47  | 
by (simp add: Unbounded_def)  | 
|
48  | 
||
49  | 
lemma Closed_Unbounded_imp_Unbounded: "Closed_Unbounded(C) ==> Unbounded(C)"  | 
|
50  | 
by (simp add: Closed_Unbounded_def)  | 
|
51  | 
||
52  | 
||
53  | 
text{*The universal class, V, is closed and unbounded.
 | 
|
54  | 
A bit odd, since C. U. concerns only ordinals, but it's used below!*}  | 
|
55  | 
theorem Closed_Unbounded_V [simp]: "Closed_Unbounded(\<lambda>x. True)"  | 
|
56  | 
by (unfold Closed_Unbounded_def Closed_def Unbounded_def, blast)  | 
|
57  | 
||
58  | 
text{*The class of ordinals, @{term Ord}, is closed and unbounded.*}
 | 
|
59  | 
theorem Closed_Unbounded_Ord [simp]: "Closed_Unbounded(Ord)"  | 
|
60  | 
by (unfold Closed_Unbounded_def Closed_def Unbounded_def, blast)  | 
|
61  | 
||
62  | 
text{*The class of limit ordinals, @{term Limit}, is closed and unbounded.*}
 | 
|
63  | 
theorem Closed_Unbounded_Limit [simp]: "Closed_Unbounded(Limit)"  | 
|
64  | 
apply (simp add: Closed_Unbounded_def Closed_def Unbounded_def Limit_Union,  | 
|
65  | 
clarify)  | 
|
66  | 
apply (rule_tac x="i++nat" in exI)  | 
|
67  | 
apply (blast intro: oadd_lt_self oadd_LimitI Limit_nat Limit_has_0)  | 
|
68  | 
done  | 
|
69  | 
||
70  | 
text{*The class of cardinals, @{term Card}, is closed and unbounded.*}
 | 
|
71  | 
theorem Closed_Unbounded_Card [simp]: "Closed_Unbounded(Card)"  | 
|
72  | 
apply (simp add: Closed_Unbounded_def Closed_def Unbounded_def Card_Union)  | 
|
73  | 
apply (blast intro: lt_csucc Card_csucc)  | 
|
74  | 
done  | 
|
75  | 
||
76  | 
||
77  | 
subsubsection{*The intersection of any set-indexed family of c.u. classes is
 | 
|
78  | 
c.u.*}  | 
|
79  | 
||
80  | 
text{*The constructions below come from Kunen, \emph{Set Theory}, page 78.*}
 | 
|
| 13428 | 81  | 
locale cub_family =  | 
| 13223 | 82  | 
fixes P and A  | 
83  | 
  fixes next_greater -- "the next ordinal satisfying class @{term A}"
 | 
|
84  | 
  fixes sup_greater  -- "sup of those ordinals over all @{term A}"
 | 
|
85  | 
assumes closed: "a\<in>A ==> Closed(P(a))"  | 
|
86  | 
and unbounded: "a\<in>A ==> Unbounded(P(a))"  | 
|
87  | 
and A_non0: "A\<noteq>0"  | 
|
| 
14171
 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 
skalberg 
parents: 
13634 
diff
changeset
 | 
88  | 
defines "next_greater(a,x) == \<mu> y. x<y \<and> P(a,y)"  | 
| 13223 | 89  | 
and "sup_greater(x) == \<Union>a\<in>A. next_greater(a,x)"  | 
90  | 
||
91  | 
||
92  | 
text{*Trivial that the intersection is closed.*}
 | 
|
93  | 
lemma (in cub_family) Closed_INT: "Closed(\<lambda>x. \<forall>i\<in>A. P(i,x))"  | 
|
94  | 
by (blast intro: ClosedI ClosedD [OF closed])  | 
|
95  | 
||
96  | 
text{*All remaining effort goes to show that the intersection is unbounded.*}
 | 
|
97  | 
||
98  | 
lemma (in cub_family) Ord_sup_greater:  | 
|
99  | 
"Ord(sup_greater(x))"  | 
|
100  | 
by (simp add: sup_greater_def next_greater_def)  | 
|
101  | 
||
102  | 
lemma (in cub_family) Ord_next_greater:  | 
|
103  | 
"Ord(next_greater(a,x))"  | 
|
104  | 
by (simp add: next_greater_def Ord_Least)  | 
|
105  | 
||
106  | 
text{*@{term next_greater} works as expected: it returns a larger value
 | 
|
107  | 
and one that belongs to class @{term "P(a)"}. *}
 | 
|
108  | 
lemma (in cub_family) next_greater_lemma:  | 
|
109  | 
"[| Ord(x); a\<in>A |] ==> P(a, next_greater(a,x)) \<and> x < next_greater(a,x)"  | 
|
110  | 
apply (simp add: next_greater_def)  | 
|
111  | 
apply (rule exE [OF UnboundedD [OF unbounded]])  | 
|
112  | 
apply assumption+  | 
|
113  | 
apply (blast intro: LeastI2 lt_Ord2)  | 
|
114  | 
done  | 
|
115  | 
||
116  | 
lemma (in cub_family) next_greater_in_P:  | 
|
117  | 
"[| Ord(x); a\<in>A |] ==> P(a, next_greater(a,x))"  | 
|
118  | 
by (blast dest: next_greater_lemma)  | 
|
119  | 
||
120  | 
lemma (in cub_family) next_greater_gt:  | 
|
121  | 
"[| Ord(x); a\<in>A |] ==> x < next_greater(a,x)"  | 
|
122  | 
by (blast dest: next_greater_lemma)  | 
|
123  | 
||
124  | 
lemma (in cub_family) sup_greater_gt:  | 
|
125  | 
"Ord(x) ==> x < sup_greater(x)"  | 
|
126  | 
apply (simp add: sup_greater_def)  | 
|
127  | 
apply (insert A_non0)  | 
|
128  | 
apply (blast intro: UN_upper_lt next_greater_gt Ord_next_greater)  | 
|
129  | 
done  | 
|
130  | 
||
131  | 
lemma (in cub_family) next_greater_le_sup_greater:  | 
|
132  | 
"a\<in>A ==> next_greater(a,x) \<le> sup_greater(x)"  | 
|
133  | 
apply (simp add: sup_greater_def)  | 
|
134  | 
apply (blast intro: UN_upper_le Ord_next_greater)  | 
|
135  | 
done  | 
|
136  | 
||
137  | 
lemma (in cub_family) omega_sup_greater_eq_UN:  | 
|
138  | 
"[| Ord(x); a\<in>A |]  | 
|
139  | 
==> sup_greater^\<omega> (x) =  | 
|
140  | 
(\<Union>n\<in>nat. next_greater(a, sup_greater^n (x)))"  | 
|
141  | 
apply (simp add: iterates_omega_def)  | 
|
142  | 
apply (rule le_anti_sym)  | 
|
143  | 
apply (rule le_implies_UN_le_UN)  | 
|
144  | 
apply (blast intro: leI next_greater_gt Ord_iterates Ord_sup_greater)  | 
|
145  | 
txt{*Opposite bound:
 | 
|
146  | 
@{subgoals[display,indent=0,margin=65]}
 | 
|
147  | 
*}  | 
|
148  | 
apply (rule UN_least_le)  | 
|
149  | 
apply (blast intro: Ord_UN Ord_iterates Ord_sup_greater)  | 
|
150  | 
apply (rule_tac a="succ(n)" in UN_upper_le)  | 
|
151  | 
apply (simp_all add: next_greater_le_sup_greater)  | 
|
152  | 
apply (blast intro: Ord_UN Ord_iterates Ord_sup_greater)  | 
|
153  | 
done  | 
|
154  | 
||
155  | 
lemma (in cub_family) P_omega_sup_greater:  | 
|
156  | 
"[| Ord(x); a\<in>A |] ==> P(a, sup_greater^\<omega> (x))"  | 
|
157  | 
apply (simp add: omega_sup_greater_eq_UN)  | 
|
158  | 
apply (rule ClosedD [OF closed])  | 
|
159  | 
apply (blast intro: ltD, auto)  | 
|
160  | 
apply (blast intro: Ord_iterates Ord_next_greater Ord_sup_greater)  | 
|
161  | 
apply (blast intro: next_greater_in_P Ord_iterates Ord_sup_greater)  | 
|
162  | 
done  | 
|
163  | 
||
164  | 
lemma (in cub_family) omega_sup_greater_gt:  | 
|
165  | 
"Ord(x) ==> x < sup_greater^\<omega> (x)"  | 
|
166  | 
apply (simp add: iterates_omega_def)  | 
|
167  | 
apply (rule UN_upper_lt [of 1], simp_all)  | 
|
168  | 
apply (blast intro: sup_greater_gt)  | 
|
169  | 
apply (blast intro: Ord_UN Ord_iterates Ord_sup_greater)  | 
|
170  | 
done  | 
|
171  | 
||
172  | 
lemma (in cub_family) Unbounded_INT: "Unbounded(\<lambda>x. \<forall>a\<in>A. P(a,x))"  | 
|
173  | 
apply (unfold Unbounded_def)  | 
|
174  | 
apply (blast intro!: omega_sup_greater_gt P_omega_sup_greater)  | 
|
175  | 
done  | 
|
176  | 
||
177  | 
lemma (in cub_family) Closed_Unbounded_INT:  | 
|
178  | 
"Closed_Unbounded(\<lambda>x. \<forall>a\<in>A. P(a,x))"  | 
|
179  | 
by (simp add: Closed_Unbounded_def Closed_INT Unbounded_INT)  | 
|
180  | 
||
181  | 
||
182  | 
theorem Closed_Unbounded_INT:  | 
|
183  | 
"(!!a. a\<in>A ==> Closed_Unbounded(P(a)))  | 
|
184  | 
==> Closed_Unbounded(\<lambda>x. \<forall>a\<in>A. P(a, x))"  | 
|
185  | 
apply (case_tac "A=0", simp)  | 
|
| 13428 | 186  | 
apply (rule cub_family.Closed_Unbounded_INT [OF cub_family.intro])  | 
| 13223 | 187  | 
apply (simp_all add: Closed_Unbounded_def)  | 
188  | 
done  | 
|
189  | 
||
190  | 
lemma Int_iff_INT2:  | 
|
191  | 
"P(x) \<and> Q(x) <-> (\<forall>i\<in>2. (i=0 --> P(x)) \<and> (i=1 --> Q(x)))"  | 
|
192  | 
by auto  | 
|
193  | 
||
194  | 
theorem Closed_Unbounded_Int:  | 
|
195  | 
"[| Closed_Unbounded(P); Closed_Unbounded(Q) |]  | 
|
196  | 
==> Closed_Unbounded(\<lambda>x. P(x) \<and> Q(x))"  | 
|
197  | 
apply (simp only: Int_iff_INT2)  | 
|
198  | 
apply (rule Closed_Unbounded_INT, auto)  | 
|
199  | 
done  | 
|
200  | 
||
201  | 
||
202  | 
subsection {*Normal Functions*} 
 | 
|
203  | 
||
| 21233 | 204  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
205  | 
mono_le_subset :: "(i=>i) => o" where  | 
| 13223 | 206  | 
"mono_le_subset(M) == \<forall>i j. i\<le>j --> M(i) \<subseteq> M(j)"  | 
207  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
208  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
209  | 
mono_Ord :: "(i=>i) => o" where  | 
| 13223 | 210  | 
"mono_Ord(F) == \<forall>i j. i<j --> F(i) < F(j)"  | 
211  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
212  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
213  | 
cont_Ord :: "(i=>i) => o" where  | 
| 13223 | 214  | 
"cont_Ord(F) == \<forall>l. Limit(l) --> F(l) = (\<Union>i<l. F(i))"  | 
215  | 
||
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
216  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
217  | 
Normal :: "(i=>i) => o" where  | 
| 13223 | 218  | 
"Normal(F) == mono_Ord(F) \<and> cont_Ord(F)"  | 
219  | 
||
220  | 
||
221  | 
subsubsection{*Immediate properties of the definitions*}
 | 
|
222  | 
||
223  | 
lemma NormalI:  | 
|
224  | 
"[|!!i j. i<j ==> F(i) < F(j); !!l. Limit(l) ==> F(l) = (\<Union>i<l. F(i))|]  | 
|
225  | 
==> Normal(F)"  | 
|
226  | 
by (simp add: Normal_def mono_Ord_def cont_Ord_def)  | 
|
227  | 
||
228  | 
lemma mono_Ord_imp_Ord: "[| Ord(i); mono_Ord(F) |] ==> Ord(F(i))"  | 
|
229  | 
apply (simp add: mono_Ord_def)  | 
|
230  | 
apply (blast intro: lt_Ord)  | 
|
231  | 
done  | 
|
232  | 
||
233  | 
lemma mono_Ord_imp_mono: "[| i<j; mono_Ord(F) |] ==> F(i) < F(j)"  | 
|
234  | 
by (simp add: mono_Ord_def)  | 
|
235  | 
||
236  | 
lemma Normal_imp_Ord [simp]: "[| Normal(F); Ord(i) |] ==> Ord(F(i))"  | 
|
237  | 
by (simp add: Normal_def mono_Ord_imp_Ord)  | 
|
238  | 
||
239  | 
lemma Normal_imp_cont: "[| Normal(F); Limit(l) |] ==> F(l) = (\<Union>i<l. F(i))"  | 
|
240  | 
by (simp add: Normal_def cont_Ord_def)  | 
|
241  | 
||
242  | 
lemma Normal_imp_mono: "[| i<j; Normal(F) |] ==> F(i) < F(j)"  | 
|
243  | 
by (simp add: Normal_def mono_Ord_def)  | 
|
244  | 
||
245  | 
lemma Normal_increasing: "[| Ord(i); Normal(F) |] ==> i\<le>F(i)"  | 
|
246  | 
apply (induct i rule: trans_induct3_rule)  | 
|
247  | 
apply (simp add: subset_imp_le)  | 
|
248  | 
apply (subgoal_tac "F(x) < F(succ(x))")  | 
|
249  | 
apply (force intro: lt_trans1)  | 
|
250  | 
apply (simp add: Normal_def mono_Ord_def)  | 
|
251  | 
apply (subgoal_tac "(\<Union>y<x. y) \<le> (\<Union>y<x. F(y))")  | 
|
252  | 
apply (simp add: Normal_imp_cont Limit_OUN_eq)  | 
|
253  | 
apply (blast intro: ltD le_implies_OUN_le_OUN)  | 
|
254  | 
done  | 
|
255  | 
||
256  | 
||
257  | 
subsubsection{*The class of fixedpoints is closed and unbounded*}
 | 
|
258  | 
||
259  | 
text{*The proof is from Drake, pages 113--114.*}
 | 
|
260  | 
||
261  | 
lemma mono_Ord_imp_le_subset: "mono_Ord(F) ==> mono_le_subset(F)"  | 
|
262  | 
apply (simp add: mono_le_subset_def, clarify)  | 
|
263  | 
apply (subgoal_tac "F(i)\<le>F(j)", blast dest: le_imp_subset)  | 
|
264  | 
apply (simp add: le_iff)  | 
|
265  | 
apply (blast intro: lt_Ord2 mono_Ord_imp_Ord mono_Ord_imp_mono)  | 
|
266  | 
done  | 
|
267  | 
||
268  | 
text{*The following equation is taken for granted in any set theory text.*}
 | 
|
269  | 
lemma cont_Ord_Union:  | 
|
270  | 
"[| cont_Ord(F); mono_le_subset(F); X=0 --> F(0)=0; \<forall>x\<in>X. Ord(x) |]  | 
|
271  | 
==> F(Union(X)) = (\<Union>y\<in>X. F(y))"  | 
|
272  | 
apply (frule Ord_set_cases)  | 
|
273  | 
apply (erule disjE, force)  | 
|
274  | 
apply (thin_tac "X=0 --> ?Q", auto)  | 
|
275  | 
 txt{*The trival case of @{term "\<Union>X \<in> X"}*}
 | 
|
276  | 
apply (rule equalityI, blast intro: Ord_Union_eq_succD)  | 
|
277  | 
apply (simp add: mono_le_subset_def UN_subset_iff le_subset_iff)  | 
|
278  | 
apply (blast elim: equalityE)  | 
|
279  | 
txt{*The limit case, @{term "Limit(\<Union>X)"}:
 | 
|
280  | 
@{subgoals[display,indent=0,margin=65]}
 | 
|
281  | 
*}  | 
|
282  | 
apply (simp add: OUN_Union_eq cont_Ord_def)  | 
|
283  | 
apply (rule equalityI)  | 
|
284  | 
txt{*First inclusion:*}
 | 
|
285  | 
apply (rule UN_least [OF OUN_least])  | 
|
286  | 
apply (simp add: mono_le_subset_def, blast intro: leI)  | 
|
287  | 
txt{*Second inclusion:*}
 | 
|
288  | 
apply (rule UN_least)  | 
|
289  | 
apply (frule Union_upper_le, blast, blast intro: Ord_Union)  | 
|
290  | 
apply (erule leE, drule ltD, elim UnionE)  | 
|
291  | 
apply (simp add: OUnion_def)  | 
|
292  | 
apply blast+  | 
|
293  | 
done  | 
|
294  | 
||
295  | 
lemma Normal_Union:  | 
|
296  | 
"[| X\<noteq>0; \<forall>x\<in>X. Ord(x); Normal(F) |] ==> F(Union(X)) = (\<Union>y\<in>X. F(y))"  | 
|
297  | 
apply (simp add: Normal_def)  | 
|
298  | 
apply (blast intro: mono_Ord_imp_le_subset cont_Ord_Union)  | 
|
299  | 
done  | 
|
300  | 
||
301  | 
lemma Normal_imp_fp_Closed: "Normal(F) ==> Closed(\<lambda>i. F(i) = i)"  | 
|
302  | 
apply (simp add: Closed_def ball_conj_distrib, clarify)  | 
|
303  | 
apply (frule Ord_set_cases)  | 
|
304  | 
apply (auto simp add: Normal_Union)  | 
|
305  | 
done  | 
|
306  | 
||
307  | 
||
308  | 
lemma iterates_Normal_increasing:  | 
|
309  | 
"[| n\<in>nat; x < F(x); Normal(F) |]  | 
|
310  | 
==> F^n (x) < F^(succ(n)) (x)"  | 
|
311  | 
apply (induct n rule: nat_induct)  | 
|
312  | 
apply (simp_all add: Normal_imp_mono)  | 
|
313  | 
done  | 
|
314  | 
||
315  | 
lemma Ord_iterates_Normal:  | 
|
316  | 
"[| n\<in>nat; Normal(F); Ord(x) |] ==> Ord(F^n (x))"  | 
|
317  | 
by (simp add: Ord_iterates)  | 
|
318  | 
||
319  | 
text{*THIS RESULT IS UNUSED*}
 | 
|
320  | 
lemma iterates_omega_Limit:  | 
|
321  | 
"[| Normal(F); x < F(x) |] ==> Limit(F^\<omega> (x))"  | 
|
322  | 
apply (frule lt_Ord)  | 
|
323  | 
apply (simp add: iterates_omega_def)  | 
|
324  | 
apply (rule increasing_LimitI)  | 
|
325  | 
   --"this lemma is @{thm increasing_LimitI [no_vars]}"
 | 
|
326  | 
apply (blast intro: UN_upper_lt [of "1"] Normal_imp_Ord  | 
|
327  | 
Ord_UN Ord_iterates lt_imp_0_lt  | 
|
| 13268 | 328  | 
iterates_Normal_increasing, clarify)  | 
| 13223 | 329  | 
apply (rule bexI)  | 
330  | 
apply (blast intro: Ord_in_Ord [OF Ord_iterates_Normal])  | 
|
331  | 
apply (rule UN_I, erule nat_succI)  | 
|
332  | 
apply (blast intro: iterates_Normal_increasing Ord_iterates_Normal  | 
|
333  | 
ltD [OF lt_trans1, OF succ_leI, OF ltI])  | 
|
334  | 
done  | 
|
335  | 
||
336  | 
lemma iterates_omega_fixedpoint:  | 
|
337  | 
"[| Normal(F); Ord(a) |] ==> F(F^\<omega> (a)) = F^\<omega> (a)"  | 
|
338  | 
apply (frule Normal_increasing, assumption)  | 
|
339  | 
apply (erule leE)  | 
|
340  | 
apply (simp_all add: iterates_omega_triv [OF sym]) (*for subgoal 2*)  | 
|
341  | 
apply (simp add: iterates_omega_def Normal_Union)  | 
|
342  | 
apply (rule equalityI, force simp add: nat_succI)  | 
|
343  | 
txt{*Opposite inclusion:
 | 
|
344  | 
@{subgoals[display,indent=0,margin=65]}
 | 
|
345  | 
*}  | 
|
346  | 
apply clarify  | 
|
347  | 
apply (rule UN_I, assumption)  | 
|
348  | 
apply (frule iterates_Normal_increasing, assumption, assumption, simp)  | 
|
349  | 
apply (blast intro: Ord_trans ltD Ord_iterates_Normal Normal_imp_Ord [of F])  | 
|
350  | 
done  | 
|
351  | 
||
352  | 
lemma iterates_omega_increasing:  | 
|
353  | 
"[| Normal(F); Ord(a) |] ==> a \<le> F^\<omega> (a)"  | 
|
354  | 
apply (unfold iterates_omega_def)  | 
|
355  | 
apply (rule UN_upper_le [of 0], simp_all)  | 
|
356  | 
done  | 
|
357  | 
||
358  | 
lemma Normal_imp_fp_Unbounded: "Normal(F) ==> Unbounded(\<lambda>i. F(i) = i)"  | 
|
359  | 
apply (unfold Unbounded_def, clarify)  | 
|
360  | 
apply (rule_tac x="F^\<omega> (succ(i))" in exI)  | 
|
361  | 
apply (simp add: iterates_omega_fixedpoint)  | 
|
362  | 
apply (blast intro: lt_trans2 [OF _ iterates_omega_increasing])  | 
|
363  | 
done  | 
|
364  | 
||
365  | 
||
366  | 
theorem Normal_imp_fp_Closed_Unbounded:  | 
|
367  | 
"Normal(F) ==> Closed_Unbounded(\<lambda>i. F(i) = i)"  | 
|
368  | 
by (simp add: Closed_Unbounded_def Normal_imp_fp_Closed  | 
|
369  | 
Normal_imp_fp_Unbounded)  | 
|
370  | 
||
371  | 
||
372  | 
subsubsection{*Function @{text normalize}*}
 | 
|
373  | 
||
374  | 
text{*Function @{text normalize} maps a function @{text F} to a 
 | 
|
375  | 
normal function that bounds it above. The result is normal if and  | 
|
376  | 
      only if @{text F} is continuous: succ is not bounded above by any 
 | 
|
377  | 
      normal function, by @{thm [source] Normal_imp_fp_Unbounded}.
 | 
|
378  | 
*}  | 
|
| 21233 | 379  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
380  | 
normalize :: "[i=>i, i] => i" where  | 
| 13223 | 381  | 
"normalize(F,a) == transrec2(a, F(0), \<lambda>x r. F(succ(x)) Un succ(r))"  | 
382  | 
||
383  | 
||
384  | 
lemma Ord_normalize [simp, intro]:  | 
|
385  | 
"[| Ord(a); !!x. Ord(x) ==> Ord(F(x)) |] ==> Ord(normalize(F, a))"  | 
|
386  | 
apply (induct a rule: trans_induct3_rule)  | 
|
387  | 
apply (simp_all add: ltD def_transrec2 [OF normalize_def])  | 
|
388  | 
done  | 
|
389  | 
||
390  | 
lemma normalize_lemma [rule_format]:  | 
|
391  | 
"[| Ord(b); !!x. Ord(x) ==> Ord(F(x)) |]  | 
|
392  | 
==> \<forall>a. a < b --> normalize(F, a) < normalize(F, b)"  | 
|
393  | 
apply (erule trans_induct3)  | 
|
394  | 
apply (simp_all add: le_iff def_transrec2 [OF normalize_def])  | 
|
395  | 
apply clarify  | 
|
396  | 
apply (rule Un_upper2_lt)  | 
|
397  | 
apply auto  | 
|
398  | 
apply (drule spec, drule mp, assumption)  | 
|
399  | 
apply (erule leI)  | 
|
400  | 
apply (drule Limit_has_succ, assumption)  | 
|
401  | 
apply (blast intro!: Ord_normalize intro: OUN_upper_lt ltD lt_Ord)  | 
|
402  | 
done  | 
|
403  | 
||
404  | 
lemma normalize_increasing:  | 
|
405  | 
"[| a < b; !!x. Ord(x) ==> Ord(F(x)) |]  | 
|
406  | 
==> normalize(F, a) < normalize(F, b)"  | 
|
407  | 
by (blast intro!: normalize_lemma intro: lt_Ord2)  | 
|
408  | 
||
409  | 
theorem Normal_normalize:  | 
|
410  | 
"(!!x. Ord(x) ==> Ord(F(x))) ==> Normal(normalize(F))"  | 
|
411  | 
apply (rule NormalI)  | 
|
412  | 
apply (blast intro!: normalize_increasing)  | 
|
413  | 
apply (simp add: def_transrec2 [OF normalize_def])  | 
|
414  | 
done  | 
|
415  | 
||
416  | 
theorem le_normalize:  | 
|
417  | 
"[| Ord(a); cont_Ord(F); !!x. Ord(x) ==> Ord(F(x)) |]  | 
|
418  | 
==> F(a) \<le> normalize(F,a)"  | 
|
419  | 
apply (erule trans_induct3)  | 
|
420  | 
apply (simp_all add: def_transrec2 [OF normalize_def])  | 
|
421  | 
apply (simp add: Un_upper1_le)  | 
|
422  | 
apply (simp add: cont_Ord_def)  | 
|
423  | 
apply (blast intro: ltD le_implies_OUN_le_OUN)  | 
|
424  | 
done  | 
|
425  | 
||
426  | 
||
427  | 
subsection {*The Alephs*}
 | 
|
428  | 
text {*This is the well-known transfinite enumeration of the cardinal 
 | 
|
429  | 
numbers.*}  | 
|
430  | 
||
| 21233 | 431  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21233 
diff
changeset
 | 
432  | 
Aleph :: "i => i" where  | 
| 13223 | 433  | 
"Aleph(a) == transrec2(a, nat, \<lambda>x r. csucc(r))"  | 
434  | 
||
| 21233 | 435  | 
notation (xsymbols)  | 
436  | 
  Aleph  ("\<aleph>_" [90] 90)
 | 
|
| 13223 | 437  | 
|
438  | 
lemma Card_Aleph [simp, intro]:  | 
|
439  | 
"Ord(a) ==> Card(Aleph(a))"  | 
|
440  | 
apply (erule trans_induct3)  | 
|
441  | 
apply (simp_all add: Card_csucc Card_nat Card_is_Ord  | 
|
442  | 
def_transrec2 [OF Aleph_def])  | 
|
443  | 
done  | 
|
444  | 
||
445  | 
lemma Aleph_lemma [rule_format]:  | 
|
446  | 
"Ord(b) ==> \<forall>a. a < b --> Aleph(a) < Aleph(b)"  | 
|
447  | 
apply (erule trans_induct3)  | 
|
448  | 
apply (simp_all add: le_iff def_transrec2 [OF Aleph_def])  | 
|
449  | 
apply (blast intro: lt_trans lt_csucc Card_is_Ord, clarify)  | 
|
450  | 
apply (drule Limit_has_succ, assumption)  | 
|
451  | 
apply (blast intro: Card_is_Ord Card_Aleph OUN_upper_lt ltD lt_Ord)  | 
|
452  | 
done  | 
|
453  | 
||
454  | 
lemma Aleph_increasing:  | 
|
455  | 
"a < b ==> Aleph(a) < Aleph(b)"  | 
|
456  | 
by (blast intro!: Aleph_lemma intro: lt_Ord2)  | 
|
457  | 
||
458  | 
theorem Normal_Aleph: "Normal(Aleph)"  | 
|
459  | 
apply (rule NormalI)  | 
|
460  | 
apply (blast intro!: Aleph_increasing)  | 
|
461  | 
apply (simp add: def_transrec2 [OF Aleph_def])  | 
|
462  | 
done  | 
|
463  | 
||
464  | 
end  |